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Abstract
    In the new ultra-light helicopter, just now
designed in the Institute of Aviation, a light-weight
supercritical tail rotor drive shaft will be used. This
paper presents a nonlinear dynamic model of such a
shaft for the analysis of its flexural vibrations.
   The model assumes that the shaft has several
deformable supports with elastic and damping
elements and is loaded by external forces caused by
its local unbalance.
   The equations of motion have been obtained
making use of the finite element method and
dividing the shaft into several elements between
successive supports.
   In order to ensure easy crossing through a
resonance region, a nonlinear dry friction damper
has been applied in the shaft structure. Depending on
the parameters of this damper, we can obtain various
bending vibrations of the shaft under consideration.
There can be regular or chaotic vibrations of the
shaft.

1. Introduction
   The dynamics of a supercritical tail rotor drive
shaft is an interesting nonlinear problem of easy
crossing through a resonance region [1]-[6].
   The dynamic model considered in this paper
assumes that the shaft is a continuous structure
having several deformable supports with elastic and
damping elements and is loaded by external forces
caused by its local unbalance [1]-[3], [6].
The equations of motion have been determined by
making  use  of  the finite element method.
Displacements of elements axes have been obtained
by means of Hermite’s polynomials and elements
with four degrees of freedom have been determined
in every of  both considered planes [6].
Equations of motion of particular elements obtained
from the virtual work principle, have been
transformed into complex form and matrix equation
of the whole shaft structure has been obtained
including shaft supports.
   A nonlinear dry friction damper has been applied
in the shaft structure to ensure easy crossing through
the resonance region. Depending on the parameters
of the damper, various bending vibrations of the
shaft can be obtained, which can be regular or
chaotic ones [4], [5].

2. Equations of the Problem
   Let us consider a supercritical tail rotor drive shaft
moving with variable angular speed Ω  and
composed of a structure with continuous mass and
elasticity distribution, having several deformable
supports with elastic and damping elements and
loaded by external forces caused by its local
unbalance (Fig.1).
  The equations of shaft motion can be obtained in a
fixed  orthogonal system of coordinates 0xyz where
the x-axis determines the position of a non-
deformable shaft axis.
   The equations of shaft motions will be developed
making use of the finite element method and
Hermite’s polynomials for describing displacements
of an element axis.

Fig.1. Sketch of the shaft.

   By way of example we can show the equations of
motion for a j-finite element
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are  examples  of  the displacement vectors of  j-
finite element in the yx and zx planes,  and

zj1-zjyj1  , , , uuuu yj−  are dimensionless displacements,

which are referred to L-length of the shaft, while

zj1-zjyj1  , , , θθθθ −yj  are angles of rotations of both

edges of j-finite element in yx and zx planes.

ojjjj IImB    ;1+=    are inertial matrices,

jc  is external damping matrix

jK is stiffness matrix,

ezjeyj FF ,  are edge forces vectors and
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are external, unbalance forces vectors, Poj is vector
of the amplitude of  unbalance forces.
If we introduce a complex vector of the element
displacements
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Eqs. (1) can be presented in the complex form
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   If we make the sum by adding together Eqs. (1) or
(5) for nj ,..,2,1= , where n is the number of finite
elements into which the shaft is divided, we obtain
the matrix equations of the whole shaft structure.
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or in the complex form
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Equations (8) or (9) enable us to study the dynamics
of shaft rotation with variable angular velocity Ω
and to determine a method of easy crossing through
a resonance region.

3. Dry Friction Damper
   A nonlinear dry friction damper has been applied
in the tail rotor drive shaft structure in order to
ensure easy crossing through the resonance region.
Its sketch is presented in Fig. 2.

Fig.2. Sketch of the damper.

A disk with a central hole of D-diameter is the
essential part of the damper. The disk is located in a
housing, which causes a dry friction on both sides of
the disk by means of the controlled press. It results
in a resisting force f of the damper.
  The shaft passes through the central hole of the
damper and there is a gap between the hole and the
shaft

)(5.0 dDs −=      (10)
where d is the shaft diameter.
   The shaft can move the damper disk in the yz-
plane after overcoming the resistance force f. The
radial force F of interaction between the shaft and
the damper is acting along the line connecting their
centers (Fig. 2). The tangent force T of interaction is
perpendicular to force F and is defined as :

µ⋅= FT      (11)

where µ is the coefficient of tangent friction.
The mass of the damper disk is neglected.
  It is assumed that the damper disk has an elastic
zone of Ds diameter in which the force F is varying
from zero to f (Fig.3).

Fig.3. The radial force F of interaction.

   The damper disk can move together with the shaft
under its pressure when the force F has its maximal
value.
   The characteristic parameters of the damper are :
f maximal force,
s = (D - d)/2 gap,
h = (Ds - D)/2 width of elastic zone,
a(0), b(0) initial position,
µ coefficient of tangent friction.
   The mathematical model of the damper is the
following :
1) Components of force F :
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where :
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   Uy , Uz are dimensional displacements of the shaft.

2) Components of force T :
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depend on force F and sense of vector of the shaft
velocity v (fig.2). There should be an obtuse angle
between vectors T and v :

0<⋅ vT
��

     (19)

   Forces F and T are introduced into Eqs. (8), (9) as
additional edge forces.

4. Simulation of the crossing through the
resonance region

   The crossing through the resonance region is
investigated under assumption that the shaft is
homogeneous and has the following parameters :
L = 3.32  m       length,
ρ = 2700  kg/m3        density,
A = 0.00022  m2        cross-sectional area,
E = 0.7·1011  Pa         Young modulus,
I = 59.3·10-9  m4        moment of inertia,
e = 0.001  m        mass excentrity,
c = 0.5  Ns/m       external damping,
kp = 106  N/m       rigidity of supports,
cp = 0  Ns/m       damping in the supports.

The shaft is divided into four finite elements of the
same length. Equations of motion (8) have been
solved by means of the Runge-Kutta method.
In order to present the damper parameters and
results of computation in a dimensionless form an
approximated mass m0 and rigidity k0  of the shaft
have been determined making use of Rayleigh
method :
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It results that the first frequency of the shaft is:

srad
m

k
/74

0

0
0 ≈=Ω .      (21)

Dimensionless parameters of the damper are:

em

f
f

2
00

*
Ω

=  ; 
e

s
s =*  ; 

e

h
h =* .      (22)

     Calculations have been performed for the one
variant of the gap :  s* =  3, and for three variants of
coefficient of tangent friction : µ = 0 ; 0.2 ; 0.8.
It has been also assumed that:
a(0) = b(0) = 0 ; h*= 0.2= const.      (23)

  Displacements of the shaft have been analyzed for
the point located in the center o the shaft (x/L = 0.5).
The damper was located in the same point (Fig.1).
The velocity of rotation of the shaft was assumed as:

ttt 10)0()( =+Ω=Ω ε .      (24)
Results of calculations have been presented in the
form of dimensionless displacement R/e depending
on dimensionless velocity of rotation Ω/Ω0 for
variable parameters: f* , µ. Results are presented in
the next Figures.
In Fig.4 we can see the vibrations of the shaft
without damper (s* = f* = h* = µ =0).

Fig.4  s* = 0 ; f* = 0 ; h* = 0; µ = 0.
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In the Figs. 5 to 12 we can see vibrations of the shaft
with the damper for: s* = 3, h* = 0.2 , µ = 0 and
variable f*.

Fig.5  s* = 3 ; f* = 0.183 ; h* = 0.2; µ = 0.

Fig.6  s* = 3 ; f* = 0.366 ; h* = 0.2 ; µ = 0.

Fig.7  s* = 3 ; f* = 0.732 ; h* = 0.2 ; µ = 0.

Fig.8  s* = 3 ; f* = 1.464 ; h* = 0.2 ; µ = 0.

Fig.9  s* = 3 ; f* = 2.196 ; h* = 0.2 ; µ = 0.

Fig.10  s* = 3 ; f* = 2.928 ; h* = 0.2 ; µ = 0.

Fig.11  s* = 3 ; f* = 4.392 ; h* = 0.2 ; µ = 0.

Fig.12  s* = 3 ; f* = 5.856 ; h* = 0.2 ; µ = 0.
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In the next Figs. 13 to 20 we see the course of
vibrations for the shaft with the damper for: s* = 3,
h* = 0.2 , µ = 0.2 and variable f*.

Fig.13  s* = 3 ; f* = 0.183 ; h* = 0.2 ; µ = 0.2.

Fig.14  s* = 3 ; f* = 0.366 ; h* = 0.2 ; µ = 0.2.

Fig.15  s* = 3 ; f* = 0.732 ; h* = 0.2 ; µ = 0.2.

Fig.16  s* = 3 ; f* = 1.464 ; h* = 0.2 ; µ = 0.2.

Fig.17  s* = 3 ; f* = 2.196 ; h* = 0.2 ; µ = 0.2.

Fig.18  s* = 3 ; f* = 2.928 ; h* = 0.2 ; µ = 0.2.

Fig.19  s* = 3 ; f* = 4.392 ; h* = 0.2 ; µ = 0.2.

Fig.20  s* = 3 ; f* = 5.856 ; h* = 0.2 ; µ = 0.2.
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In the Figs. 21 to 28 the shaft vibrations are pre-
sented for: s* = 3, h* = 0.2 , µ = 0.8 and variable f*.

Fig.21  s* = 3 ; f* = 0.183 ; h* = 0.2 ; µ = 0.8.

Fig.22  s* = 3 ; f* = 0.366 ; h* = 0.2 ; µ = 0.8.

Fig.23  s* = 3 ; f* = 0.732 ; h* = 0.2 ; µ = 0.8.

Fig.24  s* = 3 ; f* = 1.464 ; h* = 0.2 ; µ = 0.8.

Fig.25  s* = 3 ; f* = 2.196 ; h* = 0.2 ; µ = 0.8.

Fig.26  s* = 3 ; f* = 2.928 ; h* = 0.2 ; µ = 0.8.

Fig.27  s* = 3 ; f* = 4.392 ; h* = 0.2 ; µ = 0.8.

Fig.28  s* = 3 ; f* = 5.856 ; h* = 0.2 ; µ = 0.8.
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In the figures 5-12 (damper without tangent friction)
we can see that shaft cannot loose contact with the
damper if force f* is too high. For example there are
irregular vibrations visible in Fig.9. The course of
these vibrations is shown in Figs 29-31, for the same
data and Ω/Ω0 = 2.5.

Fig.29 Trajectory of the shaft center for: s* = 3 ;
f* = 2.196 ; h* = 0.2 ; µ = 0 ; Ω/Ω0 = 2.5 ; ∆t = 3 sec

Fig.30 Poincare map for uy ; s* = 3 ; f* = 2.196 ;
h* = 0.2 ; µ = 0 ; Ω/Ω0 = 2.5.

Fig.31 Poincare map for uz ; s* = 3 ; f* = 2.196;
h* = 0.2 ; µ = 0.; Ω/Ω0 = 2.5.

From pictures in Figs. 29-31 we see that vibrations
of the shaft center in this case are probably chaotic.

5. Conclusions
  Results of analysis enable us to state that dry
friction damper under investigation can effectively
limit the shaft vibrations during crossing through the
resonance region, but if force f* is too high, shaft
can't left the damper and irregular vibrations may
appear. Moderate tangent friction greatly improves
the shaft behaviour (Figs 13-20) but if friction is
high its influence is not favourable (Figs 21-28).
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