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with Coning Hinges

Giulio Avanzini∗
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Abstract

This paper aims to analyze the characteristics of a two-
bladed gimballed rotor featuring a homokinetic joint be-
tween driving shaft and rotor yoke and a fly-bar with pad-
dles. Blades are connected to the yoke by coning hinges.
A pitch–coning link is introduced for gust load alleviation.

The design and testing of this rotor configuration is part
of the development program of a lightweight helicopter in
the VLR rotorcraft certification framework. The rotor is
designed with the main objective of solving some of the
negative issues that affect the use of teetering rotors on
light helicopters, such as strong 2/rev oscillatory loads,
poor response at low g’s and a pronounced sensitivity to
gusts and/or large pilot inputs.

The work is focused on stability issues related to the

presence of coning hinges and their effects on rotor re-

sponse and loads transmitted to the hub, affected by the

variation of mass properties associated to (possibly non–

symmetric) coning rotations. To this end a dynamic model

is developed, that captures the most relevant aspects of

the mechanical interactions between blades and yoke. Nu-

merical simulation and stability analysis are performed to

assess possible advantages of the configuration with re-

spect to a conventional teetering rotor.
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Nomenclature

c blade/paddle chord
CLα lift curve slope of the blade/paddle section
Ibl blade inertia around coning hinge
Jfb fly–bar inertia
JHi hub moments of inertia around feathering (F),

polar (P) and teetering (T) axes
K hub stiffness
kfr dry friction in coning hinge
KPC pitch–coning coupling
KT feathering hinge stiffness
mbl blade mass
R blade radius
Rfb fly–bar mean radius
Sbl blade static inertia around coning hinge
Sfb paddle area
Greek symbols
αg blade AoA variation caused by a gust
β0, γ hub flapping and feathering angles
β1, β2 coning angles
θ blade pitch angle
θ0, θcyc collective and cyclic pitch commands
θH , φH longitudinal and lateral hub tilt angles
θSW , φSW longitudinal and lateral swashplate rotations
λ non–dimensional uniform inflow velocity
µ advance ratio
ρ air density
ψ blade anomaly
Ω rotor angular speed
Subscripts
bl blade
C coning hinge
f fuselage
fb fly-bar
H hub frame
R rotating–shaft frame



Introduction

The paper aims at providing a detailed study on the
characteristics of a novel two–bladed gimballed ro-
tor, featuring aerodynamic paddles and coning hinges,
outlining possible advantages and peculiarities with
respect to a more conventional teetering rotor of
equivalent size, for use on a light helicopter. After
a preliminary study [1] focused on the definition of
a simplified model suitable for capturing the basic
dynamic behaviour of a rigid two–bladed gimballed
rotor and its stability, the effects of coning hinges on
rotor response to commands and gust loads will be
analyzed for the two classes of rotors.

The two–bladed gimballed rotor configuration dis-
cussed in the paper, featuring a fly–bar with paddles,
is being considered as a possible way for alleviating
some of the drawbacks that affect conventional tee-
tering rotors. The solution here considered relies on
a rigid yoke articulated with respect to the shaft by
means of a spherical hinge, realized by means of a set
of elastomeric springs to improve the handling quali-
ties of the helicopter at low load factor.

Two rigid blades are connected to the hub yoke by
means of coning hinges, while the fly–bar features two
low–aspect–ratio paddles at the tips. From the purely
mechanical standpoint, this configuration allows one
more degree of freedom to the blades in the rotating
frame with respect to a conventional teetering rotor,
as the flapping motion around the axis perpendicular
to both the shaft and blade axes is accompanied by
a feathering motion around the blade axis itself, this
latter rotation corresponding to the flap angle for the
paddles. The actual pitch angle of each blade will
thus result from the combination of the direct com-
mand, delivered by a conventional swash–plate, and
the feathering motion of the rotor.

The introduction of coning hinges significantly in-
creases model complexity with respect to the rigid
gimballed rotor considered in [1], not simply because
of the higher number of system degrees of freedom,
but for the significant variation of rotor inertial prop-
erties associated to blade rotations around coning
hinges. Both realistic coning hinges with friction in-
duced by the centrifugal load, and ideal, frictionless
ones will be considered. Finally, the presence of a
pitch–coning link varies blade pitch as a function of
coning angles, a feature introduced in order to allevi-
ate gust loads which, at the same time, significantly
affects system stability.

Most of the simplifying assumptions at the basis of
the model derived in [2] are no longer valid, first of
all the possibility of representing the gimballed rotor
as a rigid body suspended to a spherical hinge. The
derivation of the rotor model is carried out by means
of a Newtonian approach, writing a generalized for-
mulation for angular momentum balance, where the
centre of the spherical hinge is adopted as reference
pole for hub degrees of freedom dynamics, while con-
ing hinges are considered as poles for rotor blade con-
ing motion. When a small angle assumption is made
and linear airfoil section aerodynamics is assumed,
loads can be analytically integrated [3]. An 8th or-
der linear time varying model is derived, to be com-
pared with a fourth–order linear model discussed in
[1], where a fixed coning angle was assumed, in order
to assess the effects and relevance of coning dynamics
on rotor response.

Following the same approach discussed in [1], a 6th

order linear model of a teetering rotor with coning
hinges is derived and validated against the results ob-
tained from a fully–nonlinear model, derived by means
of a Lagrangian formulation, as described in [4]. All
the relevant features related to the presence of con-
ing hinges were captured by the simple linear model,
so that the development of a complex fully nonlinear
model for the gimballed rotor with coning hinges was
considered not necessary for the scopes of the study.

The comparison between the two different classes
of rotor systems, that is, teetering and gimballed, is
then carried out using the relatively simple linear pe-
riodic dynamical models, that correctly represent the
effects of rotor parameter variations, and the resulting
characteristics in terms of response and stability. The
peculiarities and possible advantages of the gimballed
rotor with respect to a more traditional teetering con-
figuration are thus outlined.

The presence of a sustained wobbling motion is the
principal characteristic of the two-bladed gimballed
rotor observed in [2] and [5], a motion interpreted
as the result of the difference in the tip–path–planes
described by blades and paddles, for the rigid rotor
case [1].

Moreover, these previous studies demonstrated
how the inertial properties of the feathering axis have
a marginal effect on rotor behaviour, while the pres-
ence of the paddles is necessary for stabilizing the
motion and avoid the departures experienced by the
rotor in the presence of periodic forcing terms. These
features are basically maintained even in the presence



of coning degrees of freedom, although pitch–coning
coupling significantly affects rotor stability.

In this framework, relevant differences are present
with respect to three–bladed gimballed rotors featur-
ing coning hinges, where polar symmetry of the inertia
tensor gyroscopically stabilize the rotor and pitch–
coning coupling only affect rotor load [6, 7]. On
the converse, a coupled teetering and coning mode
becomes unstable for both gimballed and teetering
two–bladed rotors in the ideal case (frictionless con-
ing hinges), for pitch–coning gains higher than a cer-
tain threshold. The introduction of coning hinges and
pitch–coning coupling is also relevant to the analysis
of rotor loads during gust encounters, that will be
carried out in the final part of the paper.

The derivation of the equations of motion for the
gimballed rotor with coning hinges, which is one of
the original contributions of the paper, is reported in
the next Section. On the converse, the dynamics of
two–bladed gimballed rotors with fixed coning angles
and teetering rotors, used for the comparisons, are
introduced without derivation. Referencing to previ-
ous works provides the relevant material [1,2,3]. The
third section presents the results of the analysis. It
is divided into two parts: in the first one, the stabil-
ity analysis is carried out and the effects of friction in
the coning hinges are analyzed, whereas in the second
subsection gust loads for all the considered configu-
rations are evaluated. A section of Conclusions ends
the paper.

Rotor Models

The gimballed rotor with coning hinges features a
yoke connected to the main rotor shaft through a
spherical joint, that allows two relative angular de-
grees of freedom for feathering and teetering, indi-
cated in Fig. 1 as γ and β0, respectively. The blades
are connected to the yoke through coning hinges,
placed at a distance rc from the rotor axis, with a
geometrical undersling hc with respect to the centre
of the gimbal.

The configuration is similar, in some respect, to
the teetering rotor mounted on the Robinson R-22
helicopter, with the major difference that the spher-
ical joint replaces the teetering hinge, thus allowing
one more degree of freedom to the yoke. The iso-
lated gimballed rotor model will be compared with
an equivalent teetering one in terms of dynamic be-
haviour and response to controls, in a way similar to
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Figure 1: Rotor geometry.

that followed in [1]. A simplified helicopter model is
also derived, that features a vertical translational de-
gree of freedom only (heave motion) with uniform dy-
namic inflow, in order to investigate the loads trans-
mitted during a gust encounter and the effects of the
pitch–coning link.

Equations of motion of a two–bladed gimballed
rotor with coning hinges

The equations of motion of the rotor with con-
ing hinges are obtained starting from the generalized
Euler equation, that is, angular momentum balance
written with respect to a pole which is displaced from
the centre of mass of the system [8]. Three equations
in vector form are written: one for the angular mo-
mentum balance of the whole rotor, considered as
an articulated body, the attitude of which is repre-
sented by means of teetering and feathering angles
(β0 and γ) representing the inclination of the yoke
with respect to the rotor shaft around the spherical
gimbal; and two equations for the coning motion of
each blade with respect to the yoke, represented by
means of coning angles, βi, i = 1, 2.

Hub equations

Hub motion is described using the centre of the spher-
ical joint, O, as the pole for moments. Angular mo-
mentum balance of the entire rotor is written as

d~hO

dt
+mrot~rCM × ~aO = ~mO (1)

where external torques ~mO and angular momentum
~hO are referred to O, mrot~rCM is the static moment



of the rotor, rCM is the position vector of rotor cen-
tre of mass with respect to O and ~aO the absolute
acceleration of O. The total angular momentum of
the rotor with respect to O is given by

~hO = I(β1, β2)~ω + ~h
rel

1 + ~h
rel

2

where I(β1, β2) is the inertia tensor which, in the
most general case, depends on the time–varying con-
ing angles, β1 and β2, while ~ω is the hub angular
velocity. The relative angular momentum due to the
motion of the i–th blade relative to a reference frame
fixed to the central hub, ~h

rel

i , is expressed as

~h
rel

i =
∫ `

0
µ(xbl)

[
(~rOC + ~rCP )× ~vrel

P

]
dxbl (2)

where µ(xbl) is the linear density of the blade and

~vrel
P =

d~rCP

dt

is the speed relative to the hub of the blade element
µ(xbl)dx placed in P , at a distance xbl from the con-
ing hinge along the blade span.

Moments of Inertia

As outlined above, the inertia tensor of the rotor
varies as a function of the coning angles. The in-
ertia of the rotor is the sum of the contributions
from central hub, JH = diag(JHF

, JHT
, JHP

), flybar
Jfb = diag(Jfb, 0, Jfb), (where the fly–bar, aligned
with the teetering axis is assumed to have negligible
inertia around it, its remaining moments of inertia
being approximately equal) and blades. The contri-
butions of the blades around teetering, feathering and
polar axes are given respectively by

JblT = 2
{
mbl(r2C + h2

C) + Ibl + Sbl [rC(cosβ1+
+ cosβ2) + hC(sinβ1 + sinβ2)]}

JblF = 2
[
mblh

2
C + SblhC(sinβ1 + sinβ2)

]
+

+Ibl(sin2 β1 + sin2 β2)

JblP = 2
[
mblr

2
C + SblrC(cosβ1 + cosβ2)

]
+

+Ibl(cos2 β1 + cos2 β2)

where reference is made to the Nomenclature section
for the meaning of the symbols. The blades also cause
the presence of an off–diagonal term in the inertia
tensor, equal to

Jblxz = Sbl [rC(sinβ1 − sinβ2) + hC(cosβ1+
− cosβ2)] + Ibl(sinβ1 cosβ1 − sinβ2 cosβ2)

Blade equations

Blade motion around its coning hinge is described
by means of a vector equation formally identical to
Eq. (1)

d~h
rel

C,i

dt
+mbl~rCG,i × ~aC,i = ~mC,i (3)

where moments are evaluated with respect to the con-
ing hinge, Ci, and only a single relative degree of
freedom, βi, is available around the hinge axes, ∓ĵ,
parallel to the yH axis of the hub–fixed frame, FH ,
where the − sign is used for blade #1, placed on the
positive side of the xH axis.
The relative angular momentum of the i–th blade
~h

rel

C,i with respect to the hinge Ci is equal to

~h
rel

C,i =
∫ `

0
µ(xbl)

(
~rCP × ~vrel

P

)
dxbl, i = 1, 2 (4)

where mbl~rCG,i is the static moment of the blade
with respect to Ci and

~aC,i =
d2~rOC

dt2

is the absolute acceleration of Ci. The relative speed
~vrel

P of the mass element µ(xbl)dxbl in P , with ab-
scissa xbl counted along the blade span, is

~vrel
P = ~vP − ~vC,i.

Aerodynamics

Aerodynamic moments around coning hinges,
mC,i, i = 1, 2, and the corresponding torques
around teetering and feathering axes, mF e mT , are
expressed adopting an approach identical to that
described in [1], with minor variations, in order to
take into account the additional coning degrees of
freedom. The lift of each blade is expressed as

Li ≈
1
6
ρΩ2R3c(1± 3µ sinψ)CLααi, i = 1, 2

It is assumed that Li is applied at 0.7R, where the
upper and lower signs apply to the first and second
blade, respectively. This convention will be adopted
throughout the paper. Rotor inflow and blade drag
are not included in the simplified model, as they were
shown to have negligible effects on the dynamic be-
haviour of the gimballed rotor around the teetering
and feathering axes [1]. The most relevant variation



with respect to the simplified model of [1] are (i) the
pitch–coning coupling, that introduces a variation in
blade pitch as a function of coning angle, and (ii)
the variation of blade incidence induced by coning
rates. As a consequence of this latter effect, aerody-
namic damping around the teetering axis, previously
expressed in the simple form −Bω2, is now given by
−B[ω2−τ(β̇1− β̇2)], where τ = (0.7R−rc)/(0.7R),
rc being the eccentricity of the coning hinge.

As for coning dynamics, the aerodynamic forcing
term is given by lift acting with a moment arm equal
to 0.7R− rC with respect to the coning hinge. Note
that in the previous work it was not necessary to ex-
press the lift of the single blade, but only the lift
unbalance between the two blades of the rotor.

In the presence of a coning rate and pitch–coning
coupling, the angle of attack of the reference section
at 0.7R is evaluated as

αi ≈ θ0 ± θcyc ± ω2/Ω−KPCβi − τ β̇i/Ω + ∆αgi

where, together with standard control variables,
namely, collective and cyclic pitch, θ0 and θcyc =
−a1 cosψ−b1 sinψ, the effects of coning rate, β̇i, and
pitch–coning coupling, −KPCβi, are included. Vari-
ations of angle of attack due to a vertical gust, ∆αgi ,
are also considered, assuming that the two blades may
enter the gust at different times, so that, in general,
it is ∆αg1 6= ∆αg2 .

At hovering, cyclic pitch commands are close to
zero and each blade provides a constant lift force
equal to half of the total weight of the vehicle, such
that

L1 = L2 =
1
6
ρΩ2R3cCLα(θ0 −KPCβH) =

W

2
.

Coning and incidence angles can thus be expressed in
the form

βi = βH + ∆βi

αi = αH + ∆αi
i = 1, 2

where

∆αi = ∆θ0±θcyc±ω2/Ω−KPC∆βi−τ β̇i/Ω+∆αgi

At hovering βi = βH and αi = αH , i = 1, 2.
Considering flight conditions at low advance ratio µ,
the angular variables remain small and it is possible
to express the lift developed by the blades in the form

Li ≈
W

2
(1± 3µ sinψ) +

1
6
ρΩ2R3cCLα∆αi

It is now possible to evaluate the moments acting
on the elements of the gimballed rotor. Blade coning
motion is driven by aerodynamic moment with respect
to the coning hinge

maero
Ci = (0.7R− rC)× Li

whereas the total moment acting on the rotor around
the teetering axis passing through the centre of the
spherical hinge is given by

N2 = 0.7R× (L2 − L1)
= −2.1µWR sinψ − 0.233ρΩ2R4cCLα(θcyc + ω2/Ω)
+0.1167ρΩ2R4cCLα ·
·[KPC(β1 − β2) + τ(β̇1 − β̇2)/Ω−∆αg1 + ∆αg2 ]

The first two terms in the final expression of N2

match those included in the derivation of the teeter-
ing moments discussed in [1], whereas the last term
includes the effects of possible aerodynamic load in-
crements induced by a difference in the coning motion
of the two blades.

The expression of the aerodynamic moment gener-
ated by the paddles around the rotor feathering axis is
not affected by the configuration of the coning hinges,
and it is written as in [1]. In dimensional terms the
expression is

N1 = −0.25ρΩ2R3
fbSfbCLαfb(ω1/Ω)

Rotor equations of motion

After introducing the small angle assumption, such
that cos θi ≈ 1 and sin θi ≈ θi with θi ∈
{γ, β0, β1, β2}, and writing all the equations in terms
of the relevant vector components, a set of linear or-
dinary differential equations with periodic coefficients
is derived for describing the motion of the central hub
and blades, in terms of feathering and teetering de-
grees of freedom, and coning angles, respectively.

Feathering and teetering dynamics are expressed by
the equations[
JHF

+ JFB + 2mblh
2
C

]
ω̇1 =

−
[
JFB + (JHP

− JHT
)− 2mblh

2
C

]
ω2Ω +mHF[

JHT
+ 2Ibl + 2mbl(r2C + h2

C) + 4SblrC
]
ω̇2 +

(Ibl + SblrC)(β̈2 − β̈1) = − [JHF
− JHP

+
+ 2mbl(h2

C − r2C)− 4SblrC − 2Ibl
]
ω1Ω

−(Ibl + SblrC)(β2 − β1)Ω2 +mHT



where mHF
= N2 − Kγ and mHT

= N1 − Kβ0

are the external aerodynamic and elastic moments
acting around the feathering and teetering axes of
the spherical joint.

The equations for the relative motion of the blades
with respect to the yoke are given by

Iblβ̈i∓(Ibl+Sblrc)ω̇2+(Ibl+Sblrc)(Ω2β1±Ωω1) = mCi

where mCi is the total external moment applied
around the coning hinge, which may include, together
with the aerodynamic term, contributions from elas-
tic, viscous or dry friction terms.

Teetering rotor models are derived from those rep-
resenting the dynamics of a fully gimballed one by
setting feathering angle and rate, γ and ω̇1, to zero.
Freezing the coning degrees of freedom, so that
βi = βH and β̇i = 0, i = 1, 2, the rigid gimballed
rotor analyzed in [1] is recovered.

Finally, a constant rotor angular rate Ω is assumed,
so that it is possible to transform all the differential
equations from the time domain into the angular vari-
able ψ by means of the chain rule for derivatives, such
that ẋ = dx/dt = (dx/dψ)(dψ/dt) = x′Ω. For sec-
ond order derivatives, it is ẍ = x′′Ω2.

Friction

Due to the centrifugal load, a dry friction of approx-
imately 100 Nm in the coning hinge was considered
realistic following some tests. As the effects of friction
on rotor dynamics and stability can be significant, a
simple friction model is introduced, letting

mfric
Ci

= −kfrsign(β̇i)

where kfr is a friction coefficient that depends on
hinge characteristics and centrifugal force, whereas
the sign function is defined as

sign(x) =
{

1 if x > 0
−1 if x < 0

The friction torque is constant in magnitude and
opposite with respect to the direction of the con-
ing motion. Note that within this simple friction
model, stick–slip phenomena are not taken into ac-
count. Moreover, the sudden changes in sign of the
friction torque introduce problems for (i) the numer-
ical integration of the equations of motion and (ii)
the evaluation of inertial loads, especially when the
coning motion is close to an equilibrium and β̇i ≈ 0.

Table 1: Rotor and fuselage parameters

rotor angular rate Ω 53 rad/s
rotor radius R 3.8 m
blade chord cbl 0.23 m
fly–bar radius R2 1.45 m
fly–bar root cut-out R1 1.15 m
paddle chord cfb 0.25 m
blade lift curve slope CLα 5.7
hub stiffness K 7,219 Nm/rad
pitch hinge stiffness KT 143 Nm/rad

blade inertia Ibl 87.7 kg m2

blade static moment Sbl 17.7 kg m
blade mass mbl 10.75 kg
fly–bar inertia Jfb 5.012 kg m2

fuselage mass mf 650 kg
fuselage parasite area CDf

5.28 m2

A fixed–step integration algorithm was adopted for
performing the numerical simulations, with an inte-
gration step δψ that resulted into a reasonable CPU
time for the simulations, while maintaining rotor be-
haviour independent of δψ itself. At the same time
a small “viscous interval” was introduced around the
stick condition β̇i ≈ 0, which avoids non–physical
high–frequency variations of inertial forces.

Coupled rotor–fuselage heave motion

In order to investigate rotor loads during gust encoun-
ters and the effects of the pitch–coning coupling, a
vertical translational degree of freedom for the fuse-
lage is introduced (heave motion). In order to con-
sider all the time–scales relevant to the response, a
uniform first order dynamic inflow model was also in-
cluded in the model, resulting in a 11th order system.

Rotor thrust sustains both vehicle’s weight and its
drag, evaluated by means of an equivalent parasite
area. The intensity of the flow impinging on the fuse-
lage is given by the vector sum of helicopter vertical
speed and inflow. Inertial coupling between coning
motion and fuselage vertical displacement is also sig-
nificant and it is included in the model.

Results

In this section the behaviour of the gimballed rotor
is compared to that of an equivalent teetering ro-
tor, with and without the coning degrees of freedom.



Table 2: Eigenvalues for KPC = 1.36 and kfr = 0.

Gimballed rotor Teetering rotor
with coning

0.1339± 2.3686i 0.1254± 2.3545i
−0.1871± 1.2464i −0.1871± 1.2460i
−0.3745± 0.8357i −0.3758± 0.8605i
−0.1263± 0.9642i

without coning

−0.2170± 0.9740i −0.2179± 0.9760i
−0.1187± 0.9623i

−0.4 −0.2 0 0.2
−4

−3

−2

−1

0

1

2

3

4

Re(λ)

Im
(λ

)

Figure 2: Root loci for the gimballed rotor in hover
(KPC = 0 and cfr = 0: o; 0 < KPC < 1.36 with
cfr = 0: ...; KPC = 1.36 and cfr = 0: o; 0 <
cfric < 0.4 with KPC = 1.36: ...; KPC = 1.36 and
cfr = 0.4:o).

The stability of the rotor is analyzed first, for dif-
ferent pitch–coning coupling and in the presence of
dry friction in the coning hinges. Response to swash-
plate commands and gust disturbances are presented
to highlight the peculiar behavior of the gimballed
rotor.

Stability analysis

The impact of rotor configuration on rotor stability
is here considered, and in particular the presence of
coning hinges (CH), their location, pitch–flap cou-
pling coefficient, damping or friction in the hinges.
Table 2 collects the eigenvalues in hover of the basic
rotor configuration.

While both the gimballed and the teetering rotor
without CH are stable, the introduction of the coning
degree of freedom with a high pitch–coning coupling
leads both configurations to instability. The first os-
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Figure 3: Stability limit in the kfr vs kpc plane.

cillatory mode in both the gimballed and teetering
rotors is unstable and it excites all states which lies in
the plane perpendicular to the coning hinges (i.e. β0,
β1 and β2). This mode is an anti–symmetric coning,
where the blades exchange energy through the me-
chanical link represented by the teetering hub, with
coning rotations β1 and β2 of opposite phase and β0

in quadrature.

The rotor becomes stable if the pitch–coning cou-
pling gain is sufficiently reduced and/or some form of
dissipation in the coning hinges is introduced. Figure
2 shows the root–loci of when the pitch–coning cou-
pling varies from KPC = 0 to the nominal value,
KPC = 1.36 (blue line). The imaginary axis is
crossed for KPC ≈ 0.4 and the rotor remains unsta-
ble for larger values of KPC . When a viscous damp-
ing term proportional to the coning speed (Mvsci =
−cvscβ̇i) is introduced for KPC = 1.36, the system
turns stable again, for cfric > 0.15. On the converse,
the feathering mode for the gimballed rotor is always
stable and almost unaffected by the presence of con-
ing hinges (the feathering pole, −0.1263 ± 0.9642i,
being very close to that obtained for blades fixed to
the hub, −0.1187 ± 0.9623i) or the introduction of
viscous damping (see Fig. 2).

The actual gimballed rotor does not features
dampers, yet the high centrifugal load leads to the
presence of dry friction in the coning hinges, that
dissipates energy. This type of hard nonlinearity pre-
vents the system from being linearized and, as a con-
sequence, a stability analysis based on the eigenval-
ues is no longer available. Nonetheless, it is possible
to identify a minimum value for kfr which guaran-
tees stability, on the basis of a Poincaré mapping ap-
proach: a perturbed state for the rotor is considered
as the initial condition and the perturbation after a
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Figure 4: Rotor behavior at µ = 0.1 with cyclic pitch
and no hinge stiffness: a) hub tilt angles ; b) loads
transmitted to the shaft. Gimb. rotor with CH (—),
gimb. rotor without CH (· · · ), teet. rotor with CH
(—), teet. rotor without CH (· · · )

rotor revolution is evaluated by means of numerical
simulation. If the norm of the perturbation after one
revolution is smaller than the initial one the rotor is
stable. Figure 3 shows the minimum level of friction
in the coning hinges in order to guarantee stability as
a function of the pitch–coning coupling. The nomi-
nal value of the friction kfr = 100 Nm satisfies the
stability condition for KPC = 1.36.

Isolated rotor response

The behavior of gimballed and teetering rotors with
and without CH is compared. The same set of initial
conditions is considered in all the simulations, with
the vehicle at trim in hover, rotor thrust balancing
vehicle’s weight and assuming cyclic pitch commands
close to zero. A periodic forcing term is introduced
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Figure 5: Rotor behavior at µ = 0.1 with cyclic pitch
and hinge stiffness: a) blade coning angles: Gimb.
rotor: blade 1 (—) blade 2 (- · -), Teet. rotor: blade 1
(—) blade 2 (- · -), b) Force components in shaft axis:
Gimb. rotor with CH (—), gimb. rotor without CH
(· · · ), teet. rotor with CH (—), teet. rotor without
CH (· · · )

assuming a step variation of advance ratio (µ = 0.1)
and cyclic pitch, where the latter command is chosen
in order to trim the helicopter at the corresponding
speed. Figures 4 reports the resulting behavior of the
rotor with dry friction in CH and no stiffness in hub
teetering and feathering hinges.

The presence of the feathering degree of freedom
allows the gimballed rotor to tilt almost exactly in
the direction commanded by the swashplate, if no
stiffness is present in the spherical gimbal, a nega-
tive value indicating forward tilt. A minor difference
between no–feathering–plane and tip–path–plane is
present, due to the aerodynamic periodic term.

The hub tilt angle, seen in the non–rotating frame,



presents oscillations of small amplitude. As a con-
sequence the in–plane rotor load oscillations (aero-
dynamic and inertial force components perpendicular
to the shaft axis) remain small. On the converse,
the teetering rotor presents a more intense oscilla-
tion. The presence of CH in both the gimballed and
teetering rotor leads to marginal variations in the be-
haviour of the system.

When a stiffness K = 7219 Nm/rad is introduced
in hub teetering and feathering hinges, the gimballed
rotor is no longer capable of tilting the hub exactly
in the direction of the no–feathering–plane (Fig. 5),
an equilibrium condition being no longer available,
as discussed in [1]. Both hub and blades present a
periodic behaviour. The shape of the oscillations of
coning angles and rates is a consequence of the fric-
tion in the coning hinges, with intervals during which
friction keeps β̇i close to zero (stick phase). As for
the rest, the behaviour resembles that of the rigid ro-
tor with cantilevered blades considered in [1]. The
impact of CH in the case of response to commands
and loads transmitted in forward flight is thus limited.

Gust response

The presence of CH and pitch–coning coupling is
motivated by a better gust response which should
limit the peak load transmitted to the fuselage dur-
ing a gust encounter, and provide inherent stability to
the rotor, as discussed in [6]. In this respect, the rigid
blade model considered in [1] penalizes the configu-
ration with no CH, as blade flexibility and torsional
deformation would induce a significant coupling be-
tween local incidence and effective blade coning.

Figure 6 describes the behavior of a rotor in hover
with longitudinal cyclic pitch which experiences a se-
vere vertical gust. In the first 0.6 s the rotor re-
sponds to the 5◦ longitudinal cyclic command. The
tip–path–plane of all rotor configurations (evaluated
for ψ = 0, π for a1 and for ψ = π/2, 3π/2) tilts in the
same direction of the swashplate. Rotors with coning
hinges presents a longer settling time before reaching
the equilibrium value due to the blade coning motion.

During gust penetration both blades move upwards
and the coning angle a0 reaches a higher equilibrium
position, when an inertially fixed isolated rotor is con-
sidered. At the same time the pitch–coning coupling
reduces the steady state value of the rotor vertical
forces, if compared with a rotor with no CH.

Gust response with heave motion

Figure 7 compares the gust response in hovering for
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Figure 6: Rotor response to a step gust at t = 0.6 s
in hover with 5◦ longitudinal cyclic: a) TPP states;
b) loads transmitted to the shaft. Gimb. rotor with
CH (—), gimb. rotor without CH (· · · ), teet. rotor
with CH (—), teet. rotor without CH (· · · )

an isolated rotor with that obtained for the simpli-
fied fuselage–rotor model, featuring a vertical trans-
lational degree of freedom, described at the end of
the Section on “Rotor Models”. In both cases a fully
gimballed rotor is considered.

When fuselage heave motion is included in the
model, the helicopter accelerates in the direction of
the gust as shown in Fig. 8. The relative speed of the
helicopter with respect to the surrounding air mass re-
duces the variation of the angle of attack generated
by the gust.

The gimballed rotor with CH presents a better
gust response from both an aerodynamic and a dy-
namic standpoint. On one side, the variation of pitch
angle induced by the pitch–coning coupling reduces
the angle–of–attack variation and, as a direct conse-
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Figure 8: Fuselage and inflow states response to 0.2 s
step gust. Rotor with friction and KPC = 1.36 (—),
rotor without coning (· · · ).

quence, the peak load. At the same time, the verti-
cal load on the fuselage is reduced, when part of the
aerodynamic load excites the coning response.

Conclusions

The characteristics of a two–bladed gimballed rotor
featuring a homokinetic joint between driving shaft
and rotor yoke, fly-bar with paddles and coning hinges
were analyzed. A simplified model based on the as-

sumption of small angles and aerodynamic load con-
centrated at 70% of the blade span was developed.

The presence of coning hinges and a high pitch–
coning coupling makes the system unstable. The ro-
tor is stabilized by a sufficient amount of dissipation,
due to either viscous damping or dry friction in coning
hinges. In this respect, the friction generated in the
coning hinges by the high centrifugal load is sufficient
to this end in all considered flight conditions.

Command and gust response of gimballed and tee-
tering rotors with and without coning hinges were
compared. The presence of the coning degrees of
freedom has a marginal effect on both the gim-
balled and teetering rotors response to commands
and steady state behaviour. On the converse, con-
ing hinges provide a significant load alleviation during
gust encounters, an effect which is increased when a
pitch–coning coupling mechanism is included.
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