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ABSTRACT 

The Hybrid Heavy Lift Helicopter (HHLH) is a potential candidate 
vehicle aimed at providing heavy lift capability at low cost. This 
vehicle consists of a buoyant envelope attached to a supporting structure. 
Four rotor systems are also attached to the supporting structure. Non­
linear equations of motion capable of modeling the dynamics of this 
multi-rotor/support frame/vehicle system have been developed and used to 
study the fundamental aeromechanical stability characteristics of this 
class of vehicles. The mechanism of coupling between the blades, supporting 
structure and rigid body modes is identified and the effect of buoyancy 
ratio (buoyant lift/total weight) on the vehicle dynamics is studied. 
It is shown that dynamics effects have a major role in the design of 
such vehicles. The analytical model developed is also useful for studying 
the aeromechanical stability of single rotor and tandem rotor coupled 
rotor/fuselage systems. 
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Lift curve slope 

Buoyancy ratio (Buoyant lift/total weight of 
the vehicle) 

Damping matrix 

Thrust coefficient of the rotor 

Rotating natural frequency 

Forces along x,y,z directions of the body axes 

Distance between origin 0 and underslung load, 
s Fig. 2 

Distance between centerline and rotor hub, 
Fig. 2 

Distance between centerline and center of volume 
of the envelope, Fig. 2 
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= Distance between centerline and e.G. of the 
envelope, Fig. 2 

Distance between the origin 0 and e.G. of the 
s 

structure, Fig. 2 

= Rotary inertia of the vehicle in roll and pitch, 
respectively 

= Stiffness matrix 

Supporting structure bending stiffness in x-y 
(Horizontal) plane and in x-z (Vertical) plane 
respectively (in fundamental mode) 

Supporting structure torsional stiffness (in 
fundamental mode) 

= Root spring constant of the blade in flap, 
lag and torsion respectively 

Control system stiffness 

Equivalent spring stiffenss in torsion of the 
blade 

= Distance between or1g1n Os and the center of 
gravity of the fuselages, F1 and F2 respectively, 
Fig. 2 

= Mass matrix 

= Moments about x,y,z axes acting on the vehicle 

Blade root moments in flap, lag and torsion 
respectively 

Number of blades in a rotor (N>2) 

= Static buoyancy on the envelope 

Generalized coordinate vector 

= Rigid body perturbational motion in x,y,z 
directions respectively 

kth eigenvalue (ok±jwk) ;j=J-1 

Thrust developed by rotor systems R1 and R2, 
respectively 

Total weight of the vehicle 

Weight of the envelope 

Weight of the fuselages F
1 

and F2 
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= Weight of the supporting structure 

Weight of passenger compartment 

Underslung weight 

State vector 

th Flap, lead-lag and torsion angles of the k blade 

= Equilibrium angles in flap, lag 
blade in the ith rotor system i 

th and torsion of the k 
= 1,2 

= Equilibrium angles in flap, lag and torsion, 
respectively 

Perturbational quantities in flap, lag and torsion, 
respectively 

= Generalized coordinates for collective flap, lag 
and torsion modes 

Generalized coordinates for alternating flap, lag 
and torsion modes 

= Generalized coordinates for 1-cosine flap, lag 
and torsion modes 

Generalized coordinates for 1-sine flap, lag 
and torsion modes 

= Progressing (or high frequency) flap, lag and 
torsion modes 

= Regressing (or low frequency) flap, lag and 
torsion modes 

Basic order of magnitude for blade slopes 
employed in ordering scheme 

= Inflow ratio 

Modal frequency in kth mode (imaginary part of sk) 

= Nondimensional uncoupled fundamental bending 
frequency of the supporting structure in x-y plane 

= Nondimensional uncoupled fundamental bending 
frequency of the supporting structure in x-z plane 

= Nondimensional uncoupled fundamental torsion 
frequency of the supporting structure 
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8 ,8 ,8 
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n 

Rotor speed of rotation, R.P.M. 

= kth modal damping (real part of sk) 

Solidity ratio 

Collective pitch of the blade 

= Collective pitch setting for the ith rotor 

Perturbational rotation in roll, pitch and 
yaw respectively 

= Generalized coordinate for the fundamental mode 
bending of the supporting structure in x-y plane 
and x-z plane respectively 

Generalized coordinate for the fundamental torsion 
mode of the supporting structure 

Nondimensional quantity 

1. Introduction 

Hybrid Heavy Lift Helicopter (HHLH) or Hybrid Heavy Lift Airs_hip 
(HHLH) is a candidate vehicle for providing heavy lift capability, 
Potential applications of this vehicle are for logging, construction, 
coast guard surveillance and military heavy lift, These vehicles com­
bine buoyant envelope lift with lift and control forces generated by a 
multi-rotor system, A rough sketch of a typical HHLH vehicle is shown 
in Fig. 1. Clearly such a vehicle is quite different from the conven­
tional rotorcraft. It is well known that aeroelastic and structural 
dynamic considerations are of primary importance in the successful de­
sign of rotary-wing vehicles. The aeroelastic and structural dynamic 
behavior of HHLH type vehicles has not been considered in the technical 
literature to date, therefore it is reasonable to consider these topics 
so that potential aeroelastic instability modes and structural dynamic 
aspects of such vehicles can be simulated and identified in the design 
process, Recent studies on HHL.Il type vehicles dealt with the overall 
dynamic stability and control of the vehicle under the assumption that 
it behaves like a rigid body having six degrees of freedom1,2, However, 
the aeroelastic stability of the rotor and the aeromechanical stability 
of the coupled rotor/support system as well as the interaction of the 
buoyant lift with these vehicle dynamic characteristics have not been 
considered in the literature before. 

The main objectives of this paper are to develop a fundamental 
understanding of the aeroelastic and aeromechanical problems which can 
be encountered in a HHLH type vehicle due to their unique features such 
as: buoyancy, multiple rotor systems, flexible supporting structure and 
underslung load. 
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This study is based on a simplified model of a HHLH type vehicle, 
in which the salientfeaturesare retained. These simplifying assumptions 
consist of using two rotor systems instead of four, and a beam type 
structure representing the flexible supporting structure (Fig. 1), which 
in reality consists of a three dimensional frame (or truss). The essential 
features of this configuration, illustrated in Fig. 2, are described below: 

(a) two rotor systems, providing lift, each having arbitrary 
number of blades N(N>2) are attached rigidly to the ends 
of a flexible supporting structure; 

(b) the flexible supporting structure is capable of bending in 
two orthogonal planes (horizontal and vertical) and it can 
also twist about its longitudinal axis; 

(c) an envelope providing buoyant lift, acting at its center of 
buoyancy, is attached at the center of the supporting structure; 

(d) two masses are attached at the two ends of the flexible 
structure, these two masses represent helicopter fuselages; 

(e) a weight WUN simulating an underslung load is attached 
to the structure. 

The dynamic equations of motion for this model were derived in 
Ref. 3. The equations of motion are nonlinear coupled differential 
equations and they represent the dynamics of the coupled rotor/support 
frame/vehicle system in forward flight. The equations of motion can be 
divided into three groups, each group represnting an appropriate sub­
system of equations. These are: 

(1) rotor blade equations of motion in flap, lead-lag and 
torsion, respectively; 

(2) rigid body equations of motion of the complete vehicle; 

(3) equations of motion of the flexible supporting structure. 

These coupled equations of motion have considerable versatility 
and can be used to study different classes of rotary-wing dynamic problems 
which are listed below in an ascending order of complexity: 

(a) isolated rotor blade aeroelastic stability; 

(b) coupled single rotor/supporting structure dynamics, which 
is representative of coupled rotor/body aeromechanical 
stability; 

(c) stability of tandem rotor and side by side rotor helicopters; 

(d) dynamics of HHLH type vehicles, in hover and forward flight. 

The results presented in this paper deal primarily with the aero­
elastic and aeromechanical stability analysis of an HHLH type of vehicle, 
shown in Fig. 2. The total number of degrees of freedom used in model­
ing this system which consists of two four bladed rotors and a flexible 
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supporting structure is 31. Thus the stability analysis yields a total 
of 62 eigenvalues corresponding to these 31 degrees of freedom. Based 
on a careful parametric study, the various blade and vehicle modes have 
been identified. The physical interpretation of the various eigenvalues 
is determined from a systematic study of the eigenvalue changes caused 
by variations of the vehicle system parameters. Furthermore the coupling 
between various blade and vehicle modes is identified. Finally vehicle 
stability is analyzed at different buoyancy ratios (BR = Buoyancy of the 
envelope/total weight of the vehicl~so as to determine the influence 
of buoyancy on the aeromechanical stability of the vehicle. 

2. Equations of Motion 

Recent research on rotary-wing aeroelasticity4 has indicated that 
geometrically nonlinear effects, due to moderate blade deflections, are 
important for this class of problems. Thus a proper treatment of rotary­
wing aeroelastic problems requires the development of a consistent 
mathematical model, which includes the geometrically nonlinear effects 
associated with finite blade slopes in the aerodynamic, inertia and 
structural operators. Retention of the nonlinear terms is based on an 
ordering scheme3,4. All the important parameters of the problem are 
assigned orders of magnitude in terms of a nondimensional quantity £, 
which represents the typical blade slope (0.1<£<0.15). The ordering 
scheme consists of neglecting terms of the order 0(£2) when compared to 
unity, i.e., 1 + £2 ~ 1. 

The most important assumptions used in formulating the equations 
of motion are: (1) each rotor consists of three blades or more, (2) the 
rotors are lightly loaded, (3) the rotor is in uniform inflow, (4) the 
rotor blade is modelled as a rigid blade model with orthogonal root 
springs (Fig. 3). This blade model is useful for simulating configurations 
which are either hingeless or articulated, (5) there is no aerodynamic 
interference between the rotor and the buoyant envelop, (6) the aerodynamic 
model used for the rotor is a quasi-steady blade element theory based 
on Greenberg's5 derivation of unsteady aerodynamic loads on an oscillating 
airfoil in a pulsating flow, and (7) the elastic supporting structure is 
modelled as a free-free beam for which the bending and torsional structural 
dynamics are modelled by the corresponding free vibration modes. 

The various degrees of freedom considered for the model vehicle are: 
flap (Sk), lead-lag (~k), torsion ($k) for each blade, rigid body transla­
tion ·(Rx,Ry,Rz) and rigid body rotation (8x,8y,8z) of the vehicle as a 
whole and the generalized coordinates representing the uncoupled normal 
modes of vibration of the supporting structure (~ 1 .~2•~3). The equations 
of motion for the blade are obtained by enforcing moment equilibrium, of 
the various forces on the blade, at the root. The blade equations are 
written in a hub fixed rotating reference frame and these equations 
have periodic coefficients. The rigid body equations of motion are 
obtained by imposing the force and moment equilibrium of the vehicle. 
The equations of motion for the elastic modes of the supporting structure 
are obtained using a normal mode approximation. The complete details 
and the derivation can be found in Ref. 3. An overview of the coupling 
process between the blade motion and the body motion is presented in 
Fig. 4, which is a schematic diagram describing the basic operations 
involved in the derivation of equations of motion for the coupled 
multi-rotor/vehicle system. It can be seen from Fig. 4 that the 
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rigid body motions of the vehicle and the elastic deformations of the 
supporting structure are affected by the rotor loads. In turn, these 
rotor loads are related to the rigid body motions and the elastic 
deformation through the hub motions. 

The final set of equations of motion are nonlinear ordinary 
differential equations with periodic coefficients. These equations 
have to be solved so as to determine the aeroelastic and aeromechanical 
stability characteristics of the vehicle. 

3. Method of Solution 

The method of solution for the coupled rotors/vehicle problem 
follows essentially the procedure outlined in Refs. 4 and 6. A brief 
description of the procedure aimed at determining the aeroelastic and 
aeromechanical stability characteristics of the vehicle is provided 
below. 

1. Calculation of the equilibrium state of an individual blade and 
the trim setting of the blade collective pitch angle. 

2. Linearization of the nonlinear ordinary differential equations 
about the equilibrium position (linearized equations will have 
periodic coefficients). 

3. Transformation of the linearized equations with periodic coefficients 
to linearized equations with constant coefficients, using multi­
blade coordinate transformation7,8. 

4. Evaluation of the eigenvalues of the linearized system with constant 
coefficients to obtain information on the stability of the vehicle. 

two separate 
analysis by 

Subsequently 
perturbational 

The four steps described above represent essentially 
stages of the analysis. The first stage consists of a trim 
which the equilibrium position of the blade is determined. 
in the second stage a stability analysis of the linearized 
equations about the equilibrium state is carried out. 

3.1 Trim or Equilibrium State Solution 

In the trim analysis, the force and moment equilibrium of the com­
plete vehicle together with the moment equilibrium of the individual 
blade about its root in flap, lead-lag and torsion are enforced. It is 
important to recognize that only the generalized coordinates representing 
the blade degrees of freedom will have a steady state value representing 
the equilibrium position. The generalized coordinates associated with 
the rigid body motions of the vehicles are essentially perturbational 
quantities and hence their equilibrium, or trim values are identically 
zero. In deriving the equations of motion for the flexible supporting 
structure, it was assumed that the vibrations of the structure occur 
about a deflected equilibrium position. The determination of the equili­
brium of the supporting structure is unimportant, for the case considered 
in this study because: (a) The equilibrium deflection (or position) of the 
supporting structure does not affect the equilibrium values of the blade 
degrees of freedom, since the blade equations contain only the terms 
with the time derivatives of the degrees of freedom representing the 
elastic modes of the supporting structure. The physical reason for this 
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mathematical dependence is due to the fact that the blade inertia and 
aerodynamic loads depend on the hub motion and not on the hub equilibrium 
position (the hub motion is related to the fuselage motion and the vibration 
of the supporting structure), and (b) the final linearized differential 
equations used for the stability analysis do not contain any term dependent 
on the static equilibrium deflection of the supporting structure. Hence, 
the generalized coordinates for the vibration modes of the supporting 
structUre can be also treated as perturbational quantities. However, it 
should be noted that the evaluation of the static equilibrium deflection 
of the supporting structure could be important in the proper design of the 
supporting structure. 

th The k blade degrees of freedom can be written as 

(l) 

where SkO> SkO> ~kO are the steady state values and 6Sk, 6sk, 6~k are the 
perturbational quantities. 

Linearization of the equations is accomplished by substituting these 
expressions into the nonlinear coupled differential equations and neglecting 
terms containing the products or squares of the perturbational quantities. 
The remaining terms are then separated into two groups: one group of 
terms contains only the steady state quantities and constants (i.e., time 
independent quantities). These represent the trim or equilibrium equations. 
For the case of hover, these are nonlinear algebraic equations which 
represent the force and moment equilibrium equations determining the 
steady state. The second group contains the time dependent perturbational 
quantities and represents the equations of motion about the equilibrium 
position. The linearized dynamic equations of equilibrium are used for 
the stability analysis. 

The steady state equilibrium equations can be written symbolically 
as: 

for the complete vehicle 

F 
X 

= F 
y 

M 
y 

and for the individual blade 

= F z 

= M 
z 

0 

0 

(2) 

(3) 

M = M = M = 0 (4) s s ~ 

In the above equations Fx, Fy, and Mx are identically zero. The 
remaining equations for the vehicle can be written as 

F z 

M 
y 

(5) 

(6) 
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M = 0 
z 

(7) 

where T1 and T2 are the thrust developed by the two rotor systems R1 
and Rz respectively, P~ in the static buoyancy due to the envelope 
and W is the weight of the complete vehicle, The quantities T1 and T2 
are functions of the steady state flap, lead-lag and torsion angles, 
collective pitch angles and the operating conditions of the rotor. 
Equation (7) for Mz represents the torques developed by the two rotor 
systems. These torques can either be balanced by having a tail rotor 
for each main rotor or by having two counter-rotating main rotors. 
In the present study, it is assumed that the torques are balanced by 
tail rotors. Equation (6) for Mv consists of the pitching moments 
developed by the thrust due to the rotors and the gravity loads acting 
on the various components. 

The steady state moment equilibrium equations for the individual 
blade will have the following symbolic form 

Mi3 
fi (13~0, i i ei) 0 (8) 1 ~kO' rj>kO' 0 

fi i i i ei) 0 (9) Hz; (l3k0, z;kO' rj>kO' = 
2 0 

fi i i i ei) 0 (10) H = (.BkO' z;kO' rj>kO' rj> 3 0 

where i = 1,2 refer to the two rotor systems R1 and R2 respectively and 
k refers to the kth blade in the ith rotor system. For the case of hover, 
all the blades in one particular rotor system will have the same steady 
state values (i.e., equilibrium quantities), Thus the subscript 'k' 
can be deleted. 

Equations (5), (6), (8)-(10) are nonlinear algebraic equations. 
These are a total of eight equations and 8 variables (i3b,t;b, rJ>b,Sb; 1=1,2). 
These eight equations are solved iteratively using the Newton-Raphson 
method, to obtain the steady state values. Failure to converge during 
iteration is attributed to divergence or static instability of the blade, 

In deriving the equations of motion, the inflow ratio A is assumed 
to be constant over the rotor disc. The typical value chosen for the in­
flow ratio is its value at 75% of the blade span. It is given as 

3.2 Description of Stability Analysis 

The perturbational equations of motion, linearized about the 
equilibrium position, can be written in the following form 

[M) {q} + [C] {cj) + [KJ {q} = 0 

(11) 

(12) 

where {q} contains all the degrees of freedom representing the blade 
motion, the rigid body motions of the vehicle and the flexible modes 
of the supporting structure. 
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The matrices [M], [C] and [K] can be identified as representing 
mass, damping and stiffness matrices respectively and the elements 
of these matrices are functions of the equilibrium values. 

The stability of the vehicle about the trim condition is ob­
tained by solving the eigenvalue problem represented by Eq. (12). For 
convenience Eq. (12) is rewritten in state variable form 

{y} = [F] {y} 

{y} T T T = {yl} ' {y2} where 

and {yl} {q}; {y2} = {q} 

[FJ = [=:~:=~-~~:-L~~=~~~-] 
[I] I [OJ 

and 

Assuming a solution for Eq. (13) in the form of {y} 
standard eigenvalue problem 

[F] {y} = s{y} 

(13) 

{y}es~, yields the 

(14) 

The eigenvalues of Eq. (14) can be either real or complex conjugate pairs 

sk = crk ± iwk 

The complex part of the kth eigenvalue (wk) refers to the modal frequency 
and the real part (Clk) refers to the modal damping. The mode is stable 
when Clk<O and the stability boundary is represented by Clk = 0. 

This relatively simple procedure can become complicated depending 
on the form of the matrices [M], [C] and [K]. In the aeroelastic stability 
analysis of a isolated rotor in hover, these matrices contain constant 
elements. Thus the solution of this eigenvalue problem is straight-forward. 
However when dealing with the stability analysis of a coupled rotor/vehicle 
system in hover, as required in the present case, these matrices will have 
elements which are time dependent. The reason for the appearance of time 
dependent or periodic coefficients is due to the vehicle perturbational 
motion and vibration of the supporting structure. These perturbational 
motions introduce, through the hub motion, periodic terms in inertia and 
aerodynamic loads of the blade. 

For the cases, when the matrices in the linearized perturbational 
equations are time dependent, the stability analysis can be performed 
by applying either Floquet theory or by using a multiblade coordinate 
transformation7,8. It is well known that for the coupled rotor/vehicle 
type of analysis for the case of hover, the multiblade coordinate trans­
formation is successful in eliminating the time dependency of the co­
efficients, in the equations of motion. During this transformation, the 
individual blade degrees of freedom will transform into a new set of 
rotor degrees of freedom. These rotor degrees of freedom are basically 
representative of the behavior of the rotor as a whole when viewed 
from a non-rotating reference frame. The various rotor degrees of freedom 
are known as collective, cyclic and alternating degrees of freedom. For 
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example, in a four bladed rotor, the flap degree of freedom corresponding 
to each blade (Bk; k = 1,4) will transform into collective flap (SM), 
cyclic flap (Slc,B1s) and alternating degree of (S-M) degrees of freedom. 
Alternating degrees of freedom will appear only when the rotor consists of 
an even number of blades. In a similar fashion, the lead-lag and torsional 
degrees of freedom will also transform into corresponding rotor degrees of 
freedom. 

As a result of the application of the multiblade coordinate trans­
formation, the linearized perturbational equations with periodic coefficients 
will transform into linearized perturbational equations with constant co­
efficients. Using these equations, with constant coefficients, a stability 
analysis is performed as described above. The eigenvalues corresponding 
to the cyclic degrees of freedom of the rotor (S1c,S1s,s1c,s1s,~1c,~1s) are 
referred in this paper as high frequency (or progressing) and low frequency 
(or progressing or regressing) mode. The designation of high frequency 
or low frequency mode is based on the rotating natural frequency of the 
rotor. Suppose, the rotating natural frequency, say in lead-lag, is 
f/rev, then the two frequencies corresponding to the cyclic modes 
(s1c,s1s) will be usually (f+l)/rev and (f-1)/rev. The mode with the 
frequency (f+1)/rev. is called a high frequency lag mode and that cor­
responding to (f-1)/rev. is called a low frequency lag mode. The mode 
with the frequency f/rev. is known as the collective lag mode. Since 
the HHLH model vehicle (Fig. 2) consists of two rotor systems coupled 
by a supporting structure, the stability analysis will provide a pair 
of eigenvalues for each rotor degree of freedom. Hence for the purpose 
of identification, in the presentation of the results the rotor modes 
will be referred to as mode 1 and mode 2, such as collective flap mode 
1, collective flap mode 2 and high frequency flap mode 1 and high fre­
quency flap mode 2, etc. 

4. Results and Discussion 

The validity of the equations of motion for the coupled rotor/ 
vehicle system was first verified by using them to solve the aero­
mechanical stability problem of a single rotor helicopter in ground 
resonance and comparing the analytical results, obtained using our 
equations, with experimental data presented in Ref. 9. We found that 
our analytical results are in good agreement with the experimental 
results indicating that the equations of motion for the coupled rotor/ 
vehicle system are valid. Sample results taken from Ref. 10, are in­
cluded in this paper to illustrate the degree of correlation. Figure 
5 presents the variation of rotor and body frequencies with rotor speed 
n. Fig. 6 presents the variation of damping in the lead-lag regressing 
mode with n. Figure 7 shows the variation of the regressing lag mode 
damping as a function of the collective pitch setting of the blade. 
It is evident from these figures that our analytical prediction are in 
good agreement with the experimental results. 

The stability of the model vehicle (Fig. 2) representing an 
HHLH is analyzed for the case of hovering flight. The various degrees 
of freedom considered for this problem are flap, lead-lag, torsion 
(for each blade), rigid body translation (Rx,Ry), rigid body rotation 
(8x,8y) and three normal modes of vibration of the supporting structure. 
The three normal modes represent the fundamental symmetric bending mode 
(~1) in the horizontal (x-y) plane, the fundamental symmetric bending 
mode (~2) in the vertical (x-z) plane and the fundamental antisymmetric 
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torsion (,3) about the longitudinal axis. For a four bladed rotor, there 
are in total 31 degrees of freedom, namely 12 rotor degrees of freedom for 
each rotor,plus four rigid body degrees of freedom plus three elastic vibration 
modes of the supporting structure. Hence a stability analysis for this 
system will yield 62 eigenvalues corresponding to these 31 degrees of 
freedom. The primary aim is to identify the 62 eigenvalues and relate 
them to the various modes of the rotor/vehicle assembly. This relatively 
complicated identification process is based on physical insight gained 
by performing some preliminary calculations augumented by additional 
considerations described below: 

1. Comparison of the imaginary part of the eigenvalue (w) with the 
uncoupled frequencies of the various modes, and 

2. Use of an extensive study in which the primary parameters allowed 
to vary are the bending and torsional stiffness of the supporting 
structure (KSBXY,KsBxz,KST) combined with the rotary inertia of 
the vehicle in pitch (Iyy) and roll (Ixx)• 

Based on the results obtained in the parametric study, the various 
eigenvalues and the coupling among different modes are identified. It 
should be noted that for the cases studied, the trim (or equilibrium) 
quantities are the same because the trim values are independent of the 
quantities varied in the parametric study. A complete description of this 
study can be found in Ref. 6. 

For the example problem analyzed, the rotors are articulated and they 
are identical. The data used for this study is presented in Appendix A. 
The result presented below are obtained for the model vehicle without the 
sling load. 

The results of the trim (or equilibrium) analysis are presented in 
Appendix B. Since the two rotors have identical geometrical properties and 
identical operating conditions and furthermore the model vehicle possesses 
a symmetry about y-z plane, the equilibrium angles of the blade are the 
same for both rotor systems. For the buoyancy ratio of BR = 0.792, the 
thrust coefficient in the rotors is CT = 0.00158. The equilibrium blade 
angles are in flap So= 2.302 deg., in lead-lag so =-3.963 deg. and in 
torsion ~0 =-0.115 deg. The collective pitch angle is Bo = 4.206 deg. 

The results of the stability analyses are presented in Figs. 8-12. 
Figure 8 illustrates the variation of the eigenvalues of blade lead-lag 
modes and the supporting structure bending modes due to an increase in 
the bending stiffness (KsBXY) of the supporting structure in x-y (hori­
zontal) plane. The bending stiffness KsBXY was increased in increments 
from 5.09 x 107 N/m to 1.74 x 108 N/m, such that the corresponding uncoupled 
nondimensional bending frequency in x-y plane (wsBYX) assumed the values 
WSBXY = 1.2, 1.499, 1.754, 2.192, where the frequencies are nondimensionalized 
with respect to the rotor speed of rotation Q, where Q = 217.79R.P.M •• 
The arrows in the figure indicate the direction along which the eigen-
values of the modes change due to an increase in KsBXY• The eigenvalues 
of the other modes, which are not shown in the figure, remain unaffected 
by the variation in KsBXY• It can be seen from Fig. 8 that the bending 
mode, in x-y plane, of the supporting structure is strongly coupled with 
the high frequency lag mode 2. The high frequency lag mode 2, which was 
initially unstable, becomes more stable as KsBXY is increased. The 
damping in the bending mode in x-y plane decreases asymptotically with an 
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increase in frequency and this mode is always stable. The low frequency 
lead-lag mode 2 shows a slight decrease in damping as KSBXY is increased. 
The eigenvalues corresponding to the bending mode in x-z plane and the 
high frequency lag mode 1 are not affected by the changes in KSBXY· However, 
since these two modes have nearly equal frequencies it can be seen that 
the high frequency lag mode 1 is unstable. 

Figure 9 presents the variation of eigenvalues of the blade lead­
lag modes and the supporting structure bending modes as a result of an 
increase in the bending stiffness (KSBXZ) of the supporting structure in 
x-z (vertical) plane. The bending stiffness KsBXZ was increased in in­
crements from 7.96 x 106 N/m to 1.74 x 108 N/m and the corresponding 
nondimensional uncoupled bending frequency in x-z plane (wsBxz) assumed 
the values WsBXZ = 1.499, 1,754, 2.192. It can be seen from Fig. 9 that 
the bending mode in x-z plane is strongly coupled with high frequency lag 
mode 1. The high frequency lag mode 1, which was initially unstable, 
becomes a stable mode as KsBXZ is increased from 7.96 x 107 N/m (wSBXZ = 
1.499) to 1.09 x 108 N/m (WsBXZ = 1.754). Further increase in KsBXZ to 
1.74 x 108 N/m does not affect the eigenvalue corresponding to the high 
frequency lag mode 1, indicating that these two modes are decoupled. 
Damping in the bending mode in x-z plane decreases drastically at the 
beginning and once the bending mode and the high frequency lag mode 1 
are decoupled, the decrease in damping of the bending mode in x-z plane 
is very small. Damping in the torsion mode of the supporting structure 
and low frequency lag mode 1 are slightly affected as KsBXZ is increased. 
Since the torsion mode and the low frequency lag mode 1 have frequencies 
which are close to each other, the figure clearly indicates that the lag 
mode 1 is unstable. The eigenvalues corresponding to the rest of .the 
modes are unaffected by this parameter variation. 

Figure 10 shows the eigenvalue variation in the rotor lead-lag 
modes and the torsion mode of the supporting structure as a result of an 
increase in the torsional stiffness (KsT) of the supporting structure. 
The torsional stiffness, KsT, was increased in increments from KsT = 
1.59 x 106 N.m to 3.99 x 107 N.m and the corresponding uncoupled non­
dimensional torsional frequency (wsT) of the supporting structure are 
WsT = 0.4, 0.55, 0.846, 1.096, 1.2, 1.3, 1.4, 1.5, 1.754, 2.0. It is 
evident from the figure that the low frequency lag mode 2 and high 
frequency lag mode 2 remain unaffected during the variations in KsT and 
these modes are stable. In Fig. 10, the different curves are divided 
into three segments represented by points A, B, C, and D. The curves 
between points A to B refer to the range of KsT = 3.01 x 106 N.m 
to 7.20 x 106 N.m (WsT = 0.55 to 0.846); the curves between points B 
to C refer to. the range KsT = 7.20 x 10° N.m to 1.685 x 107 N.m (wsT 
0.846 to 1.3); and the curves between points C to D refer to the range 
KsT = 1.685 x 107 N.m to 3.1 x 107 N.m (WsT = 1.3 to 1.754). 

It is evident from Fig. 10 that in the range A to B, as the 
torsional stiffness KsT is increased, the torsion mode of the supporting 
structure becomes increasingly stable and its frequency is increasing; 
the low frequency lag mode 1 becomes increasingly unstable and its frequency 
increases slightly. This clearly indicates that the torsion mode is 
strongly coupled with the low frequency lag mode 1. The high frequency 
lag mode l experiences a slight increase in frequency but its damping 
remains almost unchanged. In this range, A to B, the eigenvalues of 
these three modes have been distinctly identified based on their un-
coupled nondimensional frequencies. In the range B to C, as the torsional 
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stiffness KsT is increased, the damping in the low frequency lag mode 
l decreases and its frequency tends to increase towards l.O. At the 
same time, the damping in torsional mode of the supporting structure 
decreases drastically and a slight change in the frequency is observed 
(i.e., the frequency initially increases and then decreases). The high 
frequency lag mode 1 shows an increase in frequency with no appreciable 
change in damping. In this range B to C, the eigenvalues of these three 
modes do not exhibit a direct one to one correspondence to the uncoupled 
nondimensional frequencies, implying that all these modes are coupled. 
Hence in this range, B to c, the reference to the various modes, as 
torsion mode, low frequency lag mode 1 and high frequency lag mode l, is 
only for the convenience of explaining the variation of the eigenvalues. 
When the torsional stiffenss KsT was increased still further, i.e., the 
range C to D, the eigenvalues. start exhibiting a correspondence to non­
dimensional uncoupled frequencies indicating that these three modes are 
slowly decoupled. In this range, C to D, the torsional mode of the 
supporting structure has low damping and it tends to decrease asympotically 
while the frequency increases from 1.5 to 1.75. The high frequency lag mode 
l shows an increase in the frequency and the mode becomes stable at the 
point D. The damping in the low frequency lag mode 1 decreases while the 
frequency undergoes a slight reduction. Beyond the point D i.e., for 
KsT ~ 3.1 x 107 N.m the eigenvalues of low frequency lag mode 1 and high 
frequency lag mode 1 show negligible change and the damping in torsion 
mode remains the same but its frequency increases. Beyond point D all the 
three modes are stable. 

Another interesting observation which can be made from Fig. 10 is 
due to the increase in torsional stiffness KsT. When KsT is increased 
from 1.685 x 107 N.m to 3.99 x 107 N.m (curve in the range C to D and 
beyond), the eigenvalues corresponding to the high frequency lag mode 
1 tend to approach the eigenvalue corresponding to the high frequency 
lag mode 2 (which remains unaffected during the variation in KsT) and 
similarly the low frequency lag mode 1 approaches the low frequency lag 
mode 2. This behavior seems to indicate that, as the torsional stiffness 
of the supporting structure is increased, the coupling between the two 
rotors due to the torsional deformation of the supporting structure is 
eliminated. As a result the eigenvalues corresponding to the high fre­
quency lag modes 1 and 2 and low frequency lag modes 1 and 2 approach 
each other. It should be noted that elimination of the coupling of the 
two rotors, due to the torsional deformation of the supporting structure, 
does not imply that the two rotors are totally decoupled. The rotors 
are still coupled through the bending deformation of the supporting 
structure and rigid body pitch motion of the vehilce. The presence of 
this coupling causes the eigenvalues of the low frequency and high 
frequency lag modes to approach each other rather than coalescing. 

It is also evident from Fig. 10 that the high frequency lag mode 
1, low frequency lag mode 1 and torsion mode of the supporting structure 
undergo a reversal in their characteristics as KsT is increased from 
1.59 x 106 N.m to 3.99 x 107 N.m. Thus, the mode which was initially 
a torsion mode becomes a low frequency lag mode 1; the low frequency lag 
mode 1 becomes a high frequency lag mode 1 and the high frequency lag 
mode 1 becomes a torsion mode. For low and high values of the torsional 
stiffness (i.e., KsT 2 1.59 x 106 N.m (WsT 2 0.4) and KsT ~ 3.10 x 107 N.m 
(WsT: 1.754)) the torsional mode of the supporting structure, the low 
frequency lag mode 1 and high frequency lag mode 1 are all stable. For 
intermediate values of the torsional stiffness of the supporting structure, 
one of the lag modes is unstable. 
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The variation of the eigenvalues of the collective flap modes and 
body pitch mode due to increase in body inertia in pitch is presented in 
Fig. 11. It is evident from the figure that the pitch mode is a pure 
damped mode. An increase in pitch inertia causes the eigenvalues, cor­
responding to the pitch mode, to approach each other. The eigenvalues 
of the collective flap mode 2 tend to approach the eigenvalue of the 
collective flap mode 1. The pure damped nature of the pitch mode is 
associated with the presence of two rotors. During pitch motion, the 
net inflow in the two rotor system changes. If in one rotor system 
the net inflow increases, then in the other one the inflow decreases 
and vice versa. These changes in inflow result in changes in the thrust 
in the two rotor systems. The rotor system which moves up, during pitch 
motion, experiences a reduction in thrust due to the increased inflow 
and the rotor system which moves down produces more thrust due to the 
decreased flow. These changes in the thrust tend to restore the vehicle 
to its equilibrium position. Since this restoring force is proportional 
to the pitch rate, this mechanism produces a damping in pitch. In 
the present case, the pitch motion is overdamped. Hence an increase in 
inertia causes the eigenvalues, corresponding to the pitch mode, to 
approach each other, as shown in Fig. 11. 

Figure 12 illustrates the variation of eigenvalues corresponding 
to the low frequency lag mode 2 and body roll mode as a result of an in­
crease in inertia in roll. An increase in roll inertia tends to decrease 
in the damping in roll, furthermore its frequency is also reduced. The low 
frequency lag mode 2 tends to become more stable. The roll mode, for the 
model vehicle, is a damped oscillatory mode. This is different from the 
pure damped mode7 normally observed in a conventional tandem rotor helicopter. 
The reason for this oscillatory nature of the roll mode is due to the 
presence of the buoyancy of the envelope. 

For all the cases analyzed, it was found that the flap and torsional 
modes of the rotor are always stable. The eigenvalues corresponding to the 
cyclic flap modes and all the torsion modes are not affected by the variation 
in the quantities used in this parametris study. The alternating modes of 
the rotor were also found stable. 

The degree of coupling, as well as the relative strength of the 
coupling between the various blade modes and the body modes is presented 
in a qualitative manner in Table I. It is evident from this table that 
the supporting structure elastic modes are strongly coupled with the low 
frequency and high frequency lead-lag modes. 

It is interesting to compare, qualitatively, the rigid body modes 
of an HHLH type vehicle with those of a conventional tandem rotor helicopter. 
In the literature? the longitudinal and lateral dynamics of a tandem 
rotor helicopter, in hover, are described by six eigenvalues, namely; 
(a) a pure damped root for pitch; (b) a complex conjugate pair of slightly 
divergent oscillatory roots for combined pitch and longitudinal translational 
motion, (c) a pure damped root for roll and (d) a complex pair of divergent 
oscillatory roots for combined roll and lateral translation. By comparison 
the results obtained for the HHLH vehicle, shown in Fig. 2, yield the 
following six eigenvalues corresponding to rigid body modes: (a) two pure 
dampedroots for pitch; (b) a complex pair of damped oscillatory roots for 
roll and (c) a complex pair of very slightly divergent oscillatory roots 
for the rigid body translational motions in the longitudinal and lateral 
directions. 
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Comparing these two sets of eigenvalues it is evident that for 
tandem rotor helicopters, the pitch and roll modes are coupled with tran­
slational motions which yield divergent oscillatory roots. On the other 
hand for HHLH type vehicles, the pitch and roll modes are decoupled from 
the translational motions. This difference in behavior, evident from our 
parametric study, can be attributed to the following physical effects. For 
a tandem rotor helicopter the variation of rotor loads, due to perturbational 
motion in one rigid body mode, influences also the response of the other 
rigid body modes. For the HHLH type vehicle the buoyant lift of the envelope 
supports 80% of the total vehicle weight. Thus, variations in rotor loads, 
due to perturbational motion in a rigid body mode, has negligible effect on 
the response of the other rigid body modes. When the buoyant lift is set 
equal to zero the HHLH vehicle reverts to the rigid body dynamic behavior 
encountered in tandem rotor helicopters. The effects of buoyancy ratio 
variation on vehicle stability is presented in Table II and Figs. 13 and 14. 
Table II shows the results from the trim analysis, at various buoyancy 
ratios. As the buoyancy ratio is decreased, the equilibrium angles of 
the blade and the thrust coefficient of the rotors increases. 

Figure 13 depicts the variation of eigenvalues for the supporting 
structure elastic modes as a result of a decrease in buoyancy ratio. The 
direction of arrows in the figure indicate the variation of the eigenvalues 
as a result of the decrease in buoyance ratio. The frequencies correspond­
ing to these modes are not affected by the variation in buoyancy ratio. 
However, the damping in bending in x-y plane increases, the damping in 
bending in x-z plane decreases while the damping in torsion mode increases. 

Figure 14 presents the variation of the eigenvalues of pitch and 
roll modes with buoyance ratio. As the buoyancy ratio is decreased, one 
of the eigenvalues corresponding to the pitch mode decreases while the 
other eigenvalue increases. The pitch mode always remains as a pure 
damped mode. The roll mode which was initially a stable mode becomes 
unstable for buoyancy ratios BR S 0.6. 

The results obtained also indicate that as the buoyancy ratio is 
decreased, the damping in lead-lag modes of the rotors increases while 
the damping in flap and torsion modes of the rotor decreases. However 
changes in the buoyancy ratio have only a minor effect on the frequencies 
of the blade modes. A quantitative indication for the magnitude of the 
changes in damping in the blade modes produced by changes in the buoyancy 
ratio is illustrated by the following results: for a 40% reduction in 
buoyancy ratio, the damping in torsion modes decreases by 12%; the 
damping in flap modes decreases by 12% and the damping in lag modes in­
creases by 200%. 

5. Concluding Remarks 

This paper presents the results of an aeromechanical stability 
analysis of a model vehicle representative of a HHLH configuration in 
hover. The most important conclusions obtained in this study are pre­
sented below. 

1) The rotor cyclic lead-lag modes couple strongly with the bending 
modes and the torsion mode of the supporting structure, as a consequence, 
the stability of the lead-lag modes is sensitive to changes in stiffness 
(or the natural frequencies) of the supporting structure in bending 
and torsion. Therefore the natural frequencies of the supporting 
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structure must be designed so as to be well separated from the frequencies 
of the rotor lead-lag modes. This also emphasizes the importance of 
modelling the supporting structure with an adequate number of elastic modes. 

2) The low frequency and high frequency lead-lag modes of the rotor 
and the torsion mode of the supporting structure undergo a change in 
their basic characteristics, as the torsional stiffness of the supporting 
structure is increased from a low value to a high value (i.e., KsT = 
1.59 X 106 N.m to 3.99 x 107 N.m). 

3) The lead-lag modes of the rotor are stable only when the torsional 
stiffness of the supporting structure has low or high values (KsT ~ 1.59 x 
106 N.m and KsT ~ 3.10 x 107 N.m). For intermediate values of KsT, one of 
the lead-lag modes is unstable. 

4) The body pitch mode is a pure damped mode. 

5) The body roll mode is a damped oscillatory mode. However, as the 
buoyancy ratio is decreased, this mode becomes unstable. 

6) The stability of the coupled/rotor vehicle dynamics clearly illustrates 
the fundamental features of the aeroelastic stability of the rotor, coupled 
rotor/support system aeromechanical stability and the vehicle dynamic 
stability in longitudinal and lateral planes. 

Furthermore, it should be mentioned that the analytical model de­
veloped in this study, for the aeromechanical stability study of an HHLH 
type of vehicle, can be also applied to various other types of vehicles, 
such as a tandem rotor helicopter configuration and the coupled rotor/body 
aeromechanical problem of a single rotor helicopter. Finally, it should 
be noted that the analytical model is capable of representing not only 
aeroelastic and aeromechanical problems but it is also suitable for in­
vestigating rigid body stability and control problems associated with these 
types of vehicles. 
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TABLE I: COUPLING BETWEEN BLADE MODES, BODY MODES AND SUPPORTING STRUCTURE 
MODES 

Lead-lag Modes Flap Modes 

collec collec-
MODES High tive Low High tive Low 

freq. freq. freq. freq. freq. freq. 
1 2 1 2 1 2 1 2 1 2 1 2 

Supporting structure 
symmetric bending in XXX XX 
x-y (horizontal) plane 

Supporting structure 
symmetric bending in XXX X XX X 
x-z (vertical) plane 

Supporting structure 
torsion(antisymmetric) XXX /XXX 

Body pitch lx X X X 

Body roll lx XX 

Legend: XXX - Strongly coupled, XX Moderately coupled, X Weakly coupled 
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TABLE II: EQUILIBRIUM VALUES AT VARIOUS BUOYANCY RATIOS 

Buoyancy 
Ratio eo so Sa <Po 

BR 

o. 792 4.206° 2.3020 -3.963° -0.115° 

0.7 5.243° 3.209° -5.074° -0.1610 

0.6 6.259° 4.179° -6.4530 -0.236° 

0.5 7.207° 5.1420 -7.994° -0.3520 

1. 7 54, wSBXY 2.192, I yy 

I 
XX 

6 2 2.0 x 10 kg.m 

Appendix A 

Blade Data 

The HHLH model (Fig. 2) has identical rotors. 
Type of rotor: Articulated rotor 
Number of blades N 

Blade chord 

Hinge offset 

Rotor radius 

Blade precone 

Distance between elastic center and 
aerodynamic center 

Distance between elastic center and 
mass center 

Mass/unit length of the blade 

Principa~ mass moment of inertia 
of the blade/unit length 

c = 2b 

e 

R 

m 

IMB3 
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A CT 

0.03272 .00158 

0.03820 .00228 

0.04313 .00304 

0.04743 .00380 

6 2 4.74 x 10 kg.m, 

4 

41.654 em 

30.48 em 

8.6868 m 

0 

0 

0 

7.9529 kg/m 

-1 
1.1503x10 kg.m 

-3 6.6723x10 kg.m 



Nonrotating blade frequencies 
(Articulated blade) 

Flap frequency 

Lead-lag frequency 

Torsional frequency 

Damping in flap 

Damping in lead-lag 

Damping in torsion 

Vehicle Data 

Height of fuselage F1 

Height of fuselage F2 

Height of underslung load 

Height of envelope 

Height of supporting structure 

Height of passenger compartment 

(Treated as a lumped structural 
structure (Fig. 2) ) 

Buoyancy on the envelope 

Aerodynamic Data 

Blade airfoil 

Lift curve slope 

Lock number 

Solidity ratio 

Density of air 

Blade profile drag coefficient 

Rotor R.P .M. 

0 

0 

WT = (K /mR3)~ 
¢ 

(Assumed) l. 895 rad/ sec 

gSF 0 

gSL 0 

gST 0 

HFl 3.5919 X 104N 

HF2 3.5919 X 104N 

HUN 0.0 

HEN 8.5539 X 104N 

Hs 9.4302 X 103N 

HS' 6.6723 X 103N 

load attached at the point 0 on the s 

NACA 0012 

a 211 

y 10.9 

a 0.0622 

3 
PA 1.2256 kg/m 

cdo 0.01 

il 217.79 R.P .M. 
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Geometric Data 

Distance between origin 0 and Fl s 
-2.1. 946m 

Distance between origin 0 and F2 s 
21.946m 

Distance between or1g1n 0 and under-
slung load (Assumed) 

s 
-15.24m 

Distance between centerline and rotor 
hub h

2 
2.59lm 

Distance between centerline and center 
of volume of envelope h

3 
14.64m 

Distance between centerline and e.G. of 
the envelope h

4 
8.544m 

and e.G. of Distance between origin 0 
s the structure 0.0 

Structural Dynamic Properties of the Supporting Structure 

The supporting structure is modelled as an elastic structure with 
three normal modes of vibration: two normal modes for bending in vertical 
and in horizontal plane and one mode for torsion. The two bending modes 
are symmetric modes and the torsion is an anti-symmetric mode. It was 
assumed that the envelope and the underslung load are attached to the 
supporting structure at the origin Os• The data given above shows that 
the vehicle is symmetric about Y-Z plane. Furthermore due to the presence 
of a heavy mass attached at the center (Os) of the supporting structure, 
the mode shapes in bending and torsion for each half of the model are 
assumed to be the modes of a cantilever with a tip mass. 

Modal Displacement at FJ, Fz and 08 

The symmetric mode shape in bending for each half of the supporting 
structure can be written as [Ref. 11, Page 140] 

and 

X 
n2 ( 1 ) 

6 ( ~ )2- 4 ( ~ )3 + ( ~ )4 
L L L 

(Bending in X-Y plane) 

6 ( X )2 _ 4 ( X )3 + ( ~ )4 
L L L 

(Bending in X-Z plane) 

where X is the coordinate of any section of the supporting structure from 
origin Os and L is the length of the supporting structure, L = 21.946m. 
The mode shape for torsion, for each half of the supporting structure 
is [Ref. 11, Page 99] 

n C~) =sin ~2 (X) 
3 L L 
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Generalized mass and stiffness data 

Generalized mass and generalized sitffness for the ith mode of 
vibration of the supporting structure is defined as 

and 

J
F2 

2 
M m ni dx 

Fl 

K = w
2 

M 
i 

where wi is the ith modal frequency 

ni is the ith mode shape 

and m is the mass per unit length (for bending modes, or m is the mass 
moment of inertia per unit length (for torsion modes). 

Bending in x-y plane (horizontal) generalized mass 

MSBXY 6.801 X 104 kg 

Bending in x-z plane (vertical) generalized mass 

MSBXZ 

Torsion generalized mass 

Appendix B 

6.801 

1.936 

X 104 kg 

4 2 
X 10 kg.m 

An equilibrium analysis is carried for the vehicle in hover, using 
the data given in Appendix A. 

Total weight of the vehicle 

W = WEN + WS + WF1 + WF2 + WS' + WUN 

Buoyancy 

Weight to 

Thus each 

8.5539 X 104 + .9430 X 104 + 2 X 3.5919 X 104 

+ .6672 X 104 + 0 

1. 7348 X 105 N 

s 
1.3748 105 N of the envelope Pz X 

be supported by the rotors 0.36 X 105 N 

rotor has to develop a thrust= 0.18 x 105 N 

Since the two rotors are identical and the model vehicle has a symmetry 
about y-z plane, the equilibrium values for both rotor systems are 
identical. 
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They are: 

Equilibrium 

Flap angle of the blade S0 = 2.302 degrees 

Lead-lag angle 

Torsion angle 

~ = -3.963 degrees 

~O = -0.115 degrees 

Inflow ratio :\ 0.03272 

Collective pitch angle of the blade 

eo = 4.206 degrees 

Thrust coefficient for each rotor 

Buoyancy ratio 

CT = 0.00158 

BR = 0. 792 

Fig. 1 Hybrid Heavy Lift Helicopter­
Approximate Configuration 

Fig. 2 HHLH Model 

Fig. 3 Equivalent Spring Restrained Blade Model 
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BUOYANCY, AERODYNAMIC 
LOADS ON THE ENVELOPE 

Fig. 4 

Fig. 5 

,, 

a LADE 
MOTIQNS/OEFORMA TIONS 

GLADE ROOT 
FORCES AND MOMENTS 

Schematic Diagram of Coupled 
Rotor/Vehicle Dynamic Inter­
actions 

--OUR ANALYTICAL RESULTS 

6. () 0 0 EXPERIMENT lflol. 9) 

,, 

,, 

,, 

"" '""" 
!l, R.P.M. 

' ' b 

·~ 
b 

'7 

• b 

Modal Frequencies as a Function 
of Q, 8 = 0 
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A lOW FREOUENCY LEAD-lAG 2 

• HIGH FREQUENCY lEAD-LAG 2 
• HIGH FREQUENCY lEAD-lAG 1 

KssxY ~ 5.09 x 107 Nlm- 1.74 • 108 N/m 

CisaxY • 1.20- 2.192 

\ SUPPORTING STRUCTURE !lENDING 
lN X·Y P~ANE !HORIZONTAL) 

''SUPPORTING STRUCTURE !lENDING 
IN X-2 PLANE !VERTICAL) 

Fig. 8 Variation of Nondimensional 
E~genvalues with !ncrease in KsBXY 
(w SBXZ = 1.499z wST = 1.096, Ixx = 
6.44 X 105 kg.m , I y = 2.59 X 106 
kg.m2, BR = 0.792, CT = 0.00158) 

II COLLECTIVE LEAD-LAG 1, 2 
o SUPPORTING STRUCTURE TORSION 
o LOW FREQUENCY LEAD-LAG 1 
+ LOW FREQUENCY LEAD-LAG 2 
6 HIGH FREQUENCY LEAD-LAG 1 
* HIGH FREQUENCY LEAD-LAG 2 

KsT = 1.59 x 106 N.m - 3.99 x 107 N.m 
wsT = 0.4 - 2.0 

-.15 

D~ 2.0 

f~ i~.5 
* 

B 

-.10 -.05 0 .05 .10 

A- B KsT = 3.01 x 106- 7.20 x 106 N.m 
B- c KsT = 1.20 x 106- 1.685 x 107 N.m 
c- D KsT = 1.685 x 107- 3.10 x 107 N.m 

.15 

Fig. 10 Variation of Nondimensional 
Eigenvalues with Increase in Ksr 
CwsBXY = wsBXZ = 2.192, Ixx = 6.44 x 

5 2 - 106 k 2 10 kg.m , Iyy - 2.59 x g.m 
BR = 0.792, CT = 0.00158) 

Kssxz = 7.96 x 107 N/m - 1.74 x 108 N/m 

wssxz = 1.499-2.192 

jw 

3.0 

~ 2.0 

• 
[0 

1.0 
~ - • 

-.075 -.05 -.025 0 .025 .05 0.75 

-0.7 

0 SUPPORTING STRUCTURE TORSION 
0 SUPPORTING STRUCTURE BENDING 

IN X·Z PLANE (VI;RTICAL) 
6 SUPPORTING STRUCTURE BENDING 

IN X·Y PLANE (HORIZONTAL) 
II HIGH FREQUENCY LEAD-LAG 1 

0 HIGH FREQUENCY LEAD-LAG 2 
.. LOW FREQUENCY LEAD-LAG 1 
+ LOW FREQUENCY LEAD-LAG 2 

Fig. 9 Variation of Nondimensional 
Eigenvalues with Increase in KsBXZ 
(wsBXY = 1.499, Wsr = 1.096, Ixx = 
6.44 X 105 kg.m2, I y = 2.59 X 106 
kg.m2, BR = 0.792, tr = 0.00158) 

1.0 

0.5 

-0.6 -0.2 -0.1 

.&.COLLECTIVE FLAP 1 

6COLLECT1VE FLAP 2 

ooBODY PITCH 

0 

Fig. 11 Variation of Nondimensional 
E~genvalu~s with Increas~ in_Iyy 
(NSBXY = NsBXZ = 2.192, NsT- 1.754, 
Ixx = 2.0 x 106 kg.m2, BR = 0.792, 
cr = o.o0158) 
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o BODY ROLL 

o LOW FREQUENCY LEAD-LAG 2 

jw 

0.8 

0.7 

L---~~·~,-L--0-~~------------­
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Fig. 12 Variation of Nondimensional 
Eigenvalues with Increase in Ixx 
(wssxy = wssxz = 2.192, wsr = 1.754, 
lyy = 2.59 x 106 kg.m2, BR = 0.792, 
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Fig. 13 Variation of Nondimensional 
Eigenvalues with Decrease in BR, 
BR = 0.792, 0.7, 0.6, 0.5 (WsBXY = 
wsBxz = 2.192, w8r = 1.754, Iyy = 
4.75 x 106 kg.m2, Ixx = 2.0 x 106 
kg .m2) 
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Fig. 14 Variation of Nondimension­
al Eigenvalues.with Decrease in BR, 
BR = 0.792, 0.7, 0.6, 0.5 
(wsBXY = WSBXZ = 2.192G Wsr = 
1.754, lyy = 4.75 X 10 kg.m2, 
Ixx = 2.0 x 106 kg.m2) 
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