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Abstract: The mathematical model of unsteady flow of helicopter airfoils based on the model 
of separated flow around finite-thickness bodies of Belotserkovsky-Kotovsky-Nisht-Fedorov 
is addressed. The specific features of the model are as follows. Flow around a body is divided 
into two regions: viscous  flow field in a boundary layer on a flow-immersed body and 
inviscid flow field outside the body and boundary layer on it. The flow in the latter field 
outside the vortex wake is assumed to be potential. With the body surface being smooth, the 
vortex wake  behind the body can form only due to boundary-layer separation. In this case, 
the total vorticity of a boundary layer is carried off at separation points. Then the wake is 
modeled by free discrete vortices, whose circulation is defined by this vorticity. 

 
Using the model, the integrated and distributed aerodynamic characteristics of helicopter 
airfoils, velocity fields and unsteady vortex wake can be calculated. The computational 
examples  and comparison of computed results with experimental data  are presented. 
 
INTRODUCTION 
 
The flows past rotor blade airfoils are known to be essentially unsteady even in steady 
horizontal flight. The blade sections executing complex curvilinear motions are situated in the 
varying-incidence flow conditions. In one rotor revolution, the Reynolds number of one and 
the same blade section varies through a wide range. The dimensionless blade load frequency , 
Strouhal number, also varies over a broad range. Rotor blade sections frequently operate in 
the near-stall and post-stall angle-of-attack ranges. Theoretical study of the three-dimensional 
separated flow about finite-thickness rotor blade is a rather complex problem requiring 
significant computational resources. To solve the helicopter rotor aerodynamic design 
problem and analyze its operation in flight conditions, especially in limiting regimes, it is 
reasonable, along with experimental investigations, to carry out numerical studies of flows 
about helicopter airfoils using cost-effective computational methods. Considered below is one 
of such methods for calculating aerodynamic characteristics of representative helicopter 
airfoils based on the model of separated flow about  finite-thickness bodies presented in [1]. 
The model is founded on the synthesis of the models of inviscid incompressible flow and  
unsteady boundary layer flow. The numerical implementation of the model is based on the 
discrete vortex method for computing flow parameters in the inviscid flow region [2] and the 
method for computing unsteady boundary layers [3]. 
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1. MATHEMATICAL MODEL 
 
1.1 Problem formulation 
 
The motion of the blade airfoil of a rotor having the translational velocity 0U

r
 is considered. 

Generally, together with the blade the airfoil may execute a complex motion caused by 
rotation about rotor axis, flap motion about flap hinge and rotation about feather hinge. The 
air velocity seen by the blade airfoil (Fig. 1) at an arbitrary point М0 of its contour located at 
the relative radial distance rr from the rotor axis is determined according to [4] as:                       

                                      ( ) ( ) ( ) ( )tMtrtrtMu yx ,,,, 000000 ϕϑϑϑ
rrrr

++= ,                                   (1) 

where x0ϑ
r

 is the air velocity component in the rotor rotation plane, y0ϑ
r

 is the air velocity 

component normal to the rotation plane, ϕϑ0

r
 is the air velocity component due to blade 

rotation about the feather hinge. 
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Figure 1. To the definition of motion kinematic parameters of a rotor blade section 

 
The air velocity components entering into equation (1) are calculated as follows: 
  
                                    ϑ0x ( ) βcos, rtr = ( )t ψαϑ sincos+ ( )t ,                                            (2) 
                     ϑ0y ( ) αϑ sin, =tr н βcos ( ) αϑ cos+t н ψcos  ( ) βsint ( ) ( )trt βω+ ,                      (3) 

                                              ϑ ϕ0 =ωr FН ( )0Mrr× ,                                                         (4) 

where β is the flapping angle, Ψ is the current blade azimuth angle,  ϑ  is the relative rotor 
motion velocity, αн is the rotor disk plane angle of attack, βω  is the blade angular velocity 
about the flap hinge, ωr FН is the blade angular velocity vector relative to the feather hinge,  rr  
is the position vector of a blade section contour point. 
 
Thus, the motion of the blade airfoil can be considered generally as motion according to a 
polyharmonic law and, particularly, according to a harmonic law. 
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1.2 Numerical implementation 
 
The flow about the blade airfoil section was divided into the two regions: the region of 
viscous flow in the boundary layer and the region of inviscid flow outside the boundary layer. 
In the latter region outside the vortex wake, the flow was assumed to be potential. The  
parameters of the inviscid flow were calculated by the discrete vortex method [2, 5]. 
Positioned on the airfoil contour therewith were the integrated discrete vortices  replacing the 
bound and free vortices located on the airfoil. Arranged in the midway between the discrete 
vortices are the control points where the tangency boundary condition for the airfoil contour 
was met.  
 
The components of disturbance velocity in the control point ν, induced by the integrated 
discrete vortices with the circulation ΓΣμ , μ = 1,2,..., N, and free vortices of the wake with the 
circulation δ , i=1,2,..., K, at a design instant of time  r, were determined in the form: i

                                                    ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+Γ= ∑ ∑

= =
Σ

N K

i
xiix

rr
xw

1 12
1

μ
νμνμν ϑδϑ

π
,                                        (5) 

                                                   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+Γ= ∑ ∑

= =
Σ

N K

i
yiiy

r
yw

1 12
1

μ
νμνμν ϑδϑ

π
,                                         (6) 

where xμνϑ , yμνϑ , xiνϑ , yiνϑ  are the influence functions in the control point ν from the 
integrated vortices μ и i of unit strength. 
 
Using the tangency condition at all airfoil control points and the Thomson theorem on 
circulation invariance inside a closed contour enclosing the airfoil and its wake, the system of 
linear algebraic equations in unknown circulations of the integrated vortices located on the 
airfoil contour for the design instant of time r was written as: 
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where F is the constant defined by initial conditions. The overdetermination of this system of 
equations was eliminated by introducing  the regularizing variable С. 
 
Upon solving the system of equations (7) and determining the circulations of integrated 
discrete vortices, the limiting values of the flow speed relative to the airfoil surface at the 
point ν were determined in the form: 
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where γ ν  is the dimensionless strength of the integrated vortex layer at the point ν being 
considered. 
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The flow parameters in the viscous region were determined by numerical integration of the 
system of differential equations for the unsteady boundary layer. For a laminar boundary layer 
this system has the form [6]: 
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where u and ϑ  are the air velocity components tangential and normal to the airfoil surface, x 
and y are the curvilinear coordinates in the boundary layer. 
 
The second equation of system (9) for the turbulent boundary layer has the following form 
[7]: 
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where  is the shear stress. ∗τ
 
For closure of the boundary layer equations, the van Driest-Klebanoff semiempirical two-
layer eddy viscosity turbulence model based on generalized experimental data was used [1]. 
In so doing, for the internal boundary layer region the model based on Prandtl’s mixing length 
concept was used and for the external region − the hypothesis of eddy viscosity constancy 
with accounting for Klebanoff’s intermittency factor.  
 
The finite-difference approximation for the continuity equation and for the fluid motion 
equation was made according to the 4-point and to the implicit 12-point computational 
schemes, respectively. In solution, the following commonly adopted conditions were used: 

( ) ( ) 0,,0, == txtxu ϑ   at y=0, 
                                                      ( ) ( )txWtxu ,, →   at δ→y ,                                              (11) 
where δ  is the boundary layer thickness. When specifying the initial velocity profiles at the 
boundary layer station, the exact solution of the Navier-Stokes equations in the vicinity of the 
stagnation point was employed.  
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Figure 2. Computational scheme of separated flow around an airfoil 

 
The boundary layer was calculated in the region from the point (К)  (Fig.2) to the separation 
point (R) where either the surface friction became extremely small, that is, 0→∂

∂
y

u , or the 

iteration process of solving the boundary layer equations became divergent. An important 
distinctive feature of the present model of separated flow is taking account of the boundary 
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layer in the reversed flow region. The number of stagnation points and separation points was 
not postulated and was determined in the course of calculations.  
 
The wake behind the airfoil was modeled by free vortices whose strength was defined by the 
boundary layer vorticity at the flow separation points. The direction and speed of motion of 
each newly emanating free discrete vortex were defined by the flow velocity at the boundary 
layer station whereupon they moved together with the flow retaining their strengths. 
 
The aerodynamic load on the airfoil section was determined at each time step r with the aid of 
the Cauchy-Lagrange integral. In so doing, the pressure coefficient νCp  at the control point ν 
was determined as follows [2]: 

                                                    
t

wuCp
∂
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0

2
0 −−= ,                                                     (12) 

where the value of  
t∂
ϕ∂  was taken in the movable airfoil-fixed coordinate system. By 

integrating along the airfoil contour , the pressure coefficient  Ср and friction factor wτ  as 
well as the coefficients of normal and longitudinal forces were calculated from the formulas:  
                                         ( ) ( )[ dSxnynCpC wy ,cos,cos τ+−= ∫ ] ,                                         (13) 

                                         ( ) ( )[ dSxnCpynC wx ,cos,cos −= ∫ τ ] ,                                         (14) 
where S is the dimensionless curvilinear coordinate measured along the airfoil contour. The 
coefficient of pitching moment relative to the airfoil leading edge was calculated from the 
formula: 
  
                 [ ] [ ]{ }∫ −−+−= dSynxnCyxnynCxm WpWpZ ),cos(),cos(),cos(),cos( ττ .           (15) 
 

 

 
 
 
 
 
 

Figure 3. Plot of normal force coefficient as a 
function of angle of attack of the NACA 0012 

airfoil 
 

 

Cn 

Systematic calculations were performed aimed at substantiation of the reliability of the 
computational model. [8]. By way of example (Fig. 3), the computed normal coefficient for 
the NACA 0012 airfoil was compared to the experimental data obtained by L. W. Carr [9]. 
The airfoil angle of attack varied according to the harmonic law  
 

α=150 + 100 sin0,3τ, 
 
with the Reynolds number Re = 4·106. 
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2. SIMULATION RESULTS 
 
2.1 Flow about an airfoil at fixed angle of attack  
 
The simulation of the flow about the NACA 23012 airfoil using the above described model 
has shown that at small angles of attack  the flow is attached. The boundary layer separation 
points on the upper and lower surfaces of the airfoil were situated near its trailing edge. As the 
angle of attack  α increases, the load on the airfoil increases too, (Fig. 4), and as evident from 
Fig. 5,  the curve СL (α) remains linear up to α = 80.  

 

 

Figure 4. Airfoil section loading in the case of 
attached flow 

 

Figure 5. Airfoil lift coefficient versus angle of attack 
curve 

 

CL

Beginning from α=8,50, the boundary layer separation point on the upper surface moves 
upstream. Figure 6. shows the vortex layout of the airfoil NACA 23012 and the position of 
the separation point xS (xS /c is the relative separation point coordinate). Figure 7 illustrates 
the character of changes of the separation point location on the upper surface of the airfoil at 
different angles of attack. 
  

 
 
 
Figure 6. Vortex representation  
of the  NACA 23012 airfoil. 
 Xs – flow separation point  
coordinate; c −chord 

 
 
 

The angle of attack range 8.50 to 110 can conditionally be defined as a transition from attached 
to developed separated flow. Both in the transient and separated flow regimes the location of 
the separation point as well as the instantaneous value of aerodynamic load vary with time 
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(Fig. 7). Figure 8 shows the instantaneous values of pressure coefficient on the airfoil, Fig. 5 
shows the time-averaged values of the airfoil lift coefficient. The Reynolds number in these 
calculations was taken to be 6·106. 

 

 

Figure 7. Temporal variation of the flow 
separation location in the transient flow regime of 

the NACA 23012 airfoil 
 

Figure 8. Airfoil section loading in the case of 
separated flow 

 

 
2.2 Flow about an oscillating airfoil 
 
When an flow-immersed airfoil has unsteady kinematic parameters, as for example in the case 
of its angle of attack varying according to a harmonic law, the character of variation of 
aerodynamic characteristics is known to considerably differ from the case of fixed angle of 
attack. To estimate the unsteadiness effect, the flow about a representative airfoil oscillating 
according to the law α = α0 − Δα cos Sh t was numerically simulated. 
 

  

             Figure 9. Time variation of the airfoil angle of  
attack according to the law α = α0 - ∆αcosSht 

              (α0=100; ∆α =50; Sh=0.25) 
 

Figure 10. Separation point locations on the 
upper (1) and lower (2) airfoil surfaces 
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In the computations, the mean angle of attack was α0 =10°, amplitude Δα = 5°, dimensionless 
frequency (Strouhal number)  Sh = 2πf·с/V = 0,25 (here  f is the oscillation frequency,  с is the 
airfoil chord, V is the flow speed). For this case, the temporal (depending on computation 
step) angle of attack variations are shown in Fig. 9, so that at some its values flow separation 
occurred. It is notable that both the 440th and 566th computation steps corresponded to one 
and the same angle of attack α =10° while at the 440th step the angle of attack was decreasing 
and at the 566th step it was increasing. 

 
a) b) 

 
        Figure 11. Vortex structure of the wake behind the airfoil at an instantaneous angle of attack  

α=100 for the  440th (а) and 566th (b) computation steps 
 

When at α0 = 10° (440th computation step) the airfoil moved for decreasing, the separated 
flow covered most of the airfoil upper surface in contrast to the motion for increasing angle of 
attack (Fig. 10). The corresponding vortex structures confirm this (Fig. 11). In the normal 
force coefficient Сn versus α curve (Fig. 12), the instantaneous value α = 10° on the lower 
branch corresponds to the airfoil motion for decreasing angle of attack (440th computation 
step) and on the upper branch − for increasing angle of attack (566th computation step). In 
this case (α0 = 10°) the difference in  Сn values is large. 
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Figure 12. Normal force coefficient versus angle of attack curve for the harmonically 
 oscillating airfoil at  Sh=0.25 

 
Of interest is the estimation of the Sh effect on the variation of aerodynamic 

characteristics with angle of attack when the airfoil oscillates harmonically. For this purpose, 
the flow about a helicopter airfoil was simulated with angle of attack oscillating according to 
the law α = 12.50 − 50cos Sh t and the Strouhal number varying from Sh = 0,124 to Sh = 0,71. 
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The plots shown in Fig. 13. give the computed normal force coefficient as a function of angle 
of attack for different Sh values. The analysis of the investigation results has shown that with 
increasing the dimensionless airfoil oscillation frequency the area of the “loop” formed by the 
Сn(α) graph decreases. At  Sh = 0,604 and Sh = 0,71 self - crossing “loops” form. 

 

  

 
Figure 13. Strouhal number effect on the character of the curve  Сn(α) for a harmonically 

oscillating helicopter blade airfoil 
 

CONCLUSIONS 
 
The mathematical model has been developed allowing the unsteady flow about helicopter 
blade airfoils to be simulated including the dynamic stall. 
 
The model features a cost-effective computational scheme, which predetermines its deserving 
position in the hierarchy of mathematical models  differing in accuracy and complexity.  
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