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Abstract.1 The paper at hand addresses the precise positioning control of helicopter sling loads. Due
to a significant decrease in handling qualities caused by the external load, the manual load positioning can be
hindered. By means of linear quadratic optimal output regulation, the helicopter position as well as the load
sway are controlled in an integrated approach. The position control is part of an existing AFCS, which guaran-
tees for the basic helicopter stability. The controllers are developed and tested on the basis of a comprehensive
system simulation.

Notations

Symbols
A [−] system matrix
a [m/s2] acceleration (u̇, v̇, ẇ)T

B [−] control matrix
C [−] observer matrix
cS [N/m] sling spring constant
D [−] feedthrough matrix
dS [N s/m] sling damping constant
I [kg m2] inertia tensor
J [−] performance index
Ky [−] output feedback matrix
l, w, h [m] length, width, height
m [kg] mass
R,S, Q [−] weighting matrices
TM [−] transformation matrix
U [−] unit matrix
u [−] system control vector
V [m/s] velocity (u, v, w)T

x [−] system state vector
y [−] system output vector

(Φ, Θ, Ψ) [rad] Euler-angles
ω [rad/s] angular rates (p, q, r)T

δa [%] cyclic lateral control (A1s [◦])
δb [%] cyclic longit. control (B1s [◦])
δc [%] collectiv control (ΘMR [◦])
δp [%] pedal control (ΘTR [◦])

Indices
A, a aerodynamic
AP attachment point

C container
CG center of gravity
cmd command
ctvr control variable
cur current
g geodetic
H helicopter
i i-th sling
L load
LH load hook
P pendulum
R rod with swivel joint
S sling
trgt target value

Abbreviations
AFCS automatic flight control system
OM optical marker

1 Introduction

T
he capability to transport sling loads of differ-
ent goods to remote locations with poor ac-
cessibility may characterize the versatile uti-

lizability of helicopters in particular. However, due to
the presence of the sling load, the dynamic behavior of
the helicopter is influenced in a way that the handling
qualities are degraded. Hence, the pilot workload is
increased due to the task of controlling the sling load,
which implies the damping of load pendulum motions
as well as the precise positioning of the attached load.
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(a) approach (b) placing

Figure 1: Precise load positioning [1]

Flight tests with a CH-53G heavy-lift helicopter car-
rying mobile pioneer bridges as sling loads revealed
certain challenges in the precise load positioning (fig.
1) [1]: The central issue in precise load positioning is
given by the fact that the pilot cannot see the load
in general. Hence, the detection of offsets in the de-
sired load position is done by onboard crew members
or ground personnel giving instructions to the pilot.
This procedure implies time delays until a proper cor-
rection of the position error can be executed by the
pilot, which by then may not be effective anymore.
The longer the positioning maneuver takes, the more
the pilot workload increases, which in turn leads to
false control inputs and further position errors. The
dynamic influence of the sling load on the helicopter
increases with the weight of the load.

In order to support the development of controllers
for the precise load positioning, the overall system was
modelled [2]. Both subsystems – helicopter and load
– are considered as rigid bodies. The flexible slings
build a multiple-strap-harness. Based on the modeling
of the overall system, a comprehensive simulation was
designed featuring a quasi-nonlinear CH-53 helicopter
model and a nonlinear load system. The sling load
model comprises different aerodynamic features. The
simulation tool provides trim calculation, linearization
and flight simulation. Hence, a basis for system anal-
yses and the controller development is available.

2 System Modeling and Simula-
tion

The modeling and simulation of the overall system
helicopter-slings-load is supported by using Matlab

& Simulink
®. The system is built up of the two rigid

bodies and a rod in which the slings are fitted (fig.
14). The rod is connected to the helicopter’s single
load hook and features a swivel joint in order to allow
the load to turn without twisting the slings, which
could elsewise exceed the load limits of the slings.
The slings are modeled as flexible cables: Hence, the
cable-forces represent the constraining forces within
the two-body system. Different load aerodynamics
can be considered. The rigid body dynamics of the
helicopter, the load and the rod is discussed in the
appendix.

Aerodynamics

The aerodynamic forces and moments of the he-
licopter (F A

H,b, M
A
H,b) are nonlinear functions of the

helicopter motion and the atmosphere, which include
the relevant multi-dimensional effects sufficiently. For
the present work, linear aerodynamics of a CH-53D
cargo helicopter are implemented, leading to a quasi-
nonlinear description of the helicopter dynamic in (58)
and (59). The derivatives are obtained from [3]: They
were derived by linearization of a generic nonlinear
simulation code and cover a speed range from hover
up to 140 kts at a helicopter gross weight of 16 tons.

For the following investigations of the performance
and robustness of the positioning control, a cubic con-
tainer is considered as external load, featuring an edge
length of 2.4 m. The aerodynamic coefficients have
been derived in wind tunnel tests. The polars of the
static aerodynamic coefficients – which lead to a tan-
gential, and two normal forces, and a moment – were
identified in [4]. However, unsteady aerodynamic in-
fluences on the load surface are not taken into account
due to the rather low frequencies of the system’s mo-
tions. The resulting aerodynamic forces and moments
are derived by (65) and (73).
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Constraining forces

The load carrying harness consists of one or more
slings, whose dynamic properties are defined by spe-
cific spring and damping constants, depending on the
sling material. Due to the relative motion between he-
licopter and load, the slings are elongated, resulting in
forces (eq. 77), which in turn generate moments (eq.
82, 83) due to the offset between the sling attachment
points and the respective center of gravity (fig. 14).

The sling forces and moments as well as the aerody-
namic forces and moments are added to the vectorial
forces and moments in the equations of motion (58)
and (59).

Automatic flight control system

In order to stabilize the basic unstable helicopter,
an AFCS is implemented according to [3] (fig. 3). It
superposes the pilot inputs by ±10% in cyclic and col-
lective control, and by ±3% in pedal control; the ac-
tuator rates are limited to 100%/s.

In section 4, the pendulum controllers are deter-
mined on the basis of the AFCS-controlled, and thus,
stable helicopter.
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Figure 3: AFCS basic sketch

Sensor selection and modeling

The states of the model description do not deliver di-
rect information about the load pendulum sway. Thus,
the pendulum motions, which are to be controlled,
must be measured and provided as output variables.
Different types of sensors are considered: For instance,
an IMU that is mounted on the load can measure the
body rates and transmit the data to the helicopter for
further processing. Another approach is the installa-
tion of a sensing arm that follows the motions of the
rod as an indicator for the load dynamic.

In general, sensors that do not require to transmit
the information of the load dynamic from the load sys-
tem to the helicopter system are advantageous, be-

cause then system complexity is kept to a minimum,
which in turn leads to higher reliability. For this rea-
son, a camera sensor featuring digital image process-
ing for measuring the pendulum dynamic is chosen: A
camera, which is mounted underneath the helicopter,
tracks an optical marker (OM), which is placed on the
load or at the slings, and generates visual information
of the load position and velocity with reference to the
helicopter body system (fig. 2). The load pendulum
angles ˙̄ϕP and ˙̄ϑP in the helicopter body system are
then determined. These data are further processed us-
ing the helicopter attitude and body rates – measured
by the onboard IMU – in order to derive the controller
variables ϕ̇P and ϑ̇P , which describe the load pendu-
lum motion in the geodetic system.

This kind of sensor was developed by iMAR GmbH
[5] and means the basis for the simulation setup. The
digital image processing provides short time delays as
well as sample rates, which are sufficiently high con-
cerning the rather slow load pendulum dynamic. Fig-
ure 2 shows the mounting position of the camera; its
field of view covers an opening angle of 60◦, which can
be extended to 180◦ at the expense of process time.

Besides the derivation of the system pendulum an-
gles and rates, the digital image processing includes
Kálmán-filtering for the simulated prediction of the
position of the optical marker. The load dynamics is
calculated by means of a simplified analytical pendu-
lum model. This information is needed, in case the
external load is not located within the camera field
of view, due to large pendulum deflection angles, for
instance.

State space model

The equations of motion in (58), (59) and (61) de-
scribe the overall system helicopter and sling load, and
are used in the numerical simulation in their full non-
linear formulation. For analyses of the flight dynam-
ics – for instance, stability and controllability – the
system of equations must be simplified. For this, the
state variables are bound to a working point, in order
to enable a linearization: The theory of linear systems
considers stationary flight conditions at an operating
point x0. For the analysis and synthesis of linear sys-
tems, a multiplicity of tools – time-domain based as
well as complex-variable-domain based – is available.

The linearization of the overall system leads to the
state space model:

(1) ẋ = Ax + Bu (state equation), x(0) = x0

(2) y = Cx + Du (output equation)

The state vector is given with

(3) x = [xH , xR, xL]T
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Figure 2: Sensor installation

including the helicopter/load states (Λ = H, L)

(4) xΛ = (u, v, w, p, q, r, Φ,Θ)Λ

and the states of the rod

(5) xR =
(
ϕ̇, ϑ̇

)
R

and the control vector

(6) u = [δc, δb, δa, δp]T

as well as the output vector

(7) y =
[

(u, v, w, p, q, r, Φ,Θ)H ,
(
ϕ, ϕ̇, ϑ, ϑ̇

)
P

]T
The system state matrix consists of the main matri-
ces of the partial systems and the respective coupling
matrices

(8) A =

⎡
⎣ AH AR→H AL→H

AH→R AR AL→R

AH→L AR→L AL

⎤
⎦

where the submatrix AH contains the classical heli-
copter derivatives. The control matrix results in

(9) B =

⎡
⎣ BH

BR

0

⎤
⎦

with BL = 0. The observer matrix is given with

(10) C =
[

CH 0 (8x2) 0 (8x8)

CH→P CR→P CL→P

]

For the given system the feedthrough matrix is a zero
matrix:

(11) D = 0 (12x4)

3 Analysis of the System Flight
Dynamics

The flight dynamics describes the character of the mo-
tions of the overall linear system; one important re-
sult is the stability analysis. Applied for a cubical
load without aerodynamics, figures 4 and 5 show the
eigenmodes of the helicopter and the load at 60 kts for-
ward level flight. The considered weight of the cube is
3000 kg and the length of the single sling is 7m.

The incorporated degrees of freedom within the
eigenmodes were analyzed using the corresponding
eigenvectors. A characterization is given in table 1.
The eigenmodes I, II, V, VI, VII, VIII mainly de-
scribe the helicopter dynamic, slightly coupled with
the load dynamic. As a coupled motion of the sys-
tems helicopter-rod-load, the pendulum oscillation is
described by the eigenmodes III (lateral) and IV (lon-
gitudinal). A vertical oscillation of high frequency is
given by IX : The mode couples the vertical axes of the
helicopter and the load by the flexible sling. The in-
corporation of the dynamics of the two degrees of free-
dom of the rod are described in X and XI. They are
both of high frequencies, because of high constraining
forces acting at the rather light rod of 50 kg. Besides
the pendulum motions, the single suspended cube ex-
ecutes pitch and roll, which finds its expression in the
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Table 1: Characterization of eigenmodes

eigenmode characteristic eigenmode characteristic

I helicopter roll VIII coupled helicopter
mode longitudinal motion

II helicopter dutch- IX coupled vertical
roll mode oscillation

III coupled lateral X coupled DmL
pendulum motion lateral oscillations

IV coupled longitudinal XI coupled DmL
pendulum motion longit. oscillations

V helicopter lateral- XII load pitch mode
and roll mode

VI helicopter roll XIII load roll mode
mode

VII coupled helicopter
vertical motion
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Figure 4: Pole-zero maps for a steady-state horizon-
tal flight at 60 kts with a 3000 kg sling load, and a
variation of sling length
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Figure 5: Pole-zero maps for a steady-state horizontal
flight at 60 kts with a 7m sling, and a variation of load
weight

35th European Rotorcraft Forum 2009

©DGLR 2009 5



eigenmodes XII and XIII. Due to the lack of aerody-
namic stabilization, the load’s yaw motion has neutral
stability, caused by the yaw hinge of the rod – it is
located in the point of origin, and is not shown for
clarity reasons.

Depending on system parameters like the cable
length and the load mass, the eigenmodes of the over-
all system vary – particularly the pendulum motions
in III and IV. The overall system shows a tendency to
developing marginally stable pendulum motions (fig.
4 and 5). When increasing the sling length, the fre-
quencies of the eigenmodes III and IV decrease, as
well as of the vertical motion in IX, since the sling
spring constant is a function of its length (fig. 4b). By
increasing the load weight, the pendulum frequencies
rise (fig. 5a). This effect can be explained by a simpli-
fied two-point dumb-bell model with the pendulum fre-
quency given by (q.v. [6]):

(12) ωP =

√
g

lS
·
(

1 +
mL

mH

)

Since the helicopter roll rate in I and II is coupled with
the load weight, the change in the pendulum frequency
affects these eigenmodes, too – the damping declines
with an increase in load weight. Furthermore, heli-
copter body-rates are controlled by the AFCS, which
further amplifies the reciprocal effect of decreasing
system damping as result of increasing system weight.

4 Position Controllers

4.1 Problem Analysis

The positioning of helicopter sling loads is a twofold
task. On the one hand, the load must be held on its
position under the influence of disturbances. On the
other hand, the load must be placed precisely from one
position to another with minimal load sway.

For the development of positioning controllers, a ref-
erence flight case is considered featuring the key vari-
ables V = 0 kts defining hover state, mL = 4000 kg
as maximum load weight in addition to the helicopter
weight, and lS = 7m for a short sling leading to quick
pendulum motions.

Hoh et al. analyzed the dynamic impact of sling
loads on the handling qualities of a CH-47D Chinook
helicopter [7]. One essential output was that the con-
trollability of the translational displacement of the he-
licopter is degraded due to the presence of a sling load.
This effect intensifies with an increase in load weight.
The dynamic influence of a sling load on the lateral
and longitudinal helicopter speed above ground due to
cyclic control inputs – expressed by the transfer func-
tions Gδa ẏH

(s) and Gδb ẋH
(s) – of the CH-53D refer-

ence flight case is shown in figure 6.
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Figure 6: Frequency responses of the translational he-
licopter velocities at V = 0 kts, mL = 4000 kg, and
lS = 7 m

The solid lines indicate the helicopter without the
external load whereas the dotted lines illustrate the
transfer behaviour of the translational displacement
with the load attached. Considering the latter case,
it can be seen that the poles of the pendulum oscilla-
tions – pole III for the lateral and pole IV for the lon-
gitudinal pendulum motion – considerably affect the
dynamics of the translational helicopter displacement:
The amplitude margins as well as the gain margins are
lowered.

Hence, when positioning the helicopter in order to
place the load, the load pendulum motions must be
considered in the control strategy, too. Otherwise, the
helicopter will be moved out of its target position con-
stantly due to the coupling influence of the swinging
load. Thus, the need for an integrated control of the
translational displacement of the helicopter together
with the pendulum dynamic is determined.

This integrated control task of positioning a load
and damping its oscillation simultaneously is well
known from the gantry-crane control. Significant con-
tributions were made by Iordanou in [8] and [9], and
by Corriga in [10], and by Wang and Surgenor

in [11] and [12], for instance. They realized optimal
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feedback control by using linear quadratic state regula-
tion (LQR) in order to position the load time-optimal
with minimal load sway. This approach was adapted
for the helicopter sling load positioning task at hand.
The goal is to position the helicopter, and simultane-
ously damp the load pendulum motions. Hence, by
the time of arrival at the target position, the load’s
position is perpendicular and stable beneath the heli-
copter.

4.2 Controller selection aspects

The LQR-control is well suited for the interacting con-
trol of multi-variable systems. By means of a per-
formance criterion, which is specially tailored to the
objective of the control task, control parameters are
determined, which deliver optimal results for the pur-
pose of a weighting of the state and control variables.
The controller is derived as solution of an optimization
problem. For the correct application of LQR-control,
all state variables must be measurable.

However, since the load pendulum motions are de-
tected by means of a camera and digital image pro-
cessing, the states of the load-body in xL cannot be
measured and thus, the full state vector cannot be
determined. The consideration of a deterministic or
stochastic observer may ease the problem. Another
method of optimal control is given with the linear
quadratic optimal output control: The weighted op-
timal control is accomplished by feedback of the posi-
tion offset and the pendulum deflections. Compared
to the observer design, this approach is advantageous
because of a minor implementation complexity. The
structure of the control loop is illustrated in figure 7.
A turbulence model according to Lusardi et al. in [13]
is implemented and adapted to the CH-53 helicopter
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+

+
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Figure 7: Output regulation

in order to test the achievable load-position accuracy
under the influence of a turbulent atmosphere. Addi-
tional control inputs apply:

(13) (uturb)H = [δc, δb, δa, δp]Tturb,H

Furthermore, the turbulences affect the load aero-
dynamics, leading to additional inflow:

(14) (xturb)L = [u, v, w]Tturb,L

In case of a load displacement from a current po-
sition P 0 to a desired target position P trgt, the heli-
copter velocity in (u, v, w)H and the covered distance
(Δx,Δy)ΨH=0

H,g are determined by means of the integra-
tion of the measured body accelerations and the atti-
tude of the helicopter in ΦH and ΘH . Here, ΨH = 0
denotes that the geodetic system is turned by the az-
imuth ΨH (fig. 8). The target position as well as the
starting time t0 for positioning could be commanded
by the pilot, for instance. The control variables for
positioning the helicopter are given with the position
offset and its derivatives in equation (15) according
figure 8.

(15)
(

Δx
Δy

)ΨH=0

ctvr

=
(

x
y

)ΨH=0

trgt,H,g︸ ︷︷ ︸
= P trgt

−
(

x
y

)ΨH=0

cur,H,g

with

(16)
(

x
y

)ΨH=0

trgt,H,g

=
(

Δx
Δy

)ΨH=0

cmd

+
(

x
y

)ΨH=0

H,0,g︸ ︷︷ ︸
= P 0 = 0

east

0P

H�
H� 0
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Figure 8: Position control signals
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and

(17)

(
x
y

)ΨH=0

cur,H,g

= (TM)ΨH=0
gb ·

∫ t

t0

⎛
⎝ u

v
w

⎞
⎠

H,b

dt

+
(

x
y

)ΨH=0

0,H,g︸ ︷︷ ︸
= P 0 = 0

The control variable of the position velocity is given
with

(18)
(

Δẋ
Δẏ

)ΨH=0

ctvr

=
(

ẋ
ẏ

)ΨH=0

trgt,H,g︸ ︷︷ ︸
= 0

−
(

ẋ
ẏ

)ΨH=0

cur,H,g

and

(19) (
ẋ
ẏ

)ΨH=0

cur,H,g

= (TM)ΨH=0
gb ·

(∫ t

t0

⎛
⎝ u̇

v̇
ẇ

⎞
⎠

H,b

dt

+

⎛
⎝ u

v
w

⎞
⎠ΨH=0

H,b

)

considering

(20)

(TM)ΨH=0
gb =

(
cos Θ sinΘ sin Φ sinΘ cos Φ

0 cos Φ − sin Φ

)
H

Besides the position offset of the helicopter and its
derivation, the pendulum angles and rates are needed
for feedback control:

(21)
(

Δϕ
Δϑ

)
P,H,b

=
(

ϕ
ϑ

)
cmd,P︸ ︷︷ ︸

= 0

−
(

ϕ
ϑ

)
cur,P

(22)
(

Δϕ̇

Δϑ̇

)
P,H,b

=
(

ϕ̇

ϑ̇

)
cmd,P︸ ︷︷ ︸

= 0

−
(

ϕ̇

ϑ̇

)
cur,P

Hence, the complete output vector for the linear
quadratic optimal output control is given with:

(23)

y =
[
(Δx,Δẋ,Δy, Δẏ)ΨH=0

H,g ,
(
Δϕ, Δϕ̇, Δϑ, Δϑ̇

)
P,H,b

]T

4.3 Linear Quadratic Output Regula-
tion

The condition for optimality of the output regula-
tion corresponds to the demand that a pre-defined
performance index J must be minimized during the
changeover of the system from the initial state x0 to
the final state xe in the time intervall t ∈ [0, te]. Gen-
erally, the performance criterion is quadratic, weight-
ing system states as well as control deflections. Hence,
the optimal controller is not derived against the back-
ground of fulfilling demands on the performance of the
dynamic of the control loop. Instead, it is determined
by the evaluation of the progress of the state and con-
trol variables within a considered time period. For the
linear and time-invariant system of the equations (1)
and (2), and the output feedback

(24) u(t) = − Ky y(t)

the time-variant performance index is formed in de-
pendence on [14]:

(25)

J (x0, u(t)) = y′(te)Sy(te)

+
∫ te

0

x′(t)C ′QyCx(t)

+ u′(t)Ru′(t) dt

The achieved outputs in y(te) – as deviations from
the desired output y = 0 – are evaluated by means
of S. High control deflections are unfavorable and are
therefore penalized by R. The progress in the out-
put variables y is rated by the evaluation matrix Qy.
The matrices S, R and Qy are symmetric and positive
definite. In the following, the formulas of the linear
quadratic output regulation are explained for the sake
of completeness.

The aim in LQ is a stationary feedback gain ma-
trix Ky by means of the minimization of the perfor-
mance index J of equation (25). The feedback con-
trol must be independent on the initial state x0 and
time-invariant. By neutralizing the time limitation,
equation (25) changes to the infinite time quadratic
performance criterion. Hence, with

(26) y(t → ∞) = 0

the output evaluation by S can be omitted. In order to
use the performance criterion to find an optimal feed-
back gain matrix that is suitable for different flight
states the dependence on x0 must be eliminated. For
this, the performance obtained for a linear indepen-
dent set of initial states is averaged. This corresponds
to the assumption of the initial states in x0 being a
random variable uniformly distributed on the surface
of the n-dimensional unit sphere. Considering the ex-
pected value E of the n-initial states

(27) E {x0 x′
0} =

1
n

U
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the optimization problem is given with:

(28)
min
Ky

E {J} = min
Ky

E

{ ∫ ∞

0

x′(t)C ′QyCx(t)

+u′(t)R u′(t) dt

}

The solution of (28) as a result of the minimization
of the expected value E by the adaptation of Ky leads
to the optimal time-invariant feedback control Ky,opt,
which is effective independent of the initial states.

The overall system from (1) is rewritten to

(29) ẋ(t) = A − BKyC︸ ︷︷ ︸
A

x(t) , x(0) = x0

In addition, x(t) is given with

(30) x (t) = x0 eA t

Substituting (30) into the performance criterion leads
to

(31) J =
∫ ∞

0

x′
0e

A′t Q eA tx′
0 dt = x′

0 P x0

with

(32) P =
∫ ∞

0

eA′t Q eA t dt

and

(33) Q =
(
C ′QyC + C ′K ′

yRKyC
)

By means of partial integration the matrix P is
transformed to the linear Riccati-equation:

(34) A′ P + PA = −Q

For the symmetric matrix P – as the solution of the
Riccati-equation – it applies:

(35)
min
Ky

E {J} = min
Ky

E {x′
0 P x0}

= min
Ky

E {trace (P x0 x′
0)}

According to (28) and the initial state x0 – which
is located on the unit sphere of (27) – and according
to the fact that the expected value of the trace of P
equals the trace of P itself, hence, the optimization
of the expected value leads to the final form of the
optimization problem:

(36) min
Ky

E {J} = min
Ky

1
n

trace (P ) = min
Ky

1
n

J

The minimum of the function J is derived by means
of nonlinear optimization: A steepest descent algo-
rithm with Armijo-stepsizes was chosen.

For the search of the minimum of the modified cri-
terion J , the gradient of the trace of P is determined
with respect to the elements in Ky. The gradient fea-
tures the characteristic to always point towards the
direction of the steepest descent. The approximation
of the extreme values follows this direction, and it is
therefore inevitably arriving at a local minimum. The
gradient matrix is given by the following equation ac-
cording to [14], [15], [16]

(37)
∂J

∂Ky
= 2

(
R Ky C − B′ P

)
L C′

and P as the solution of the Riccati-equation in (34)
with

(38)
(A − BKyC) P + P (A − BKyC)′

+
(
C ′QyC + C ′KyRKyC

)
= 0

and L as the solution of the Ljapunow-equation:

(39) (A − BKyC) L + L (A − BKyC)′ + U = 0

The minimum is arrived when the norm of the gra-
dient approaches the pre-defined break value ε:

(40)
∥∥∥∥ ∂J

∂Ky

∥∥∥∥ < ε

For the search of the minimum of the performance
criterion by the variation of the elements in Ky, the
value of J is calculated along the gradient. A starting
point Ky,0 of the approximation method for the func-
tion J ∈ R

n must be determined for that the closed
loop is stable. This first feedback gain matrix can
either be derived by an iterative trial-and-error ap-
proach or by some formalized approach (e.g. [17]).
The optimal solution is then approximated within i
iterative steps starting from the initial feedback gain
matrix. For the approximation a stepsize a is intro-
duced, which is regulated by common techniques of
unidimensional search: For the paper at hand, the
Armijo condition was chosen. According to this pro-
cedure, the step size is controlled and adapted by the
inequation (41). Hence, any overshooting beyond the
minimum as a result of large step sizes is avoided as
well as the conduction of too many steps of iteration
due to very small step sizes. The performance index
of the potentially more optimal controller Ky,i+1 is
compared to the current controller Ky,i:

(41)

J

(
Ky,i − ai

∂J

∂Ky

)
−J (Ky,i) <

ai

2

〈
∂J

∂Ky,i
,
−∂J

∂Ky,i

〉
If the inequation (41) is satisfied, a new and more

optimal controller is found:

(42) Ky,i+1 = Ky,i − ai · ∂J

∂Ky
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Consequently, the step size is increased for the next
step of iteration:

(43) ai+1 = ζ · ai , ζ ≥ 1 .

If (41) is not satisfied, the step size a must be too
large, leading to

(44) Ky,i+1 = Ky,i

and the lowering of a according to:

(45) ai+1 = ξ · ai , ξ < 1 .

The step size is decreased until (41) is satisfied and
a new controller is found. By means of the feedback
gain Ky,i+1 the Riccati-equation in (38), and the
Ljapunow-equation in (39), and the gradient accord-
ing to (37) are determined. In a next step, the break
condition in (40) is evaluated by its arrival the optimal
controller is found:

(46) Ky,opt = Ky,i+1

The process chain of the derivation of the optimal
output control is once again illustrated in figure 9.

determination of for that is stable

ijq

variation of

variation of

steepest descent approximation with a and �

y,i

J
K
�
�

y,i+1 y,i
y,i

a JK K
K
�

� � �
�

adaptation of the stepsize a according to
the rule of ARMIJO (67):

(29) 

(38), (39) 

�� ��

break

(51) 

y,i=0K � �y,i=0A B K C�

yQ�

klr R�

	 
 	 
y,i+1 y,i
y,i y,i

a ,
2

J JJ K J K
K K
� �

� � � �
� �

calculation of the new feedback gain (68):

a � a � 1 ,� � �

y,i y,i+1

a � a ,    � 1
i i+1

K K

� � �

�
�

while

do

variation of i
determiantion of Pi und Li

	 

ij kl

y,opt y,iq ,r
K K�

	 
y x
y,opt
Q RK

(37), (40) 

(44) 

(53), (54) 

Figure 9: Algorithm for the determination of linear
quadratic optimal output feedback regulation

An important task in the LQ optimal regulation is
the agreement of the weighting matrices Qy and R.
The ratio between the elements qij ∈ Qy and rkl ∈ R
determines the control rate: Small values of rkl lead
to an increase in rate but require greater actuator am-
plitudes and vice versa.

The ratio among the elements qij determines, how
fast the states are run to zero. Hence, the choice of
Qy and R is essential since they mean the basis for
the evaluation of the progressions of the outputs and
control variables.

A common approach to determine the weighting ma-
trices is given with the trial-and-error method. The
elements are varied without considering any intercon-
nections nor dependencies between them. According
to the number of system states, this procedure rapidly
loses clearness and practicality due to a multliplicity
of variations. In the paper at hand, the weighting ele-
ments are derived in general accordance to the method
of Wang and Surgenor [11]. The maximum devia-
tions of the output variables qij as well as the max-
imum control deflections rkl are defined as guideline
values for subsequent parameter variations. The off
diagonal elements of Qy and R are assumed zero, and
the q11 and q33 elements are set to one, which is the
weighting of the helicopter position. This procedure
seems adequate, since the weighting characteristic is
determined by the ratio of the elements instead by
their absolute values. Hence, there are four tunable
parameters left: q55 and q77 for the weighting of the
load angles, and r22 and r33 for the penalization of
cyclic control deflections. The longitudinal and lateral
motions are weighted separately so that the output
weighting matrix is given with

(47) Qy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0

1 0 0 0 0 0
0 0 0 0 0

(yH )2max

(ϕP )2max
0 0 0

symm. 0 0 0
(xH )2max

(ϑP )2max
0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the weighting matrix of the control inputs with

(48) R =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
(xH )2max

(δb)2max
0 0

(yH )2max

(δa)2max
0

symm. 0

⎞
⎟⎟⎟⎟⎟⎟⎠

For an assumed intervall of maximum position devia-
tions of

(49) (xH , yH)max ∈ [5 m , 20 m]

and an intervall of maximum pendulum angles of

(50) (ϕP , ϑP )max ∈ [5◦ , 20◦]
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the following variation range for q55 and q77 applies,
relative to the remaining elements in Qy and R:

(51) (q55, q77) ∈ [0.06 , 16]

The maximum allowed control deflections – the
AFCS limits the cyclic control by ±10% – account for:

(52)
(δb)max ≈ 3 cm

(δa)max ≈ 2 cm

Thus, the variation ranges for r22 and r33 are:

(53) r22 ∈ [2.6 , 41.5]

(54) r33 ∈ [4.9 , 8.0]

The optimal feedback gains for various flight cases
are determined within the intervals of Qy and R by
optimizing the performance criterion.

5 Performance Analysis

For the overall system illustrated in figure 14 at V =
0 kts, mL = 4000 kg, and lS = 7m the linear quadratic
optimal output regulation is adopted. In order to start
the optimization algorithm the initial feedback gain
matrix is set up, which stabilizes the system in equa-
tion (29):

(55) Ky,0 =

⎛
⎜⎜⎝

0 0 0 0 0 0 0 0
1 2 0 0 0 0 −0.1 −0.1
0 0 1 2 0.1 0.1 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎠

The optimal feedback controllers (Ky,opt)qij ,rkl
–

they have been determined in dependence on Qy and
R – are virtual-flight-tested on their ability to posi-
tion the overall system in order to eventually define
the optimal controller K

(QxR)
y,opt . The meaning of the

optimal positioning must be formulated by means of
another performance criterion. For this, the criterion
of equation (25) determining the system energy can
be used. An alternative is given in the integration of
the absolute error of the position offsets and the load
pendulum deflections leading to:

(56)

J∗ =
∫ ∞

0

‖ΔxH‖ + ‖ΔyH‖ + ‖ΔϕP ‖ + ‖ΔϑP ‖ dt

Analyses of both criteria showed that the position-
ing of the overall system leads to different results.
Evaluating the integrated absolute errors yields more
optimal results.

Figures 10 and 11 show the achievable minimal per-
formance index J∗ for the longitudinal and lateral po-
sitioning of the reference flight case due to the varia-
tion of the elements in Qy and R. The test case de-
scribes a positioning of the helicopter by Δx = 20m
in the longitudinal and by Δy = 20 m in the lateral
direction, respectively: The position range was chosen
arbitrary since it does not influence the resulting opti-
mal weighting. The goal is to determine the weighting
parameters q55, q77, r22, and r33, which lead to the
optimal positioning of the overall system according to
the performance criterion of equation (56).

The far field in figure 10a shows a decrease of J∗

towards small values of q77 and r22. For the deter-
mination of the performance index of the longitudinal
positioning, the weighting parameters associated with
the lateral positioning are set to one and thus, neu-
trally rated. Both optimization processes are there-
fore regarded as decoupled. In doing so, the processing
time can be reduced. However, tests regarding a cou-
pled variation of the weighting elements led to nearly
congruent results. The minimal performance index is
attained at q77 = 0.35 and r22 = 1.6 (q.v. fig. 10b). In
case of the lateral positioning the weighting elements
q77 and r22 are set to one, and the minimal perfor-
mance index J∗ is accomplished by the variation of

34

30

26

22

0 4 8 12 16
20

40

77q 22r

*J

� 210

(a) far-field range

27

25

23

21

0 0.2 0.6 1.0 1.4
2

64

77q 22r

� 210

(b) close-up range

Figure 10: Determination of the minimal performance
index J∗ of the longitudinal positioning by a variation
of q77 and r22 at the reference flight case
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28

26

22

20

24

0.5
1.0

1.5 2
64

55q 33r
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Figure 11: Determination of the minimal performance
index J∗ of the lateral positioning by a variation of q55

and r33 at the reference flight case
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q55 and r33. Again, a decrease of the index develops
and its minimum is achieved at q55 = 0.3 and r33 = 4.1
(q.v. fig. 11).

Eventually, the following optimal feedback control
gain is determined for the reference flight case:

(57)
Ky,opt =⎛
⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0.32 1.44 0 0 0 0 0.07 −0.10
0 0 0.27 1.09 0.05 0.13 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎠

The optimal positioning of the overall system is il-
lustrated in figure 12. The helicopter is displaced
by 20 m longitudinally and laterally at the same
time. The integrated load pendulum sway regula-
tion is switched on in figure 12a and deactivated
in 12b for comparison – hence, the control elements(
k(2,7), k(2,8), k(3,5), k(3,6) ∈ Ky,opt

)
are set to zero.

The upper panes show the relative cyclic control inputs
from the AFCS superposed by the automatic position
control. The control limits of ±10% with reference to
the trim control are not exceeded. It can be seen in
figure 12a that the load sway is being damped during
the system displacement towards the target position.
By the time of the arrival at the final position the load
pendulum motions are entirely damped and stabilized.
If the load sway is not considered in the feedback con-
trol, the helicopter control will not be able to hold the
position accurately due to a remaining load sway.

In a next step, the ability to hold the load position
under the influence of turbulences is briefly analyzed.
The disturbances affect the helicopter and the con-
tainer; different turbulence intensities are considered

-5
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0
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0

10

-10

0
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-10
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(b) integrated pendulum
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Figure 12: Optimal positioning of the overall system
by Δx = Δy = 20 m in the reference flight case

U0 σw intensity

[ft/s] [kts] [ft/s] [kts]

3 1.78 0.1 0.06 weak
10 5.92 0.6 0.36 normal
18 10.66 3.6 2.13 medium
28 16.58 7.1 4.20 strong

Table 2: Turbulence intensities

and listed in table 2, ranging from weak (< 2 kts) to
strong interferences (> 15 kts) in dependence on [13].

The results of the position hold are illustrated in
figure 13 for four different turbulence intensities over
a period of 100 seconds. The different panes show the
relative deviations of the helicopter position, the pen-
dulum sway and the load position from the respective
initial conditions. Furthermore, the longitudinal load
deviation is plotted against its lateral displacement. In
case of weak turbulences the load position can be held
within a field of 20 cm x 20 cm edge length. This po-
sition accuracy decreases to 40 cm x 40 cm for normal
turbulences down to 4m x 4 m in case of strong turbu-
lences, rather due to the helicopter dynamic than the
pendulum oscillations.
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Figure 13: Position hold accuracy of a 4t-container in
turbulent atmosphere
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6 Conclusion and Outlook

Sling loads influence the helicopter dynamics. The
handling qualities are degraded and the pilot workload
is increased significantly due to the additional task to
control the load. Analyses revealed that the transla-
tional dynamic of the helicopter is severely affected by
the sling load. The need for pilot support is therefore
evident: The paper at hand focusses on the develop-
ment of supplementary AFCS-modes, which generate
control inputs that combine the automatic helicopter
positioning with an integrated load sway control.

On the basis of a comprehensive system simula-
tion featuring trim calculation, linearization and vir-
tual flight testing, position controllers are developed
by means of an automatic optimization algorithm us-
ing linear quadratic optimal output regulation. Anal-
yses show that the sling load can be positioned opti-
mal in terms of the minimization of the time until the
target position is reached and of the load sway. The
LQ-controllers are effective within the operating range
of the AFCS-actuators regarding the limited rate and
saturation.

In a next step, the controller algorithm and the dig-
ital image processing system will be implemented into
the DLR system simulator and the Flying Helicopter
Simulator (FHS) in order to analyze the controller ef-
fectiveness for different helicopter types and system
configurations, and to evaluate pilot acceptance.

Appendix

Rigid-body dynamics

In a first step, the helicopter and load are described
separately as two independent six degree-of-freedom
rigid bodies. The general equations of the nonlinear
translational and rotatory motions are given by (58)
and (59).

The index Λ = (H,L) enunciates the compatibil-
ity of the equations for the helicopter and the load,
respectively. For the validity of the rigid body expres-
sion, following conditions apply:

• the earth is considered as initial frame

• the helicopter and the load are considered as
rigid bodies

• the helicopter and the load are symmetric relat-
ing to the xz-plane, leading to Ixy = Iyz = 0

• external forces are concentrated in resultant
forces acting in the respective center of grav-
ity

The rod is considered as additional body with two
degrees of freedom; its dynamics is determined by

angular-moment-theory in equation (61). Therefore,
the dynamics of the overall system is described by the
states

xH = (u, v, w, p, q, r, Φ,Θ)H

xL = (u, v, w, p, q, r, Φ,Θ)L

xR =
(
ϕ̇, ϑ̇

)
R

The general nonlinear equation of the translational
motion is given by:

(58)
(

dV

dt

)
Λ,b

=
1

mΛ
·
∑

F Λ,b − ωΛ,b × V Λ,b

and of the rotation by:

(59)

(
dω

dt

)
Λ,b

= I−1
Λ,b ·

[∑
MCG

Λ,b

− ωΛ,b ×
(
I−1

Λ,b · ωΛ,b

)]
applying for the helicopter and the load (Λ = (H, L)).

The rod is considered as additional body with two
degrees of freedom:

(60)
(

dω

dt

)
R,b

=
(
ϕ̈, ϑ̈

)T

R

The analytical modeling is based on angular-moment-
theory for systems, whose reference point is neither its
center of gravity nor its fixed-point:

(61)

(
dω

dt

)
R,b

=
(
ILH

R,b

)−1

·
[∑

MLH
R,b

− mR · (rLH→R × aabs
LH,g

) ]
The sum of the resulting moments with respect to the
load hook is derived by

(62)

∑
MLH

R,b = − lR mR g

2
·
⎡
⎣ sin ϕ cos ϑ

cos ϕ sin ϑ
cos ϕ cos ϑ

⎤
⎦

R

+

⎡
⎣ 0

0
lR

⎤
⎦× F sling

R

The absolute acceleration of the helicopter load hook
in the geodetic system is obtained by

(63) aabs
LH,g = TMH

gb · aabs
LH,b

and the absolute acceleration of the load hook in heli-
copter body-axes:

(64)

aabs
LH,b = aabs

H,b + ω̇H,b × rHCG→LH︸ ︷︷ ︸
tangential acc.

+ ωH,b × (ωH,b × rHCG→LH)︸ ︷︷ ︸
centripetal acc.

+ 2 · ωH,b × vrel
LH,b︸ ︷︷ ︸

coriolis acc.

+arel
LH,b
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Figure 14: Overall system helicopter, rod and sling load

The distance between the helicopter center of grav-
ity and the load hook remains constant. Hence, the
relative acceleration arel

LH,b as well as the coriolis accel-
eration, both become zero.

The external forces and moments in the equations
(58), (59), and (61) result from aerodynamics and the
sling forces.

Aerodynamics

The container load features an edge length of 2.4 m.
Its aerodynamic coefficients have been derived in wind
tunnel tests. The polars of the static aerodynamic co-
efficients – which lead to a tangential, and two normal
forces, and a moment – were identified in [4]. The
resulting aerodynamic forces are derived by

(65) F A
L,b = qC ·

⎛
⎝ CX(αxz) V 2

xz + CX(β) V 2
xy

CY (β) V 2
xy + CY (αyz) V 2

yz

CZ(αxz) V 2
xz + CZ(αyz) V 2

yz

⎞
⎠

considering

(66) qC =
ρ

2
· hC · wC

(67) αxz = arctan (w/u)

(68) αyz = arctan (w/v)

(69) V 2
xz = u2 + w2

(70) V 2
xy = u2 + v2

(71) V 2
yz = v2 + w2

(72) β = arcsin
v√

(u2 + v2 + w2)

Due to the symmetry of the container, CY = CZ

applies for the aerodynamic polar.
The polar of the aerodynamic moment coefficient

CM against the angle of attack indicates that for small
angles i = 0◦ = 90◦ and for i ≈ 15◦, the moment be-
comes zero [4]. For angles between 0◦ and 15◦, the
reaction moment is positive and hence stable; for all
other angles, the moment is instable causing the con-
tainer to spin around its yaw axis.

The aerodynamic moments depend on the cross sec-
tion surface and the container length. They are given
with

(73) MA
L,b = qC · lC ·

⎛
⎝ CM (αyz)V 2

yz

CM (αxz)V 2
xz

CM (β) V 2
xy

⎞
⎠

The moments of inertia of the container used in
equation (59) are calculated with

(74) IL,xx =
mL

12
(
h2

C + w2
C

)
(75) IL,yy =

mL

12
(
l2C + h2

C

)
(76) IL,zz =

mL

12
(
l2C + w2

C

)
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Constraining forces

The resultant vector of the sling forces in the respec-
tive body system (Λ = H, R, L) is given by the trans-
formation of the vectors of the geodetic sling forces

(77) F S
Λ,b = TMΛ

bg ·
∑

i

F S,i
Λ,g

derived by the vectorial description of the sling force

(78) F S,i
Λ,g =

∣∣∣F S,i
∣∣∣ ·
⎛
⎝ sinϑ · cos ϕ

cos ϑ · sinϕ
cos ϑ · cos ϕ

⎞
⎠S,i

g

which is determined for each sling due to its elongation
and elongation rate:

(79)
∣∣∣F S,i

∣∣∣ = cS,i ΔlS,i + dS,i l̇S,i

The attitude of each sling is given by (q.v. fig.14):

(80) ϕS,i
g = − arctan

(
yAP − yR

zAP − zR

)S,i

g

(81) ϑS,i
g = − arctan

(
xAP − xR

zAP − zR

)S,i

g

The moment vectors due to the sling forces in the
helicopter and load body system are given by

(82) MS
H,b =

⎡
⎢⎣
⎡
⎣ x

y
z

⎤
⎦LH

H,b

−
⎡
⎣ x

y
z

⎤
⎦HCG

H,b

⎤
⎥⎦× F S

H,b

and

(83) MS,i
L,b =

⎡
⎢⎣
⎡
⎣ x

y
z

⎤
⎦AP,i

L,b

−
⎡
⎣ x

y
z

⎤
⎦LCG

L,b

⎤
⎥⎦× F S,i

L,b

References

[1] Brenner, H.: Flight Testing of Pioneer Bridges
as Helicopter Slung Loads Using a CH-53G. In:
Proceedings of the 33rd European Rotorcraft An-
nual Forum, 2007

[2] Brenner, H.: Simulation Model for Helicopter
Cargo Handling Investigations. In: Proceedings
of the 7th ONERA-DLR Aerospace Symposium,
2006

[3] Heffley, R.K. ; Jewell, W.F.: A Compila-
tion and Analysis of Helicopter Handling Qual-
ities Data - Volume One: Data Compilation /
NASA Contractor Report 3144. 1979. – Tech-
nical Report

[4] Ronen, T.: Dynamics of a Helicopter With a
Sling Load, Department of Aeronautics and As-
tronautics of Stanford University, Diss., August
1985

[5] iMAR-GmbH, Gesellschaft für inertiale Mess-,
Automatisierungs- und Regelsysteme. http://
www.imar-navigation.de

[6] Cicolani, L.S. ; McCoy, A.H. ; Tischler, M.B.
; Tucker, G.E.: Flight Time Identification of
a UH-60A Helicopter and Slung Load, TM-1998-
112231 / NASA Ames Research Center. 1998. –
Technical Report

[7] Hoh, R.H. ; Heffley, R.K. ; D.G.Mitchell:
Development of Handling Qualities Criteria for
Rotorcraft with Externally Slung Loads / NASA,
U.S. Army RDECOM. 2006. – Technical Report

[8] Iordanou, H.N. ; Surgenor, B.W.: Experi-
mental Evaluation of the Robustness of Discrete
Sliding Mode Control versus Linear Quadratic
Control. In: IEEE Transactions on Control Sys-
tems Technology 5 (1997), S. 254–260

[9] Iordanou, H.N.: Continuous Versus Discrete
Sliding Mode Control as Applied to a Pneumatic
Positioning System, Queen’s University, Canada,
Diss., 1998

[10] Corriga, G. ; Guiua, A. ; Usai, G.: An Implicit
Gain-Scheduling Controller for Cranes. In: IEEE
Transactions on Control Systems Technology 6,
No.1 (1998), S. 15–20

[11] Wang, Z. ; Surgenor, B.: Performance Evalu-
ation of the Optimal Control of a Gantry Crane.
In: Proceedings of ASME International Mechani-
cal Engineering Congress, 2003

[12] Wang, Z. ; Surgenor, B.: A Problem with the
LQ Control of Overhead Cranes. In: Journal of
Dynamic Systems, Measurement and Control 128
(2006), S. 436–440

[13] Lusardi, J. A.: Control Equivalent Turbulence
Input Model for the UH-60 Helicopter, University
of California, Diss., 2004

[14] Lunze, J.: Regelungstechnik 2, Mehrgrößensys-
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