
TWENTYFIFTH EUROPEAN ROTORCRAFT FORUM

Paper n° F6

SOFTWARE PARTITIONING FOR SAFETY-CRITICAL AIRBORNE SYSTEMS IN
PRACTICE

BY

M.F.R. KEUNING

NATIONAAL LUCHT- EN RUIMTEV AARTLABORATORIUM (NLR),
THE NETHERLANDS

SEPTEMBER 14-16, 1999
ROME
ITALY

ASSOCIAZIONE INDUSTRIE PER L'AEROSPAZIO, I SISTEMI E LA DIFESA
ASSOCIAZIONE ITALIAN A DI AERONAUTICA ED ASTRONAUTICA

F6-1

SOFTWARE PARTITIONING FOR SAFETY
CRITICAL AIRBORNE SYSTEMS IN PRACTICE

M.F.R. KEUNING

NATIONAALLUCHT- EN RUIMTEVAARTLABORATORIUM (NLR},
THE NETHERLANDS

Abstract

Increasingly demanding helicopter operations lead to a higher workload on the pilot. To support
these helicopter operations and relief the workload on the pilot more sophisticated avionics are
incorporated. Many of the avionics' functional requirements are realized in software. This has
induced a strong growth of the size and complexity of the used software.

Often this software contains safety critical components as well as less critical components.
Because of economic pressure, techniques are needed to reduce the development effort of the
less critical software components in these systems without compromising the functioning of the
critical components and thus the airworthiness. One solution - as proposed by D0-178B:
Software Considerations in Airborne Systems and Equipment Certification - is partitioning. A
partitioning architecture is discussed which is successfully implemented and certified as a part
of helicopter avionics. D0-178B categorizes software components into five criticality levels.
The realized avionics contains software components of three different levels including the most
critical level (i.e. level A).

The developed novel partitioning architecture is based on two hardware capabilities, a Memory
Management Unit (MMU) and a processor with two protection levels. The hardware of the
developed system contains a compliant processor with built-in MMU that supports both
segmentation as well as paging as means of memory protection. Only paging is used because
with the selected processor segmentation induces up to 50% performance overhead whereas the
overhead of paging stays well below 5%.

Central to the partitioning architecture is a proprietary kernel that runs in a protected
environment. The proprietary kernel manages all protections within the application. Like most
operating systems, protection is provided between tasks. Furthermore protection is provided
between components of different software levels (i.e. intra task and inter task) which is the most
important protection support concerning safety.

A formal model of avionics partitioning defines three essential requirements for the kernel's
access mediation functions, i.e. complete, tamper-proof and assured. All these essential
attributes are met by the developed partitioning architecture. The developed partitioning
architecture can be ported to other hardware and extended, with for example: support for
Integrated Modular Avionics (IMA) and support for distributed and multi-processor systems.

The implemented partitioning architecture was successfully certified as a part of the helicopter
avionics. The measured processor load overhead induced by partitioning is only about 1%.
Memory usage increased by approximately 5%. These resource requirements are very
acceptable considering the economic advantages gained. Consequently the developed
partitioning architecture is very useful and can be reused in future applications.

1. Introduction

In the early 1980s, a new era for airborne systems and equipment began. Usage of software

F6-2

incorporated in these systems started to increase with a dazzling speed. The amount of software
used in civil aircraft has almost been doubled every two years and given this trend it is expected
to grow with a factor of about 1000 over the next 20 years [Sto96]. An industry accepted
guidance- D0-178 that is currently in revision B [RTC92]- was written. This guideline has the
purpose: ·'to provide guidelines for the production of software for airborne systems and
equipment that performs its intended function with a level of confidence in safety that complies
with airworthiness requirements".

In correspondence with F AR/JAR-25 [FAR] D0-178B [RTC92] identifies five levels of system
failure conditions and associates herewith five software safety levels (hereafter simply referred
to as levels). See Table I for the categorization of the software safety levels.

jSoftware Safety Level lfailure impact
jLevel A !catastrophic
jLevel B jHazardous
jLevel C !Major
jLevel D Minor
jLeve!E No Effect

Table 1

The highest level software - Level A - is considered to have possible catastrophic impact if the
software fails to operate according to its requirements. The lowest level - Level E - is
considered to have no impact on flight safety. The identification of multiple software levels
within one application imposes the problem that components of different levels may interfere
with each other. This problem can be overcome by developing all components according to the
highest identified leveL However, as easy as this solution may seem as costly can the realization
thereof become. D0-178B [RTC92] proposes several architectural concepts to tackle this
problem. One of these concepts is partitioning.

Partitioning is described by D0-178B [RTC92] as: ·'Partitioning is a technique for providing
isolation between functionally independent software components to contain and/or isolate faults
and potentially reduce the effort of the software verification process".

The realization of a safety critical helicopter avionics application initiated the development of a
proprietary partitioning architecture that conforms to the D0-178B [RTC92] guideline. A
partitioning architecture was developed whose only hardware requirements are a processor with
protection modes and a memory management unit (MMU). This partitioning architecture is
presented in section, the realization in the avionics application is discussed in section.

2. A Partitioning Architecture for Safety-Critical Airborne Software

When using multiple levels of software - as defmed by D0-178B [RTC92] -within a single
hardware environment care has to be taken to prevent lower level components from influencing
higher level components of the software. Faced with such a situation for a real application two
options were considered:

I. To develop all software components according to the highest identified level (i.e. level A)
even if a lower level would be sufficient for some components. This option was considered
because the size of the components of another level than level A was relatively small.

2. To develop a partitioning scheme. Since the software is running on a processor with built-in
MMU and protection mechanism (i.e. i386EX [Int87]) it is possible to implement a
partitioning scheme without adding hardware requirements.

The main points of consideration were effort, flexibility and performance. Looking just at initial

F6-3

(

effort would maybe have favored against partitioning but recurring effort because of
modifications and extensions is very much in favor of partitioning. Flexibility is strongly related
to the effort issues. In this sense, partitioning has a great advantage over the first option. With
partitioning, it is easy to add a new extension at a lower level (e.g. new or enhanced
maintenance or debug capabilities) whereas without partitioning a lot of effort could be induced.
Performance however can be a big concern for partitioning. Experimental measurements on the
real application pointed out that partitioning could add up to 50% execution time. This would
have effectively eliminated the option to use partitioning if there were not a more efficient
solution.

This performance overhead of partitioning is caused mainly by the usage of a memory
management unit (MMU) which is needed to manage protection of memory and memory
mapped hardware resources. The used processor has two basic approaches to memory
management namely segmentation and paging (these two approaches can actually be combined
into a hybrid form). Performance measurements greatly favored paging over segmentation.
Whereas segmentation adds up to 50% overhead, the overhead of paging stayed well below 5%.
Noted should be that all memory allocation is static and no swapping is performed.

Paging however has a fixed granularity (4Kb for the used processor) and that can become a
problem in protecting small special purpose memories (e.g. special non-volatile or dual-ported
memory). However, analysis of the memory usage of the real application- especially the usage
of the small special purpose memories - indicated no serious problems concerning the paging
granularity.

After evaluation it was decided to develop a partitioning scheme based on paged memory
management. The performance overhead of segmentation is simply too large and the potential
effort increase without partitioning is unacceptable.

The rest of this section will outline the general concepts of the developed partitioning
architecture. The discussion focuses mainly on the protection issues of the partitioning
architecture. In addition, issues like the incorporation of tasking on top of the partitioning
architecture, reusability and extendibility are discussed.

Features and Goals

Folio wing are the main features and goals of the practical general partitioning architecture:

• Compliance to the three essential attributes for an access mediation function provided by the
kernel as defmed by DiVito [Vit98]:

Complete

There shall be no way for software running in any partition to bypass the kernel and
access resources not under the kernel's control.

Tamper-proof

There shall be no way for software in any partition to tamper with the kernel or its data
so as to subvert the kernel's control of system resources.

F6-4

Assured

The kernel shall contain minimal functionality and shall meet all of the regulator's
requirements for the criticality rating of the overall Avionics Computer Resource (ACR).

• Inter level protection support (i.e. inter and intra task).
• Multi-tasking and inter task protection support.
• Minimal extra resources requirements, notably performance overhead.
• Portability to similar hardware architectures (i.e. processor with protection levels and

MMU).
• Shared memory support for inter level and inter task sharing.
• Static memory management (i.e. no swapping, no dynamic memory allocation).

Memory management is static because for dynamic memory management it is much harder to
prove correct usage with respect to availability and access time. Therefore, if it is possible to use
static memory management - thus no swapping and dynamic memory allocation - it is preferred
above dynamic memory management for safety critical applications.

'
Partitioning Protection Architecture

The primary goal of the usage of a partitioning protection architecture in avionics is to ensure
the safety of the people in the aircraft. This goal infers that it is most appropriate to use carefully
chosen proven concepts for the partitioning architecture.

The partitioning protection architecture of this application is based on two concepts used in
most operating systems:

1. The possibility to run partitioning management software - in the form of a kernel - in a
protected environment.

2. Memory protection management through the usage of an MMU (paging).

However, the memory management of this partitioning architecture is not exactly as memory
management used in other operating systems. Whereas most operating systems employ memory
management mainly on a per task basis, memory management for this partitioning architecture
is primarily based on a per software level basis (i.e. across tasks/threads).

Figure I shows the structure of the partitioning architecture. Each instantiation of a partition is
assigned a level that is used to enforce access restrictions. Access to the partitions is controlled
by defining execution environments with restricted access to the partitions. Six execution
environments are defined: one for each of the possible software levels (i.e. A to E) and one for
the kernel. Figure 2 shows the possible transitions between execution environments. How access
to partitions is restricted within the six execution environments is defmed as follows:

F6-5

(

1 .. N Task

0 .. 6 0 .. 1 0 .. 6 0 .. 6
Task state store Task private code 1

Stack partrrion A"ivate data Inter level shared
partrrion partrrion partition data part[ion

Level=kernel Level=[kernei,A .. Ej Level=[kernei,A .. Ej Level=[kernei,A .. Ej Level=[kernei,A .. Ej

I I I
0 .. 6 0 .. 6 ors

Inter task shared Inter task shared nter task & level
shared dala code part[ion data partrrion oartrrion

Level=[kernei,A .. Ej Level=[kernei,A .. Ej Level=[kernei,A .. Ej

Figure 1

Level A

Level B Level E

Level C LeveiD

Figure 2

• Each task owns a partition to store the Task State. This partition is only readable and
writable by the kerneL

• Each task owns one to eleven stack partitions. A kernel stack must always be provided.
Furthermore, for each level of code executed by the task a stack partition must be provided.
Finally, for each level of code involved in interrupt handling a stack partition must be
assigned. Only one of the stack partitions is used at the same time by any task. Access to
stack partitions other than the current stack partition is prohibited.

• Two types of code partitions exist:
1. Task private code partitions.
2. Inter task shared code partitions.

Up to six code partitions of each type (task private partitions are counted per task) can exist,
one for the kernel and one for each used software leveL Within any execution environment,
access to lower level code partitions is prohibited.

• Four types of data partitions exist:
1. Private data partitions.
2. Inter level shared data partitions.
3. Inter task shared data partitions.
4. Inter level and inter task shared data partitions.

F6-6

Up to six data partitions of each type (task private partitions are counted per task) can exist,
one for the kernel and one for each used software level.

This general structure can be seen as a meta structure of which actual instantiations can be made
by defining the actual instances of the partitions that are needed for an application.
Implementation of a partitioning protection architecture in this way can be done by
implementing a specific instance of the general meta structure or by implementing support for
the complete general architecture where an instantiation is realized through configuration. The
second option will take more initial effort and will require more system resources but is flexible
and far less effort is needed for reuse.

When actually implementing such a partitioning architecture an analysis should be done on
what the maximum supported software level should be. The software level assigned to the
partitioning management software must be at least the same as the maximum supported
software level of the partitioned components. For maximum flexibility level A should be
assigned to the partition management software. For the rest of this paper it is assumed that the
software level assigned to the partition management software is level A.

Control Coupling

Control coupling is illustrated by Figure 3. Access to other levels of software is completely
controlled by the kernel, which ensures secure control coupling. The kernel assures that on a
change of software level appropriate measures will be taken. The state of the current execution
enviroument will be saved before the execution environment will be changed and control is
passed to the new software level. Upon return, the execution environment will be restored and
control is passed back to the requesting software level.

s~~s~ ,, ' : / /
', '-, I ,/ .,....-"'

............... '\ : ./ ,
'-.... ' I / .,.

1'-• :. ~' .- ./1
f f
Interrupts

Figure3

The following requirements can be postulated for secure control coupling:

• Control access to a higher level is not permitted in the sense that the kernel does not allow
changing execution environment and passing control to a higher level.

• Control access to a lower level requires an execution environment switch to be done before
actually passing control. Thus, every control access to a lower level must be controlled by
the kernel that will perform the execution environment switch.

• Under no condition may lower level code be executed in a higher-level execution
environment.

• Higher level code may be run within a lower-level execution environment. In this case, no
kernel intervention is needed and can be statically realized through the MMU.

• Change of control to another task is allowed only by specially assigned scheduling code,
which may be either part of the kernel or implemented as user code. In either case, the

F6-7

scheduling code must be assigned at least the software level of the highest incorporated level
of software in the application.

• Asynchronous control couplings (i.e. interrupt handling) are always handled by the kernel
which however may dispatch actual handling to user level code after an appropriate
environment switch.

Control couplings that require an execution environment change are serviced by the kernel by
supplying so called call gates. Calls to the call gates can be completely controlled by the kernel,
which can prevent any illegal control changes.

Data Coupling

For data coupling between levels and tasks, some frequently used techniques can be used. The
focus is on the basic concept of shared memory usage. More advanced schemes - like message
passing - can be easily incorporated as an extension.

Figure 1 shows four classes of data partitions. Three of these classes are shared data partition
types enabling the usage of three different kinds of sharing:

• Inter level sharing (i.e. no sharing between tasks).
• Inter task sharing (i.e. no sharing between software levels).
• Inter level and inter task sharing.

Inter level sharing is of special interest with respect to safety critical software development
Access right restrictions must be enforced for inter level sharing which is not explicitly
necessary for inter task sharing.

The following restrictions must be enforced on shared data between software levels:

• Execution environments with a level lower than the level assigned to the shared data
partition may not have write access to that partition.

• Execution environments with a level higher than the level assigned to the shared data
partition may read from that partition but this type of access has to happen in a controlled
way. Design and verification must show that usage of this data will not degrade the safety
level of the functionality under any condition. To ease design and verification this kind of
access could be made available only through requests to the kerneL

• Other types of access to shared data cannot degrade the safety level; thus, they can be
permitted without restrictions.

Reusability and Extendibilitv

The immense increase in quantity and complexity of software in airborne systems goes hand in
hand with the increase and complexity of the hardware it runs on. Because of this growth reuse
and extendibility of applied concepts in applications is also becoming increasingly important in
order to save effort and cost The partitioning architecture as discussed above is very capable of
both being reusable as well as being extendable.

One easy extension is to support communication methods other than communication via shared
memory. For example, a message-passing concept could be incorporated in the kerneL
Messages have the advantage that they are inherently more controlled than shared memory
access. This concept is used for example in a commercial operating system which is currently
undergoing certification for D0-178B level B [OS98].

Current avionics development moves more and more towards the concept of Integrated Modular
Avionics (IMA). The ARINC specification 653 [Aer97] specifies the baseline operating
environment for application software used within IMA. One aspect addressed by the

F6-8

ARINC 653 [Aer97) specification is partitioning. The developed partitioning architecture can be
extended to an ARINC 653 [Aer97) compliant IMA system.

Another extension would be support for distributed systems. Take for example N processors
which are compliant with the requirements for this partitioning architecture - with
communication channels to interconnect them. On each of these processors, the developed
partitioning architecture could be used. The architecture could then be extended to incorporate
inter processor sharing and protection.

3. Instantiation of the Partitioning Architecture in a Realized Certified
Application

A dedicated instantiation of the partitioning architecture as discussed in section 2, was
successfully implemented in a realized and certified application. The choice to implement a
dedicated instantiation of the partitioning architecture instead of a complete configurable
implementation was based on factors concerning development cost and resource usage. The
realized application concerns an avionics device that manages the equipment of a flight display
sub-system - which the device is part of- and all the data flows in the sub-system. This sub
system is designed to operate in all possible configurations of single/dual pilot (SP/DP) and
visual/instrument flight rules (VFRJIFR). For IFR the management device is duplicated and is
re-configurable by the (co)pilot. In addition, some of the most critical flight data equipment are
duplicated and re-configurable for IFR. All reconfigurations are also managed by the realized
application.

Corruption of some of the parameters handled by the flight control display management
equipment is considered a catastrophic failure condition. Therefore the software components
that handle those parameters are categorized as level A; other components of the software are
categorized at lower levels (i.e. B and E).

Partitioning Protection Architecture

Figure 4 shows the dedicated instantiation of the general structure (see Figure 1) as it is
implemented in the realized application. Four instead of six execution environments are
implemented; transitions are the same as in Figure 2.

2
Task

6 4
Task state store Stack partttion A-ivate data

partttion partttion

Level=kernel Level=[kern,A,B,Ej Level=[kern,A,B,Ej

4 4

Code partttion Inter level shared
data partttion

Level=[kern,A,B,Ej Level=[kern,A,B,Ej

Figure 4

F6-9

(

Control Coupling

The implementation of the partitioning architecture in the realized application has an additional
restriction concerning control coupling. This restriction states that only the highest software
level (i.e. level A) is allowed to initiate control change to another leveL This restriction prevents
the situation where e.g. a level A component calls a level B component which in tum calls a
level E component. The latter call could bf. very well unwanted since one of the requirements
states that no level E software shall be executed when the aircraft is in the air. Note however
that enforcing this restriction is not necessary because the application design should not include
these cases (they are in conflict with the requirements) and the verification process should
identify these cases if the software would inadvertent! y include one.

Data Coupling

The partitioning architecture implemented in the realized application contains only one type of
shared data partition namely: 'Inter task & inter level shared data partition'. Access rights on
shared data partitions are more restrictive then those defined for the general partitioning
architecture:

• Write access is allowed only to data partitions with the same level as the level of the current
execution environment.

• Read access is allowed to all data partitions. Access to data partitions oflevels lower than
the current execution level have been accounted for in the application design and it has been
verified that invalid data cannot lead to an uncontrolled failure condition.

Overhead Assessment

After the realization of the partitioning architecture in this application, two assessments have
been done concerning the introduced overhead.

I. Overhead in development effort.
2. Overhead in system resource usage.

The effort that has been put into the development of the partitioning architecture is about l% of
the total development effort put into the application. This effort is easily compensated for by the
decrease in verification effort especially for modifications of the application.

The two main resources that are used by the partitioning architecture are processor capacity and
memory. The partitioning architecture induces only about I% performance overhead for the
realized application. Concerning memory consumption it was determined that the usage of
ROM increased by approximately 20KB on 496KB and the usage of RAM increased by about
20KB on 512KB.

4. Conclusions

This paper presented a partitioning architecture for safety critical airborne systems based on the
usage of a processor with system/user protection and an MMU. With the incorporation of
modern powerful processors in these systems, such a partitioning architecture can be ported to
many different systems. The major benefits of this architecture are:

• Little performance overhead.
• Few memory resource requirements.
• No extra hardware requirements besides the processor protection facilities and MMU.
• Portability to a variety of systems.
• Flexibility to adjust to specific application requirements. It is even easy to adjust an existing

application to incorporate this partitioning architecture.

F6-10

• Easy extendibility with application specific requirements or with more general functional
extensions. Among the possible extensions to this basic partitioning architecture are:

• Support for more advanced data coupling techniques like message passing.
• Support for Integrated Modular Avionics.
• Support for distributed and multi-processor systems.

The partitioning architecture has been successfully implemented in a realized and certified
avionics application with very reasonable resource usage. It can be concluded that this
partitioning architecture is very useful and can be applied in future applications.

References

[Aer97] Aeronautical Radio, Inc., Annapolis, Maryland. ARJNC Specification 653: Avionics
Application Software Standard Interface. 1997.

[FAR] Federal Aviation Requirements/Joint Aviation Requirements 25.

[Int87] Intel Corp. 80386 Programmer's Reference Manual. 1987. Order Number 230985-
001

[OS98] Enea OSE Systems. OSE addresses safety issues in embedded systems through
certification. Pressrelease- Dallas, TX, October 1998.

[RTC92] RTCA. D0-178B; Software Considerations in Airborne Systems and Equipment
Certification. 1992.

[Sto96] Neil Storey. Safety-Critical Computer Systems. Addison-Wesley, 1996.

[Vit98] Ben L. DiVito. A Formal Model ofPartitioningfor Integrated Modular Avionics.
Contractor Report 208703, NASA, 1998.

F6-ll

