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Abstract

Within the frame of the long term French-German CHANCE program, the Chimera method has been devel-

oped and enhanced particularly for helicopter applications. This paper intends to give a review of the different

improvements that have been carried out along those six years, insisting on the gain that they individually

brought, enabling finally complete helicopter flow simulations.

1 Introduction

Nowadays, Computational Fluid Dynamics has come
to a mature point. Numerical Simulations around com-
plex geometries with moving parts have become not
only possible, but also efficient. Codes dealing with
this kind of applications make often use of the Chimera
method [3]. Major codes based on this technique are
NASA’s Overflow [13], Beggar [16] and JAXA’s code
[1]. In the frame of the CHANCE project, the Chimera
method has been developed both on the German side
in the Flower solver and on the French side in the elsA
solver.

There was three axis in our work. The first
one was adapting Chimera to complex geometries, the
second one was efficiency and the last one was using
Chimera for mesh adaptation.

In the first part, our idea was to improve the
applicability domain of Chimera by alleviating the
overlap constraint and enabling a large possibility
of mesh components associations [9]. In the second
part, mainly two methods have been studied: multi-
grid/Chimera [11] and parallel Chimera [10]. In the
last axis of our work, two adaptation techniques based
on Chimera have been developed. The first one, based
on the work of Meakin [14] consists in automatic gen-
eration and adaptation of cartesian background grids.
It is quite general and can be applied to a lot of ap-
plications [4]. The second one is based on the use of a
cylindrical grid as a background grid and is dedicated

to rotors in hover [5].

2 Chimera for complex config-

urations. The mesh compo-

nents approach.

2.1 Basic Chimera method

The purpose of Chimera is to solve a set of time march-
ing equations on a set of overset grids. In our case, it
is used to solve the compressible Euler or Reynolds
average Navier-Stokes equations on a set of overset
structured grids. The equations are solved on each
grid in the finite-volume framework, using the Jameson
scheme [8] and the implicit residual smoothing implicit
phase [12] or the LDU implicit phase [21].

Basically, Chimera technique consists in two
kind of intergrid transfers: in overlap boundaries and
around blanking regions (see Fig. 1). Overlap bound-
aries concern the outer boundary of overset grids (in
green on the figure), solution is interpolated on the
two layers of tagged points. So, the classical numerical
scheme can be applied on the other points of the do-
main. The blanking region is made of points that lie
inside the solid body. Interpolated points are fringed
around the holes (in red on the figure). Blanked points
are not computed and are uncoupled in the implicit
phase.
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Figure 1: Chimera intergrid communications.

For the intergrid communications to work prop-
erly, a sufficient overlap must exists between the grids,
such that interpolated points can be interpolated from
a valid cell (see Fig. 2). This necessary minimum over-
lap is really a problem since it results in constraints in
the mesh generation. It can force the user to redo
its mesh after having tested Chimera connectivity and
may be a jigsaw especially for moving bodies applica-
tions.
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Figure 2: Correct overlap in one space-dimension for
two layers of interpolation cells. Interpolated points
are tagged with a square.
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Figure 3: Correct overlap in one space-dimension for
one layer of interpolation cell.

2.2 One layer of interpolated cells

To reduce the occurrence of minimum overlap prob-
lems, we have enable Chimera transfers to be per-
formed only on one layer of interpolated points. This
allows a really shorter overlap (see Fig. 3). Of course,
the numerical scheme is modified in the neighboring
cell. An interpolated point is computed in the cell
interface center and used in the modified numerical
scheme. The overall scheme is second order accurate.

2.3 Implicit interpolation

To enable even smaller overlaps, implicit interpolation
has been developed. For instance on Fig. 4, one in-
terpolated point has an interpolation containing itself
an interpolated point. This problem can nevertheless
be solved by writing interpolation relationships at time
n+1. Some values are already known by the numerical
schemes, some are unknown. By writing and inverting
this system, one can get the interpolated value at time
n+1.

At this point, Chimera can be seen as an easy
way of adding new body components to a CFD prob-
lem, when they are not in contact with or intersecting
other bodies. For instance, blades can be added to a
fuselage mesh or a missile can be added under a wing
mesh. Of course, when bodies are in contact or inter-
secting, no minimum overlap can be found. Techniques
to solve this kind of problems will be presented in next
sections.

Together with Onera’s Applied Aerodynamics team,
those techniques has been used to compute helicopter
rotor-fuselage applications for Euler and viscous flows
[17]. In particular, the introduction of one layer of
interpolation cells makes the computation of realistic
rotors near the fuselage possible (see Fig. 5). The pre-
sented configuration is a simplified Dauphin fuselage
with a 7A model rotor (Mtip = 0.646, µ = 0.4) and is
computed by solving the Euler equations..
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Figure 4: Correct overlap in one space-dimension for
one layer of interpolation cell and implicit interpola-
tion.

Figure 5: One layer of interpolation cells enables rotor
to be placed nearer of fuselage.

Figure 6: Strut added under a fuselage using multiply
defined walls technique.

2.4 Multiply defined walls

To be a used as a real design tool, Chimera must fur-
nish a way of adding bodies or part of bodies in con-
tact with another one. The purpose of it being, for
example, to design a simple fuselage mesh and then to
add stabilizers, landing gears,... first to simplify mesh
generation and enable mesh reusability and then to be
able to measure the impact of each component on the
overall flow without remeshing effort.

One way of adding a body in contact with an-
other one using Chimera is to have the mesh of one
body conforming to the other body surface. For in-
stance, on Fig. 6, a strut has been added to an isolated
fuselage mesh. The mesh of the strut is conforming to
the fuselage mesh on the upper surface. This way, no
blanking is necessary in the strut mesh, making it valid
for interpolation for all blanked points in the fuselage
mesh. Nevertheless, due to the discretization discrep-
ancies, a correction of interpolation coefficients must
be performed for the interpolated points near the sur-
face [20] in particular to compute an accurate friction
coefficient.

This technique has been used to compute fuse-
lage and strut, fuselage and stabilizers in [18].

2.5 Gridless solver

The previous technique lacks of generality in the sense
that one body mesh must be adapted to the other
body. To alleviate that and enable absolute general
mesh components association, a specific technique has
been developed. It is based on the first observation
that, in the case of general intersection of bodies with
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Figure 7: Arbitrary intersecting meshes around profile
and flap.
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Figure 8: Flow around two intersecting bodies using
the Gridless technique. Iso-density lines.

Chimera, a small region of the computational domain
near the intersection can not be nor discretised nor
interpolated. In this region, we propose to use a grid-
less solver [2] [7], written on a cloud of points, that
gathers local valid points of different grids and created
points on the wall. This technique is just at its premiss
and gives only positive results in 2D and for the Euler
equations [15]. Nevertheless, we are still working on
that.

For instance, the inviscid flow simulated around
a NACA0012 profile and an intersecting flap with 6
degrees of incidence at free-stream Mach number of
0.4 is presented here. The mesh simply consists in
a monoblock mesh around the profile overset with a
monoblock mesh around the flap (Fig. 7). Iso-density
lines around the complete configuration are shown on
Fig. 8.

Figure 9: A surface (in bold black) defined by two
grids.

2.6 Doubly defined boundary conditions

Another way to define a composite body surface is to
make holes in a given surface. Fig. 9 shows a sur-
face defined this way: the first surface is digged by
an overset grid, the resulting composite surface is dis-
played in bold black. To enable easily this kind of
association, a user facility has been added to standard
Chimera boundary conditions: a boundary condition
can be defined by a classical boundary condition (wall,
non reflection, ...) and also by an overlap boundary
condition. If a point of a boundary can be interpo-
lated, it will be. Otherwise, the classical boundary
condition is used. Using this technique in association
with one layer interpolated points and implicit inter-
polation enables the easy definition of cavities, slots for
cooling jets, etc...

For instance, the viscous flow simulated around
a cavity in a NACA0012 profile is presented now. The
mesh is made of three grids. One for the close profile,
a cartesian grid as a background grid and a cartesian
grid for the cavity (see Fig. 10). The free-stream mach
number is 0.73 and the Reynolds number is 6.5 106.
The solution is shown on Fig. 11.

2.7 Deforming bodies

ALE method has been independently developed in the
CHANCE program [6]. Then, Chimera method can be
used together with the ALE formulation, enabling for
example the computation of elastic blades. It has been
used for instance in [19] to compute an elastic rotor
above a wind tunnel model support.
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Figure 10: Mesh for a cavity defined by a doubly de-
fined boundary condition.

Figure 11: Iso-density lines for a cavity defined by a
doubly defined boundary condition.

3 Efficiency of Chimera

3.1 Chimera and multigrid

Multigrid has been made compatible with Chimera.
The main problem was the overlap between coarse grids
that is nearly everywhere insufficient. Boundary con-
ditions for coarse grids based on extrapolation or inter-
polation using the fine grid have been developed and
were demonstrated to perform correctly [11].

3.2 Parallel Chimera

The interpolation cell search and the Chimera transfers
work in parallel using distributed memory and MPI
communications. Care has been taken to minimize the
amount of data in the transfers. For instance, interpo-
lation coefficients are stored in the interpolation block,
such that only the final interpolated field must be ex-
changed. Reported speed-up were about 3 on four
processors and 6 on height processors for steady ap-
plications and 2.5 for four processors and 3.5 for eight
processors for unsteady applications. A set of results
is presented in [10].

4 Automatic mesh generation and

adaptation based on Chimera

4.1 Cartesian mesh generation and adap-

tation based on Chimera

In this method, the bodies are described by short grids
around the body surface. The previous techniques can
be used to define those body grids. From this body
grids, a set of automatically generated cartesian grids
is produced (Fig. 12). Their step is first computed
from a proximity rule to the body grids and then also
based on a local refinement indicator. The connectiv-
ity between cartesian grids can be based on Chimera
or on patch grid joins. It has to be noticed that a cor-
rect overlap between body grids and cartesian grids is
automatically ensured [4].

This method is the ideal complement of the pre-
vious mesh component association techniques, enabling
an easy definition of the remaining part of the compu-
tational domain and an accurate capture of the flow
details.

The key points here is the efficiency of cartesian
grids: solver on cartesian grid can be simplified and
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Figure 12: An automatically generated cartesian mesh
around a fuselage.
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Figure 13: An automatically generated cartesian mesh
around a RAE2822 profile. Iso-density lines.

metrics may not be stored. To our experience, 10 %
CPU time and 20 % memory can be saved compared
to the standard structured curvilinear solver. Besides,
high accurate numerical schemes can be easily imple-
mented on those grids.

The turbulent flow around a RAE2822 profile at
M∞ = 0.76 and Re = 6.5 106 is presented on Fig. 13
showing a clear adaptation in the shock wave region
and in the wake. This method has been also used to
compute rotors in hover, rotors in forward flight and
isolated fuselages.

Figure 14: An automatically generated cylindrical grid
and the blade grid.

Figure 15: Iso-vorticity surface obtained after mesh
adaptation.

4.2 Cylindrical mesh adaptation for ro-

tors in hover

For the purpose of computing rotors in hover, a specific
technique has been developed. For this kind of appli-
cation, a cylindrical topology seems to be well suited
since, besides its simplicity, it grossly follows the tip
vortex path. In our technique [5], the user must pro-
vide a short grid around the blade, then a cylindrical
grid is automatically generated that is refined in the
wake. Both grids are overset and Chimera transfers
are used between the two grids. The numerical scheme
has also been improved and is now able to compute
accurately irregular cylindrical meshes.

The mesh obtained for 7A rotor in hover after 6
remeshing is shown on Fig. 14. The tip vortex can be
followed for about 380 degrees of age (Fig. 15).
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4.3 Conclusion

Nowadays, Chimera seems compulsory for dealing with
helicopter applications where moving bodies are con-
cerned. In this project, we have focussed on improv-
ing its applicability and efficiency. For a lot of heli-
copter applications, the method has proven its useful-
ness. Of course, some of the techniques presented here
are always under investigation and need further devel-
opments to be used in industrial environment.
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