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Abstract
 
One of the instabilities large wind turbines can suffer 
from is the so-called flap-lag-stall instability. This is 
caused by the first flap and lead-lag frequencies of 
the large blade coming closer together as an effect 
from scaling, combined with the effect of stall. 
Another instability that can occur in wind turbines 
operating in or close to stall is an instability due to 
negative in-plane damping by the aerodynamic 
forces. To further investigate the effect of the 
frequencies on the flap-lag-stall instability a blade is 
simulated using different values for the stiffness in 
flap and lead lag direction. Bringing these two closer 
together should decrease the damping when 
operating close to stall if the blade suffers from the 
flap-lag-stall instability. Simulations have been 
performed on five different blades, a baseline and 
four with a reduction in the difference between the 
first flap and first lag frequency. From these 
simulations it becomes clear that changing the 
stiffness has an effect on the stability, but if this is 
due to the flap-lag-stall instability or due to the 
edgewise instability is not clear.  The effect of the 
reduction of the difference between the first flap and 
first lag frequency does not always lead to a 
reduction in the damping, sometimes and increase in 
the damping is observed. 
 
Notations 
 
A = Energy of mass matrix 
E = Young’s modulus 
G = Modulus of elasticity in shear 
Ip = Polar moment of inertia 
Iβ, Iς = Area moment of inertia about flap/lag axis 
k = Partitioning coefficient 
kβ kς = Spring stiffness flap/lag 
p = Generalised momentum 
q = Generalised coordinate 
Q = Generalised force 
T = Kinetic energy 
V = Potential energy 
ω  = Non-dimensional eigenfrequency 
 

1. Introduction 
 
In a world where the energy use keeps rising and 
the devastating effects on the environment of oil 
burning generators is becoming clear, wind energy is 
one of the alternatives to provide clean energy. To 

supply more clean energy, the wind turbines have, 
over the years, become larger and more powerful. 
Small wind turbines up to 60 meters in diameter did 
not appear to suffer from aeroelastic instabilities. 
However, larger wind turbines have sometimes 
shown devastating aeroelastic instabilities. It is 
therefore important to understand these instabilities 
and to prevent them from occurring in new turbines. 
In ref [1,2] it was concluded that one of the possible 
problems was the so-called flap-lag-stall, which can 
sometimes occur in wind turbines, especially in large 
wind turbines. The possibility of this instability is due 
to the method used to scale up the turbines [3]. The 
scaling brings the flap and lead-lag frequencies 
closer together. This combined with operating close 
to stall results in a possible instability. At the same 
time it is always possible for a wind turbine operating 
close to stall to experience negative damping in 
edgewise direction due to the aerodynamic forces 
(ref [4]). In an attempt to further investigate the flap-
lag-stall instability and the difference between this 
instability and the edgewise instability, this paper 
looks at the stability of a single blade with normal 
stiffness and compares this with blades with reduced 
lag stiffness and blades with increased flap stiffness. 
This way the flap- and lag frequency come closer 
together than in the original blade and the stability 
could therefore be reduced due to the flap-lag stall 
instability, given that the turbine operates close to 
stall. To investigate the stability of these different 
blade models, time simulations have been 
performed using a fully nonlinear rigid body 
simulation tool. These are then analysed using a 
system identification tool. 
The background of this research will be sketched in 
chapter 2, where the flap-lag-stall instability  and the 
edgewise instability are described. Chapter 3 will 
shortly discuss the programme that has been used 
to perform the simulations. The model that has been 
used to analyse the instability is shown in chapter 4 
while chapter 5 describes the post-processing 
method used to get from the time series that result 
from the simulations to damping coefficients. Finally, 
in chapter 6 the results are shown and discussed 
after which the last chapter will give the conclusions. 
 

2. Instabilities 
 
2.1 Flap-Lag-Stall Instability 
The instability observed in some large wind turbines 
has not been observed in smaller wind turbines. 
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Therefore it can be expected that the instability is 
scale dependent. After a literature survey [5] and 
analysing the scale dependency of instabilities it was 
concluded that one of the possible instabilities was 
due to the method used in scaling the blades. The 
scaling of the blades is performed in such a way that 
the lead-lag and flap frequencies come closer 
together. These frequencies are usually calculated 
for clamped blades. Also when the frequencies are 
measured, this is often done trying to clamp the 
blade with infinite stiffness. In reality however, 
different eigenmodes for two or three bladed rotors 
can reduce the lead-lag frequency even more [3]. If 
the hub rotates as part of the eigenfrequency, this 
will in fact decrease (or increase, depending on the 
direction) the lag frequency. Therefore these 
frequencies are then even closer together then the 
measurements or calculations might suggest. This is 
illustrated in figure 1. 

 
Figure 1: Flap and Lag frequencies approach each 
other 
For helicopters is has been shown that the flap-lead-
lag instability will only occur if the rotating flap 
eigenfrequency is between 1.0 2ω< < [6]. For 
wind turbines, the flap frequency will be much higher 
than this (e.g for the turbine used in this paper it is 
appr. 3.5). From this one would expect no problem 
with instabilities for a wind turbine due to these two 
frequencies being close. However, by analysing a 
simple single blade model, it has been found that 
this instability might still occur due to the influence of 
stall [1,3,7,8]. When the lift behaviour becomes 
nonlinear, but even before that, when the drag 
becomes progressively larger, the stabilising 
aerodynamic torque variations become smaller and 
the destabilising Coriolis-forces can become more 
dominant. In that case the flap-lag-stall instability is 
possibly a dangerous problem. As it can occur 
before lift stall occurs, when the drag increases 
rapidly (“drag-stall”), it is assumed that drag-stall will 
be most critical. 

The motion for this instability will mainly be a lead-
lag motion. There can be some flapping motion, but 
the lead-lag motion will be dominant. These large 
lead-lag motions of the blades will excite tower 
motions. The tower motions that result in large 
translational movements of the rotor centre will be 
excited most by the vibrating blades. If the frequency 
relationship between the flap-lag-stall instability and 
one of these tower modes is unfavourable, the tower 
will act as a dynamic vibration absorber. This can 
result in large amplitude motions of the tower where 
the flap-lag-stall instability is the energy source for 
this tower instability [9]. 
 
2.2 Edgewise Instability in Stall 
Another instability that can occur in large stall-
regulated wind turbines is an instability in edgewise 
direction caused by negative aerodynamic damping 
for the in-plane vibration [4]. This occurs for angles 
of attack close to stall. The lift coefficient cl and the 

derivative of the drag coefficient
αd

dcd  will both 

always give negative contributions to the 
aerodynamic damping for in-plane vibrations in a 
stall-regulated wind turbine. Only the drag coefficient 
will give a positive contribution to the aerodynamic 
damping. 
The structural pitch angle defining the stiffest and 
most flexible directions of the blade, plays an 
important role in preventing this instability. The out-
of-plane vibration will be strongly damped. If the 
lead-lag eigenmode has components in the out-of-
plane direction, this will aid the damping for this 
mode.  
This edgewise instability will also lead to increasing 
vibrations in the lead-lag direction, just like the flap-
lag-stall instability discussed in the previous section. 
 

3. WOBBE, a Fully Nonlinear Simulation Tool 
 
The tool used to perform the simulations of the 
single blade model is called WOBBE. It is a fully 
nonlinear rigid body simulation tool. This chapter will 
give a very brief description of the tool, for more 
information the interested reader is referred to ref. 
[10]. 
WOBBE can simulate rigid body systems, where the 
bodies are interconnected by hinges and springs (fig 
2) with aerodynamic forces acting on the system. 
The tool can be used for many different systems, but 
the development is currently concentrating on wind 
turbines and helicopters. Hamiltonian dynamics are 
used to find the equations governing the motions of 
the system. The state variables used in WOBBE are 
the generalised coordinates (angles)  and iq
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Hamilton’s generalised momentum i
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generalised coordinates are illustrated in figure 2. 
The kinetic energy T of a system such as shown in 
figure 2, can be written as a homogenous quadratic 
function of the velocities: 

 qAqT
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r
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1=     (3.1) 
where A is the energy matrix. This matrix depends 
only on the generalised coordinates and properties 
of the different elements, as described in ref [10]. 
 

 
Figure 2: The generalised coordinates in WOBBE 
Differentiating this equation to find the generalised 
momentum results in: 

pqA
q
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∂
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 (3.2) 
From this equation it is possible to calculate the 
angular velocities q

r
&  by inverting the matrix A, once 

Hamilton’s generalised momenta pr  are known. 

Once these velocities q
r
&  are known, the time 

derivatives of Hamilton’s generalised momenta can 
be calculated using Lagrange’s equations: 
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where V is the potential energy from the springs and 
gravitational forces and Qi is the generalised force 
due to the aerodynamics acting on the system.  The 
calculations are summarised in figure 3. This shows 
that given the generalised coordinates and 
generalised momentum at a certain time step it is 
possible to calculate the energy matrix and the 
angular velocities of the generalised coordinates.  
Figure 3: Flow Diagram of WOBBE 

The potential energy depends on the generalised 
coordinates and the derivative of the kinetic energy 
can be determined once the velocities are known. 
The velocities and generalised coordinates also 
determine the inflow at the different aerofoils and 
therefore the generalised forces. So it is possible to 
calculate the time derivatives of both state variables. 
Integration will result in fully nonlinear simulation 
results. 
To determine the aerodynamic forces in WOBBE, 
use is made of the blade element momentum theory. 
The induction factor a is calculated over the entire 
rotor plane and assumed constant over this rotor 
plane. The variation in time of the induced velocity is 
simulated using a dynamic inflow model. This is 
done not only because this is more realistic, but also 
because it does not necessitate an extra iteration to 
find the induced velocity. For the simulations 
discussed in this paper quasi-steady aerodynamics 
have been used, but it would also have been 
possible to use the implemented model for unsteady 
aerodynamics. 
The output data from WOBBE are the generalised 
coordinates at the different time steps. It is also 
possible to create an output file containing the 
positions of the hinges relative to the rotor hub in the 
rotating reference frame at the different time steps, 
which can be very useful when using a detailed 
model, as this will then show the lower 
eigenfrequencies more clearly. The power output, 
induction factor and thrust coefficient are also given 
at the different time steps as are the angles of attack 
at the beginning of the different rigid bodies.  
 

4. Model with 15 degrees of freedom
 
The model of the single blade is based on an actual 
wind turbine blade of 40 meters radius. The blade is 
part of a variable speed wind turbine. However, as 
the instabilities under investigation mainly occur 
close to stall, the configuration that would result in 
an active stall regulated wind turbine is used. 
 
The blade is divided into three so-called 
superelements [11,12]. One superelement consists 
of four rigid bodies as shown in figure (4) with a total 
of five degrees of freedom. The different rigid bodies 

are connected by torsional springs. 
The length of the two rigid bodies in 
the middle is (½ - k)L, as shown in 
the figure. L is the length of one 
superelement and k is the 
partitioning coefficient (0<k<½). The 
other two elements are both kL long.  
Rauh [11] concludes that choosing 
this partitioning coefficient influences 
the results and when the value of k is 
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between 0.2 and 0.25 the exact eigenfrequencies 
are approximated using only a limited number of 
superelements. Furthermore for 

1
2

1(1 ) 0.211
3

k = − ≈  the spring stiffness of the 

spring between the first and last element becomes 
zero [13]. For this reason, this value of k will be used 
in the models of wind turbines in WOBBE. 
The first element of a superelement is clamped. 
Therefore the last element of one superelement will 
form a rigid body with the first element of the 
following superelement. This results in an element 
with a length that is 2kL as shown in figure (4).  
The stiffnesses of the springs are chosen such that 
for a uniform beam the deformation and the slope at 
the tip of the beam will be equal to the values of a 
theoretical beam in pure bending. For this model of a 
blade the stiffness is calculated by averaging the 
stiffness of the blade over the length of one 
superelement. For the flap and lag springs in one 
superelement the equations used are [13]: 

2( ) 2( )
;    

EI EI
k k

L L
β ς

β ς= =   (4.1) 

where kβ is the stiffness in the most flexible direction 
(flap) and kς the stiffness in the stiffest direction 
(lead-lag). The bar over EI means that the average 
over the length of the superelement L is taken. 
Therefore the two lag springs and the two flap 
springs in one superelement will have equal 
stiffness. A spring in another superelement will have 
another value for its stiffness. 
The torsion spring is calculated using: 

pGI
k

L
=     (4.2) 

again taking the average stiffness over the length of 
the superelement. 
Figure 4: One superelement consisting of four rigid 
bodies 

The first part of a wind turbine blade will always be 
very stiff compared to the rest of the blade, 
especially when the hub is modelled as part of the 
blade. This part of the blade has to be assumed 
infinitely stiff and the stiffness cannot be included in 
the calculation of the springs (Eq. 4.1). The 
calculation of the spring stiffness therefore starts 
after the extremely stiff part of the blade. 
Considering that the first element of the first 
superelement will be clamped, this will also become 
part of the first rigid body as depicted in figure 4. All 
superelements in the blade have the same length L. 

 
Figure 5: Model of the single blade with 15 degrees 
of freedom. 

The flap and lead-lag hinges should 
be in the same place. However within 
WOBBE it is possible to give every 
element only one degree of freedom, 
therefore the two hinges must be 
connected to two different elements. 
It is possible to use elements with 
zero mass, length etc, but this can 
sometimes result in numerical 
problems. For this reason every 
element behind the flap and lag 
springs are divided into two rigid 

bodies. The first element is behind the lag hinge and 
is only 1% in length of the total element. The flap 
hinge comes after this small rigid body followed by 
the rest of the element. This means that the model 
used consists of 16 elements with a total of 6 flap, 6 
lead-lag and 3 torsional degrees of freedom as 
shown in figure 5. The first element will rotate at a 
constant rotational speed.  

3rd  Superelement

2nd  Superelement

1st  Superelement

Inf. stiff 



The mass and inertia of the elements are calculated 
by determining the mass and inertia of the actual 
sections of the blade, so no averages are used for 
this. The structural pitch however is taken as an 
average over the length of one superelement. This 
angle determines the stiffest and most flexible 
direction of the blade. It is not possible to use any 
coupling terms between the different stiffnesses in 
WOBBE, therefore the hinges must be in the 
principal directions of the blade. There can be a 
difference in the principal directions of different 
superelements. The pitch setting of the blade is 
added to the structural pitch angle of the first 
superelement. 
The chord and thickness ratio of the elements are 
assumed to be linear between the beginning and 
end of an element. The values of these properties at 
these two points on one element are the same as 
the actual values at these points on the real blade. 
Structural damping is not taken into account. 
Therefore all results will show less damping then in 
reality. 
To investigate the effect of changing the difference 
between the first flap and first lead lag frequency of 
the blade, the simulations were run with five different 
blade models: 
Model Description, relative to original blade 
A Original blade 
B Reduction of lag stiffness, difference 

between flap and lag reduced by 75% 
C Reduced lag stiffness to equal flap 

stiffness 
D Increased flap stiffness, difference 

between flap and lag reduced by 75% 
E Increased flap stiffness to equal lag 

stiffness 
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Table 1: Different models simulated using WOBBE 
 
Ad. B): The new value of the springs in the lead-lag 
hinges therefore become: 

75
( ) 0.75k k k kς ς ς β= − − ⋅   (4.3) 

and similar to this for D: 

75
( ) 0.75k k k kβ β β ς= − − ⋅   (4.4) 

The simulations were run for configurations for 5 
m/s, 8 m/s, 12 m/s, 15 m/s and 18 m/s. For each 
wind speed a certain pitch setting and rotational 
velocity is used. As mentioned before, these settings 
are not the actual settings of the wind turbine, but of 
a model of an active stall regulated wind turbine that 
results in the same power for the different wind 
speeds as the actual wind turbine. 
Every simulation is preceded by an initial simulation 
that is used to determine the average values of the 
generalised coordinates for the given wind speed 
and configuration. These average values determine 

the steady state of the blade for the specific 
configuration and wind speed. The simulation used 
for analysis is then started close to the steady state. 
For very small deviations from the steady state, the 
results of the simulations will become linear.  
Because the flap vibration will be strongly damped, 
the amplitudes given to the flap angles are larger 
than the other angles. If these angles are taken too 
small, the flap vibration will not be identified 
correctly, because the flap vibration will hardly be 
present in the simulation results. The linearity of the 
results is checked using the identification method 
described in the next chapter. 
 

5. Processing the results 
 
As mentioned in chapter 3 of this paper, the 
simulation tool used to perform the simulations is 
fully nonlinear. For this reason the results do not 
clearly show (in)stabilities. Post-processing of the 
results is required to gain quantative results. When 
the simulations are performed using very small 
deviations of the equilibrium positions, the results 
become (nearly) linear and therefore it is then 
possible to find quantative results that can be 
compared to each other. Fully nonlinear results on 
the other hand will not actually give one damping 
coefficient for each eigenfrequency. The damping 
will depend on the amplitude which in turn will be 
changing in time. This makes it very difficult to 
compare nonlinear results quantatively. FFT can be 
used to analyse the results (filtering or moving 
block), but as there is not really one unique value for 
the damping, it is possible to easily manipulate these 
results. It is also very difficult to perform this method 
consequently to get results that can be compared.  
For this reason, in order to find quantative results, 
small deviations from the equilibrium positions are 
wished for. That way the results are (almost) linear 
and can be used in a linear identification tool. To find 
the damping, the system identification tool AerID is 
used [14]. By identifying the linear system 
corresponding to the time response from WOBBE, 
the eigenfrequencies and the corresponding 
damping coefficients can be determined.  
To check if the results are linear, it is possible to run 
another simulation with half the amplitude at the start 
of the simulation. The system that is identified from 
the original simulation can be used to investigate the 
linearity of the results. Multiplying the identified 
response by 0.5 and comparing this to the results 
obtained by WOBBE for the smaller amplitude 
shows the linearity of the system. The results of 
such a process are shown in figure 6 for model C at 
18 m/s. If the identification was successful and the 
amplitudes are small enough, the identified result 
coincides with the results obtained from the second 

Figure 6: Check of the linearity of the result. In this case of the last flapping angle in the model, for model C at 
18 m/s. 
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simulation using half the amplitudes. For the 
example given, this was clearly the case. A perfect 
correspondence will not quickly occur, also because 
the steady state is not predicted exactly and the 
amplitudes are small relative to this steady state. 
Therefore small deviations in the calculation of the 
steady state will cause larger differences in the 
identified amplitude.  
The results of the linear identification of the original 
simulation will also indicate if they are linear or not. If 
the tool is not able to identify the response very well, 
the reason often is that the response is not yet 
linear. If the identification corresponds very well to 
the results from WOBBE, then these results must be 
linear. 
When a configuration becomes unstable, the 
amplitudes will grow, therefore it will become 
nonlinear after some time. For these cases it can be 
very hard to obtain good results. Often a shorter time 
span has to be used to find results that remain more 
or less linear. For the calculations described in this 
paper, this was the case for all configurations at 18 
m/s. For this reason the simulations of the different 
configurations at 18 m/s only ran for 30 seconds, 
while all other simulations were for a duration of 50 
seconds. 
An iterative process has been used to obtain linear 
results for all simulations. For the low wind speeds, it 
was always obtained easily by using the same 
amplitude for all configurations. For higher speeds, 
the results became unstable. Therefore it was harder 
to find responses that were close enough to linear to 
result in a useful identification. By cutting the time 
span for the 18 m/s simulations it was possible to 
obtain good results for all simulations. 
 

6. Results 
 

The simulations were all successfully run and 
identified. The lead-lag frequency changed due to 
the change in the stiffness of the springs for 
configurations B and C. For configurations D and E 
the flap eigenfrequency changed. The frequencies 
for the different configurations at the different wind 
speeds were determined by the identification tool 
and are shown in table 2 and table 3.  
The frequencies are also illustrated in figure 7 and 8. 
The tables also show that the flap and lead-lag 
frequencies do not exactly coincide for blades C and 
E. For these blades the stiffness in lead-lag direction 
and flap direction have been equalised. The 
difference in the frequencies is due to the difference 
in centrifugal stiffening for the flap and the lead-lag 
mode. There is also a difference in the moments of 
inertia about the flap and lead-lag axis, which will 
also result in a difference between the frequencies if 
springs of equal stiffness are chosen. 

Changing the lead-lag or flap stiffness does not only 
change the eigenfrequencies. It also results in 
changes in a.o. the steady state. The effect on the 
angle of attack is very small. The average value of 
the angle of attack does not show a change, as 
illustrated in figure 9. The amount of variation in 
angle of attack does show differences. 
The identified damping for the first flap mode is 
shown in figure 10 and for the first lead-lag mode the 
damping is shown in figure 11. Figure 10 shows that 
the damping of the first flap mode is unchanged i the 
cases where the lead-lag stiffness is changed and it 
show a decrease for the cases where the blade’s 
flap stiffness has been increased. Figure 11 shows 
that the wind turbine blade suffers from instabilities 
in its base model. The configuration of the stall 
regulated turbine has been chosen to result in the 
same power as the original pitch regulated variable 
speed turbine. This has resulted in a model that 
becomes unstable for some wind speeds in the first 
lead-lag mode. For the cases calculated in this 
paper the highest two wind speeds (15 m/s and 18 
m/s) show the blade to be unstable. However, if the 
structural damping would be taken into account, this 
instability will probably disappear. 
Figure 11 also shows a very small decrease in 
stability for all blades compared to the baseline 
blade (A) for 5 and 8 m/s, but an increase for 12 and 
15 m/s. This trend cannot yet be explained. A more 
detailed investigation of the results is needed. 
It also shows that the stabilising effect is greatest for 
blades C and E, these are the blades where the 
stiffnesses in flap and lead-lag direction have been 
set equal to each other and therefore the 
eigenfrequencies of the first two modes are very 
close. 
Model \ wind 
speed 

5 8 12 15 18  

A 0.99 1.04 1.04 1.04 1.03 
B 0.98 1.04 1.04 1.03 1.03 
C 0.98 1.03 1.03 1.04 1.03 
D 1.75 1.78 1.77 1.76 1.76 
E 1.91 1.93 1.93 1.95 1.94 

Table 2: Identified first flap frequencies for the 
different models at the different wind speeds. 
Model & freq. \ 
wind speed 

5 8 12 15 18  

A 1.89 1.89 1.89 1.89 1.89 
B 1.37 1.38 1.38 1.38 1.38 
C 0.96 0.98 0.98 0.97 0.98 
D 1.89 1.90 1.90 1.91 1.90 
E 1.89 1.90 1.90 1.88 1.89 

Table 3: First lead-lag frequencies for the different 
models at the different wind speeds. 



 
Figure 7: First flap frequencies of the different blades 

Figure 8: First lead-lag frequencies of the different blades 

Figure 9: The behaviour in time of the angles of attack at a point on the blade, for three different blades, all at 15 
m/s. 
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The time series resulting from the simulations show 
the instabilities at the higher wind speeds very 
clearly. The difference between the different models 
also appears very clearly in these results. This is 
illustrated in figure 12. This figure shows the time 
series of the 6th generalised coordinate for 
simulations at 18 m/s. Note that the different 
simulations were not all run starting from the exact 
same amplitudes relative to the steady state. The 
difference in steady state is clearly visible and the 
difference between blade C (weakest instability) and 
blade E (strongest instability) is also clearly 
illustrated. 
 

7. Conclusions 
 

The simulations of the wind turbine blade showed 
that changing the lead-lag stiffness while keeping 
the flap stiffness the same does not influence the 
damping of the first flap mode. Only for a wind speed 
of 15 m/s a small difference shows up. 
The damping of the first lead-lag mode becomes 
slightly smaller for the low wind speeds, but it 
improves for higher wind speeds (up to 15 m/s), 
where the baseline blade has become unstable. The 
altered blades are also unstable, but the damping is 
less negative than the damping of the baseline 
blade. This effect is greatest for the two blades 
where the first flap and first lag frequency almost 
coincide. 
A closer look at the two instabilities is necessary to 
find out if the flap-lag-stall instability can actually 
occur before the edgewise instability and if the flap-
lag-stall instability is a real danger or that the 
edgewise instability will be the most critical one and 
the coincidence of the flap and lead-lag frequency is 
not important for the stability of the blade. The flap-
lag-stall instability has not yet clearly shown up 
during this investigation, but from the analyses it has 
also not become clear which instability is actually 
occurring. Both instabilities will result in increasing 
vibrations in the lead-lag direction. From analysis it 
becomes clear that this is the case for the analysed 
blades at higher wind speeds. But it cannot easily 
become clear which instability the blade is suffering 
from. 
Next to this, if the flap-lag-stall instability is a danger, 
a quantification should be determined on how close 
the first flap and first lag frequency should be for this 
instability to become a danger. The same goes for 
the proximity of the flap frequency to the rotational 
frequency of the turbine. It was concluded that the 
limit found in helicopter is not valid in wind turbines, 
but it is possible that the flap frequency of this blade 
is too high compared to the rotational frequency for 
the flap-lag-stall instability to occur. 

All in all changing the blade stiffness which results in 
frequencies coming closer together did not result in 
a clear trend that was expected. 
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Figure 10: Damping of the first flap mode for different wind speeds and different blades. 

 Figure 11: Damping of the first lead-lag mode for different wind speeds and different blades 

 
Figure 12: Time response resulting from WOBBE for the 6th degree of freedom (lead-lag) for the different blades 

at 18 m/s. The starting amplitude was not the same for all blades. 
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