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1. Summary 

PRACTICAL COMPUTATION OF UNSTEADY LIFT 

by 
T.S. Beddoes 

Westland Helicopters Limited 

The requirements for the computation of 2D unsteady lift within the 
context of rotor airloads and performance calculation are shown to be 
fulfilled by an indicial formulation. It is shown how the indicial 
formulation may be expanded to provide a more general form of lift 
transfer function which may be used to evaluate explicitly the response 
to idealised forcing such as the frequency response and ramp motion. 
Results from the application of recent developments in the computation 
of unsteady transonic flow are used to define the indicial lift 
function which is generalised in an appropriate form for rotor 
applications and evaluated for idealised forcing. Further evaluation 
and refinement is provided from comparisons with wind tunnel test data. 

Numerical procedures are devised and evaluated in the context of the 
sampling requirement for rotor calculation. The final form evolved 
minimises the sensitivity to sampling with the objective cf economising 
on computational demands. Finally, application of the methods evolved 
is illustrated by comparison with the results of a compressible, time 
dependent Navier-Stokes calculation for an airfoil subject to an abrupt 
ramp motion. This comparison highlights the importance of the 
impulsive lift terms and the development of separated flow, the 
calculation of which may be superimposed on the formulation presented 
here. 

2. Introduction 

The sequence used in most routine rotor airload calculations comprises 
computation of the local load at a series of radial stations on the 
blade for a given azimuth followed by radial integration and 
progressive stepping through the azimuth range. During this procedure 
the conditions at any given radial station change rapidly through a 
large angle of attack and Mach number range. Even when separation is 
not encountered in these cycles there are significant time dependent 
effects on the airfoil loading. Due to the combined influence of 
cyclic pitch, blade elastic response and wake structure the local angle 
of attack may vary in a quite arbitrary manner and any method used to 
obtain the loading response must be formulated accordingly. The 
solution must be compatible with the sequential sampled form of 
computation and, in view of the large number of calculations to be 
repeated, simplicity of computation is at a premium. The indicial 
formulation is appropriate to meet these requirements and has been in 
use for some time. In this paper the unsteady lift calculation is 
almost entirely concerned with attached (potential) flow but, at the 
same time, it is formulated to provide a structure for the evaluation 
of critical conditions for the onset of separated flow and the 
subsequent required modifications to implement the consequences· (see 
reference 10). 

2.3 - 1 



In the period since the indicial formulation for unsteady lift was 
introduced into the rotor calculation (1975) there have been develop
ments in both theory and computational procedures for calculating 
unsteady lift at transonic speeds, for example, the application of the 
LTRAN 2 code presented in reference 3. In spite of the absence of 
impulsive loading, which is a consequence of the low frequency assump
tions of LTRAN, the calculated linear and non-linear indicial response 
and time stepping solutions for plunging motion provide a valuable 
basis for refining and substantiating the approximations used in the 
rotor formulation. The approximations which comprise the specification 
of the indicial response in the form of exponential functions have 
formed the basis for the derivation of the lift transfer function from 
which explicit solutions for the response to idealised forcing may be 
obtained. These are compared to both the more exact solutions now 
available and to wind tunnel test results at transonic speeds and 
enable the approximations to be modified and evaluated. 

Another aspect of rotor unsteady lift computation comprises the 
selection of appropriate numerical procedures to implement the indicial 
response. Current methods are evaluated and shown to degrade as the 
sampling interval is increased. Using the lift transfer function to 
derive an alternative form of response equation, new numerical 
algorithms have been obtained which are less sensitive and finally, a 
pseudo half-step lead is introduced which reduces the lag inherent in 
sampled solutions. 

Solutions of the Navier-Stokes equations are becoming feasible at great 
computational expense. They are held out to be the salvation of the 
aerodynamicist but for the forseeable future will still be subject to 
computational limitations and confined to idealised and limited 
applications. They are, however, of great potential value in assessing 
the limitations and accuracy of less sophisticated theory. A 
particular application, presented in reference 12, has been used to 
compare with the indicial formulation developed in this report and 
surprisingly close agreement has been demonstrated. 

3. Derivation of the indicial lift functions 

Practical considerations for the implementing of indicial lift 
functions suggest that they should be expressed in terms of exponential 
functions of time. This enables the straightforward derivation of the 
Laplace transform of the response and hence the lift transfer function. 
It also facilitates a simple form of numerical solution for use with 
arbitrary forcing using superposition of a sequence of step inputs. 
Fortunately, the results of many different theoretical approaches to 
the calculation of indicial lift response may be approximated to an 
acceptable degree of accuracy in this manner. Most of the theories 
that may be used for guidance, however, are subject to limitations in 
their formulation and consequently it is convenient to make a 
distinction between the circulatory and impulsive components of the 
indicial lift response. The scaling normally adopted to generalise 
time produces the parameter s = t.2V/c which corresponds to the 
relative distance travelled by the airfoil in terms of semi-chords. 
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From the results presented in reference 1 for indicial response at 
varying Mach number it can be deduced that furzther simplification may 
be obtained by using the parameter s 1 = s( 1-M ) • Thus the preferred 
general form for the indicial lift response to pitching motion is given 
by: 

where ·cl IM\ = lift curve slope at the appropriate Mach number 
0:: 

0: = step change in angle of attack (in radians) measured 
at the 3/4 chord location 

g step change in non-dimensional pitch rate about the 3/4 
chord = 9 c/V 

= circulatory component of the indicial lift response 

= 1 A 
-b,s' A -b,s' 

- 1 e - 2e 

01151 g impulsive component of the indicial lift response 

0 I s'l q 

- s'/ r; 
4 e = 
M 

= impulsive component of the indicial lift response to 
pitch rate about 3/4c 

= -1 e 
- s

1
/ 1q' 

M 
From the above formulation it is apparent that· the circulatory 
component resulting from pitch rate is incorporated into the angle of 
attack term via definition of angle of attack at the 3/4 chord 
location. There are many sources from which guidance may be obtained 
in defining the most appropriate coefficients for the circulatory lift 
which in general is the most significant component of the total 
response. For a compressible fluid the total initial response is 
derived in reference 2 from acoustic considerations as an impulsive 
force which decays rapidly. The initial variation is given by 

C =.'!._0: j1 -_L 11-MIJ 
L M L 2M 

Thus 
or d CL _ -4 ci: r. 1 l 

ds' M l2M!1+ Ml 

If we consider the total lift 
exponentially decaying impulsive 
circulatory lift (Ccc) then 

response to 
lift < C,_

1 
) 

be composed of an 
plus an increasing 

and from the above formulation 

and 
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Thus equating slopes at t = o (s 1 = o). 

-•oc[ 1 ]= M 2MI1+M) 

r; = I. M 11 +MI 
2 + CL M'I1+MIIA,b,+ A,b,l 

0: 

' ' where T1 = T1 11-M I. 2V/c 

Thus, depending on the coefficients chosen to represent the circulatory 
component of lift, the time constant for impulsive lift may be adjusted 
to maintain the correct initial variation of lift. For pitching motion 
about the 3/4 chord, reference 2 presents the derivation of the 
indicial response ( Cc~). The asympotic value is zero, the decay from 
the initial value of -1/M is roughly exponential and approximately the 
same as for the impulsive loading. The problem now remains of how to 
select the most appropriate coefficients to represent the circulatory 
response through the Mach number range up to high subsonic speeds. 

A systematic series of calculations have been performed at NASA Ames, 
principally by W.F. Ballhaus and colleagues, using the LTRAN2 analysis 
which comprises a solution to the low frequency unsteady transonic 
small disturbance equation. A consequence of the low frequency 
constraint is elimination of the impulsive loading which, fortuitously, 
leaves the loading required to define the component that is labelled 
here as "circulatory". Thus the results of the LTRAN2 program as· 
presented in reference 3, may be used both as a theoretical source for 
the indicial response function and as a means of evaluating its appli
cation to more general motion. 
Figure 1a has been copied as 
closely as possible from 
reference 3 and presents the 
calculated indicial response for 
the NACA 64A006 airfoil using the 
LTRAN2 program. For comparison, 
the LTRAN2 solution with the non 
linearities suppressed is 
included together with the 
1 exact 1 solution for the linear 
theory from reference 2. The 
latter solution is not restricted 
by the low frequency assumption 
and consequently the time history 
is initiated with the non zero 
(impulsive) force and serves to 
illustrate the significance of 
this term. 

The solutions have been 
normalised by the asymptotic 
values of lift and it is apparent 
that not only the initial but 
also the asymptotic behaviour 
varies between the solutions. 
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From the two low frequency (LTRAN2) solutions approximations 
in the form assumed for the circulatory response have been obtained 
thus:-

a) ¢cls'l = 1 - 0·3 -0·11s' e - 0·7 e -0·8 5 s' for the linear solution 

b) i'lc Is' I = 1 - 0· 3 
- 0·1 0 s 

0.7 .-0·53 s' for the non linear solution e -

The impulsive force time constants (T
1

') associated with the above 
expressions may then be evaluated. 

An independent solution for the non linear indicial response has been 
obtained from a finite difference solution of the adiabatic Euler 
equations. This solution, presented in reference 4, is not subject to 
low frequency assumptions and may be compared with the expression 
derived from the LTRAN2 non linear solution with the approgriate 
impulsive term added. The Euler solution was performed for a 2 step 
change in angle for the NACA 64 A 410 airfoil at M = 0. 72 and the 
result is shown in figure 1(b) along with the derived LTRAN2 result. 
The asymptotic value of lift for the Euler solution was not available 
so the LTRAN2 derived result lor the NACA 64A006 has been scaled to a 
lift curve slope of 2 n/ .["'1:M ; the chang2 of Mach number is accommo
dated by the scaling of s where s' = s(1-M ). With the impulsive term 
included the correspondence between the two solutions is quite satis
factory and provides support for the use of the form of generalisation 
proposed; 

4. The Lift Transfer Function 

The calculation of unsteady lift may be further generalised by the 
concept and use of a lift transfer function which expresses in 
operational form the relationship between the lift response and the 
forcing. Conventionally, the symbol s is used to represent the Laplace 
operation; to avoid confusion with the non-dimension11l time scale s : 
t. 2V/c it will be replaced by p Considering first the circulatory 
lift, the Laplace transform of the indicial response function yields: 

<;_ I p I = CL [1 - __&],_ - _fuh_ J 
C a: p 1 .• T, p 1 + T,p 

and }he transform of the forcing (a step change in angle) is given by 
oclp)= ;p • Thus the circulatory lift transfer function 

C~l pI = <;_ [ 1 - __&1_e - ...&I...e.J = 
a: 1 + T, p 1 -4- T:t p 

0: p 

+....A.._] 
1+ Tl.p 

When the initial value of the indicial response is zero then I 1- A,- A,l = 0 
and the circulatory lift transfer function simplifies to 

CLclpl = 

a: I pi 

It may be noted that alternative forms of the circulatory lift transfer 
function may be derived from the indicial response time history but in 
application the results are much the same. 
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For the impulsive lift, the Laplace 
is CL[Ip)=!:_ ....1.._ and 0:.(?): 1/p 

M I1+T
1
pl 

transform of the indicial response 
as before. Thus the impulsive 

lift transfer function is given by CL[ lp) = 
iXlPl 

Similarly the transfer function for pitch rate q = 6 c/V 
3/4 chord may be derived as CLciPI = -_l. __li__Q_ 

qlpl M 11 +T,pl 

a bout the 

Thus, for any forcing for which an explicit Laplace transform may be 
derived the corresponding lift response may be evaluated in an explicit 
form. 

The ultimate objective of this line of development is to provide an 
adequate numerical procedure for application to forcing of an entirely 
arbitrary nature. To substantiate such a procedure requires a check 
against experiment and/or more rigorous theory. Because it is 
practical to produce experimental or theoretical results only for 
idealised motion then it is useful to have a means of evaluating the 
structure of the model independent of the numerical procedures. 
Additionaly, since it is physically impossible to produce experimental 
verification of indicial lift response, then such motion that may be 
utilised experimentally or theoretically may be evaluated via the 
transfer function and any discrepancies related back to the indicial 
response function. For these reasons it is useful to develop explicit 
solutions for idealised motion from the lift transfer function such as 
the response to sinusoidal motion about an arbitrary pitch axis. 

5. Frequency Response to Pitching Oscillations 

For sustained pitching oscillation 6 = sin wt the Laplace transform of 
the angle of attack defined at the 3/4 chord is: 

a:lpl = .1.. ~, where B = x.c/2V and X. = distance of the 3/4 chord 
w 1 + p/w 

aft of the pitch axis, in semi chords. 

Thus _fu__] 
1 + T,p 

state response is given by 

where 

V2 

= A, [1+(w:] sinlw.t+0,) + 
1 + T,w 

-1 -1 
~n = tan IBw) - tan I Tnw) 

The impulsive lift contribution is represented by 

for which the steady 

G._ I pI = U..P 11 + B P I 
r M w 11 + T

1
pll1+ p'lw'l for which the steady state response is 

'12 

CL[It I= l,___lw [1+s';:v',1 coslwt + 0,1 
M 1 + Ttw 

where 
_, _, 

0
1 

= tan I Bwl - tan I T,wl 

For oscillatory pitching q I pi = _L 
wV 
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Thus 
c;_ I p I , - s..__:r. 

I Mu!J 11• r,plll. p'lw'l and the steady state 

c;_ It), c w2 T, 1 sinlwt- ~I where~\, twi'IT,wl 
~ MV I1•T.'w'ly' 

' To evaluate the above contributions to the frequency response for 
pitching oscillation about the 1/4 chord we may substitute i = 1, thus 

B = c/2V , k = wc/2V and express the time constants in terms of the 
primed values 

thus 

and B w = k. 
summing the 
components. 

The resultant frequency response is then obtained by 
various contributions to the in phase and quadrature 

6. Frequency response to plunge oscillation 

The frequency response to plunge oscillation may be obtained in a 
similar manner or by simplifying the pitch frequency response by virtue 
of the different boundary conditions at the 3/4 chord and absence of 
the pitch rate term; 

i.e. eel pi= j_ 1 thus B,Q and Ct_,~tl =0 
w 11 + p'lw'l 

1. Response to an idealised ramp 

Just as a step input is physically unrealisable but nevertheless a 
usefu~ concept, so too is an iqeal ramp which implies that for t < o 
then e = o and far t > o then El has some constant finite value. For 
• 2 
e ( t) = Ke then 9(p) = Ke I p 
and for pitch about an axis x forward of the 3/4 c then K,= 1<,11 + x c/2VI 

Thus 
C1_ I pI = <;_ ~ [..1...- A, T, - A, T, J 

C a: lP' pll•T,p) pi1+T1 p) 

[ 
-tiT. tl T. J Clcltl = S, Ka: t - A, T,l1- e 'I- A, T,l1- e 1

) 

which results in 

now 'h:· t = a: I 1 1 thus the above equation may be re-expressed in the form 

~It) = \,;(celt)- Ace, It)] = \,·a:,ltl where '1.oc Acc,ltl may 
be viewed as a lift deficiency; i.e. 

r. -t/T · -tiT, ] A cr, It I , Kcc LA, T, 11- e 'I + A, T1 11 - e I 

may be used as the basis for a numerical form of solution. 
In this form the expression 

Also CL!Ip) = ~lb; T CL It I = _!,_ K., T
1 

11 - e- t1 T, ) 
p 11 • T, p J { M 

Due to pitch rate about the 3/4 chord. 'l = Elc/V: K-t 

CL lpl =-~ 
-\IT. 

T <;_
1
1tl = -~, Ttl1-e 'I 

' M pi1•T,pl 
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8. Response to a real ramp 

It is possible to attempt ramp motion in experiment by means of an 
actuator but obviously the initial value of G must be zero. In 
practice the resultant motion may be represented operationally as 

9 I pi ~ 'i'K•7-:--c::--, 
p'I1•T,pl 

where T represents the time constant 
for t~e mechanical hydraulic system 

9. Application of explicit solutions 

The above collection of explicit lift response functions may be used 
for comparison with both theoretical and experimental results, 
literally or as an aid for interpreting variation in possibly inconsis
tent results. As an example and as an evalution of the approach, the 
LTRAN2 results for plunge motion may be examined. In addition to 
generating the indicia! response function for M = o. 8, reference 3 
presents the results of a timewise integration solution for the lift 
response to plunging motion using the linear form of the program. As 
noted previously, the indicial response calculation may be utilised to 
provide the coefficients for the correspondin~ derived circulatory lift 
transfer function i.e. from ~Is')= 1 _ 0.3 .-0·11s' _ 0.7 .-0·855 
As the solution incorporates thee 
low frequency assumption the 
impulsive term should be excluded 
from the comparison. The time
wise integration solution is 
presented in reference 3 in the 
form of a frequency response; 
i.e. amplitude and phase versus 
reduced frequency, and is 
compared in figure 2 with the 
explicit solution for frequency 
response derived from the 
transfer function. Bearing in 
mind the limitation involved in 
approximating the indicial 
response, the frequency response 
derived from the circulatory lift 
transfer function is in quite 
good agreement with the results 
of the timewise integration. 
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timewise 
evaluate 

indicial 
different 

In reference 3 the 
integration is used to 
application of the 
solution but in a 
manner; i.e. by using 
position integral. 

a super-

The consequences that variation 
in the · indicial response impose 
on the frequency response may be 
evaluated via the explicit rela
tion. Based on the above example 
two aspects are illustrated in 
figure 3 where variation in the 
initial and asymptotic behaviour 
is quantified by modifying the 
time constants b2 and b..l from the 
baseline values of 0. a~· and 0. 11 
respectively. Modifying b2 from 
0.85 to 0,65 shows the sensiti
vity of phase at relatively high 
(at M = 0.8) reduced frequency to 
small changes in the initial 
response. Conversely, modifying 
b1 from 0.11 to 0.08 (asymptotic 
behaviour) primarily affects the 
amplitude response at low 
frequency. It will be shown that 
the experimental variations in 
frequency response may be related 
back in a similar manner to imply 
required modifications in the 
assumed indicial response and 
hence the lift transfer function. 

\.Q ,--=::::::-~:::o.-==.-:oc. '"I 
~·:;...--· 

OL..---------' 
0 20 

5 
LO 60 

\al INOJCIAL FUNCTION IM:0·81 

1·0 

(bl PLUNGE FREQUENCY RESPONSE 
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Experimental data are available from many sources and for various 
dynamic modes of motion which comprise pitch oscillation, plunge 
oscillation and ramp motion. Ramp results for a range of Mach numbers 
are available from one source only; the plunge oscillation results in 
the available literature tend to support theory but are limited in 
extent and exhibit more scatter than desirable particularly with regard 
to phase angle, Pitch oscillation tests are more numerous and on that 
account provide the best likelihood for a meaningful evaluation of 
theory. To put the results for different airfoils and from different 
wind tunnels on a common basis the amplitude response for normal force 
has been expressed as an amplitude ratio by normalising with respect to 

2. n/ ~~ in accordance with linear theory. For pitch oscillation 
about the 1/4 chord, figure 4 presents test results through a range of 
Mach number at a reduced frequency k =v:>c/2.V of 0.2. 
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From the nonlinear LTRAN2 results the indicial response function 
--ls -·535 . .4151 = 1- 0-3 e - 0-7 e 

or circulatory response. 

.. , k :Q 2 
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was obtained for the low frequency 
The corresponding deduced 
oscillatory response is 
included in figure 4 and 
exhibits a phase lag signifi
cantly in excess of the test 
values •. Addition of the full 
impulsive oomponent results in 
improved phase matching at low 
Mach number but not at high 
subsonic Mach number. 
Attenuating the impulsive 
load;fng term by the factor 
(1-M ) produces a much more 
consistent trend in the 
variation of phase angle by 
comparison with experiment. 
Amplitude ratio is much less 
sensitive to the impulsive 

AMPLITUDE 0 NACA 0011 MOD. 8 

term at this reduced 
frequency. Although the 
impulsive term will become 
more important at higher 

06 
RATIO 

0-7 

06 

,_, 

• " 
0 

PHASE 
·tO • CEG. 

-20 

-JO 

0 NACA 0006 
0 NACA 0012 

o---0 -:- 0 

" 
THEORY 

CIRCULATORY ONLY 
CIRCULATORY ~u~PULSIVE 
Cl RCULA TORY • I MPULSIV€ ~ /1- M21 
MAQNUS !REF.9J 

----

" " a' 

0 

7 
6 

• 

• 0 
reduced frequencies, at 
M = 0. 8 a reduced frequency of 
0.2 is already high for rotary 
wing applications and at a 
lower Mach number the modifi
cation becomes progressively 
less significant. 
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The significance of the trends illustrated 
considered sufficient to justify application of 
impulsive loading derived from piston theory. 

by this example are 
the attenuation to the 

Also shown in the comparison of figure 4 is the theoretical result 
obtained by t1agnus (reference 9) for the NACA 64A010 airfoil from a 
finite difference solution of the unsteady Euler equations. The quasi 
steady value of lift curve slope obtained in ref. 9 is considerably in 
excess of the linearised value and has been used to normalise the 
amplitude of CN at k = 0.2. 
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Some possible improvement in 
the coefficients of the 
circulatory indicial lift 
response function is suggested 
by the experimental results. 
The highest test Mach number 
available for attached flow 
and a range of frequency is 
M = o.a·from reference 5 (NACA 
64A010 airfoil). Some results 
are shown in figure 5 together 
with data for M = 0. 5. A mod
ification of the coefficient 
b1 , representing the 
asymptotic behaviour, from 
0.10 to 0.14 produces a small 
but significant improvement 
all round; the modified 
impulsive response was 
included in the calculations. 
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A wind tunnel rig capable of 
producing ramp motion has been 
constructed at the Aircraft 
Research Association. 
Increase of pitch angle at 
varying rate is produced by an 
electro-hydraulic actuator; 
the buildup in rate occupies a 
short period and can be 
modelled in reproducing the 
motion time history. The 
results of some test on the 
NACA 0012 are shown in figure 
6 for M = 0.61, 0. 71 a,nd 0. 76; 
the nominal rates are ec/2. V = 
.0068, .0059 and .0054 
respectively. For comparison, 
the quasi static lift curve 
slope and the calculated 
response are shown using 
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and the modified impulsive 
term. Apparent in the test 
results but not included in 
these calculations are the 
effects of flow separation. 
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One of the objectives behind the work presented in this paper has been 
to provide a basis for the assessment of the effects of flow 
separation. To accomplish this requires the ability to 
model with some degree of certainty the characteristics of dynamic 
behaviour appropriate to the attached flow condition and to project 
them into the range where flow separation is occuring experimentally. 
This aspect is pursued in reference 10. 
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Application of the indicial formulation to arbitrary motion in the 
manner outlined above requires not only that the mathematical aspects 
of superposition are valid but also that the physical aspects of the 
implied linearity can be justified. The latter problem has been 
addressed in a series of experiments conducted at NASA by Davis and 
Malcolm (reference 11) which substantiate linearity even for super
critical flow as long as the flow remains attached. 

10. Numerical Methods 

The indicial formulation for unsteady lift response and the associated 
nwnerioal methods have been chosen to meet the requirements of the 
helicopter rotor loads and structural response calculation. No 
constraint is placed on the formulation of the structural response or 
the variation of inflow and non repeatable values may be accomodated, 
i.e. successive revolutions of the rotor may exhibit different response 
and encounter a modified wake configuration. For a given step change 
in angle of attack (a:: ) the indicial response for circulatory lift in 
the time domain is given by 

CLc Ill "Clia:.J!Icltl thus the product 
viewed as an equivalent angle of attack 

may be 
i.e. 

a:,ltl" oc (1 - A,e-t!T,- A,e-tiT,) 

Thus a:,ltl is composed of the instantaneous value of oc minus two 
exponentially decaying terms. Initially, the sum of the decrements 
equals cc • In any subsequent period they decay by a constant amount. 
This is also true when further step inputs are introduced, thus a 
numerical algorithm may be constructed to solve for a sampled system, 
i.e. 

where 

where T," [b,I1-M
2
)2V/cl

1
, T," [b,I1-M

2
) 2V/cl

1 

It is significant that in the above formulation all the prior history 
of the circulatory lift decrement is contained within the two terms Xn 
and Yn. In the particular case where the indicial lift function may be 
expressed in terms of exponential functions, Duhamel's integral for the 
superposition of successive increments in indicial lift reduces to this 
simple form. 

For a single step input, the impulsive lift 

For the sampled system of a series of step inputs 

where l "l -ldiT,+I I 
n 'r\ ... 1 e a:,... - CI::n-1 

Similarly, for the pitch rate term 

where 
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To evaluate the implementation of the abovs algorithms, together with 
subsequent· developments, the numerical solutions for sampled forcing 
have been compared to exact (continuous) solutions for oscillatory 
motion through a range of frequencies and to ramp motion of increasing 
rate. In order to illustrate the sensitivity to sampling rate in a 
simplified though representative form an idealised forcing in the form 
of a doublet may be used; i.e. 

2 
'a:itl=23·34 [t'it'-11] sinl2nt'l wheret'= tiTnand 

TD is a characteristic time used to 
control the timescale; for 

t' >1, a:lt'l = 0 The resulting time 
history is illustrated in figure 7 
and demonstrates features of both 
ramp and oscillatory forcing. For 
the current application the doublet 
is scaled to occupy a time period 
equivalent to 15 semi chord lengths 
of travel (s). Together with the 
amplitude of radian used the 

1·0 

0·5 
a: 

RAO. 

0 

-O·S 

a:. ~ 2l·l4 t t' ( \- \I lz ')\'H 1 .,.., t' \ 

t'~_L, T0.f.Y:15 

r, ' 
O<t'<l 

impulsive forces produced are 
similar in magnitude to the circula
tory values at the Mach number of 
0.3. The indicial function for 

-1·0 +--------'.-'-------
0 5 10 15 ?0 

circulatory lift used in the 
examples shown is 

FIG. 7 

,. ' -·oas' -·65 s' 
"'cis J = 1- 0·3 e - 0·7 e which corresponds 

linear theory. 

S.,I.Z,y 

' 
DOL!BLET 

to the classical 

The objective in developing the numerical algorithm is to m1n1m1se the 
number of samples required to produce an acceptable degree of accuracy 
when compared to an exact solution. In this discussion the number of 
samples is related to the value t' = 1 or s = 15; i.e. a sampli11g tl = 
10 corresponds to intervals of 11 s = 1.5; Using the algorithms 
derived above (labelled for convenience as "step" algorithm) the 
consequences of reducing the sampling are shown in figure 8. For the 
circulatory lift the reduction in sampling produces an artificial lag 
in the response which can approach 1 time step for the transient and 
tends to 1/2 time step for sustained harmonic forcing. However, the 
amplitude of the response is not severely degraded. For the impulsive 
lift component, reduction of sampling results in severe degradation of 
the amplitude of the response which would be unacceptable in the sample 
shown for N = 20. 

Having established transfer functions for the circulatory and impulsive 
lift it is possible to derive the response to a change in oc whieh 
varies linearly within the sampling period. This corresponds (up to 
the end of the interval) to the response to an idealised ramp as 
derived earlier. Thus, based on the relations 

<;_ lti=Cl a:,ltl. a:,ltl = ccltl- llcc,ltl and 
c a: 

r -tIT e- II T_ • 1] then for a sampled 11a:,lt I = K.,lA,T,I1- e 'I • A1T111-

system K.," " I OCn- O:n_,l I 11 I and ll a;,n = 

, , -lltiT, 
where K 'n =- K e + 'r-.-\ ( K"'n - K"'n-, I 1 

2.3 - 13 



Similarly we may derive the impulsive 

where K~n = K;n-t e-td/Tx + ( ~- Kcr..'l'"\_, 

also CL, = -1~ I K~n- K~~ I where 
,n M 

and ~ = ~ I en- en-, I 
n V l:d 

lift 

K' tn 

C =I.TIK~ K' I 
L _1 .,.,- ln 

In M 

Labelling the above as 'ramp' algorithms the results are compared with 
the 'step' algorithm for a sampling of N = 10 in figure 9. For 
circulatory lift the results have deteriorated, a phase lead has been 
substituted for a (somewhat smaller) lag. The impulsive load time 
history is improved significantly, the amplitude is now correct at the 
expense of some phase shift. 

The above evaluation suggests that it would be beneficial to use the 
'step' algorithm to calculate the circulatory lift and the 'ramp' 
algorithm to calculate impulsive lift. The advantage of doing this is 
avoidance of significant amplitude error but nevertheless a phase lag 
remains ~o~h.ich it Hould be desirable to eliminate. One method to reduce 
the lag incurred by finite sampling is to introduce a step or half step 
lead in the forcing function. However, for arbitrary forcing, this 
requires an extrapolation of oc based on the prior samples and for 
sparse sampling the procedure may introduce some large overshoot 
errors. All the algorithms incorporate a deficiency term in one form 
or another which is allowed to decay exponentially at each pass and is 
updated by addition of the new increment in forcing; i.e. from the 
'step' algorithm for circulatory response: 

X 
-l:lt/T, xn = n-1 e + 

If the decay over the next increment in time is anticipated, the second 
term on the right hand side of the equation would also be factored by 
.-l:lt/T, • Thus an effective half step lead may be introduced by 

factoring the term by .-l:li/2T, 

i.e. 
'\/T -'t/2T, 

X -- X .- u '• • A I oc - I u n n-1 I n a:n-1 e 

The above method for introducing a half step lead does not involve any 
prediction of the forcing over the next sampling period and avoids the 
consequent error. Thus a 'hybrid' series of algorithms may be 
constru•>ted to incorporate the best features of those so far derived 
and yet minimise the phase lags involved. 

For circulatory lift oc,n = ocn - Xn - Yn 

X e
- l:ll /T, I - l:l\1 2 T, 

Xn :;; + A, (ocT'\ - a:n_, e 
~o~here n-• '1/T -l:li/2T, 

y e-u 'l. + Az.( a:n- a::n-1 1 e 
yn n-1 

For impulsive lift CL!n = 4 {t I K"'n- K,~l 

where 
, 1 -6tiT1 K1 = K 1 e • I l<oo n n-1 n 

I - l:l\1 2 T1 

~<.;,_' e 

and for pitch rate about the 3/4 chord 

W'here 
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Implementation of these 1 hybrid' algorithms is illustrated in figure 
10. For circulatory lift, at the previously US<!d sampling of N = 10 
there is negligible error. When the sampling rate is halved again (N = 
5) the error is still small. For the impulsive loading, at N = 10 
there is a small lag which increases slightly for N = 5. For most 
practical cases the proportion of impulsive lift will be very much 
smaller and, overall, it may be anticipated that the above 'hybrid' 
algorithms will be adequate for application to rotary wing 
calculations. 

11. Comparison with a Navier Stokes solution 

In reference 12 a compressible, time dependent Navier-Stokes 
calculation procedure is applied to ramp motion of an NACA 0012 air
foil. The initial angle of 6° incre8ses to a final angle of 19° in a 
period of time equivalent to 0.63 chord length of airfoil travel and is 
held constant thereafter.

6 
The freestream Mach number is 0.147 and the 

Reynolds number equals 10 • From the pressure distributions pres.?nted 
for successive time intervals a time history of CN has been constructed 
and is shown in figure 11. During the initial st·age of airfoil motion 
extremely large values of CN are generated by the impulsive components 
of the loading which is distributed more or less uniformly along the 
chord. At the cessation of motion the impulsive loading decays rapidly 
and the circulatory loading completes its buildup. Viscous effects 
become significant and separation begins immediately due to the large 
angle of attack and CN which exceeds the sustainable steady state value 
of about 1. 2. Leading edge suction decays and at a time "!:' = t .V /c of 
about 2.5 a perturbation in the pressure distribution may be asso~iated 
with the presence of a leading edge vortex. Subsequent pressure 
distributions indicate convection of the pressure perturbation 
downstream and by the last sample at 't = 4·2 it is nearing the trailing 
edge. 

The value of CN does not decline significantly towards the end of the 
period which indicates that although extensive flow separation exists 
the vortex lift is still present. 

The above detailed calculations are somewhat unique in the published 
literature and provide another opportunity for evaluation of the 
indicial methods under development. For the comparison, the evolved 
circulatory in~icial _lift _function f1Lis'l ~ 1 _ 0.3 e-·14s _ 0 7 e-·53s 
has been used 10 conJunctlon '"C 

o.<lth the corresponding impulsi.ve force time constant. As a baseline, 
an inviscid solution was generated; i.e. no allowance for flow 
separation and a value of C~...., : 2. l'\ • The result which is shown in 
figure 11 exhibits an asymptotic value of lift which is too high but 
the initial (mainly impulsive) loading is matched remarkably closely. 
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In reference 10 a method is presented which enables the onset and 
progress of flow separation to be modelled for time dependent lift in a 
manner compatible with an indicial formul~tion. Critical values of the 
pressure and the progression of gross trailing edge separation are 
modelled using first order lags involving the time constants TP and TF 
which are expressed in terms of semi chord lengths of airfoil travel. 
The relationship between the additional loading (pressure) and trailing 
edge separation under steady conditions is obtained from test data (in 
this case from reference 13) and the onset of leading edge sep~ration 
from in viscid calculations of the peak velocities and gradient in the 
leading edge region. In this case a critical C (static) for leading 
edge separation of 1.5 was deduced (allowing for \he reduced lift curve 
slope of 0.1g/deg) which is greater than that achieved statically (1.2) 
at R.N. = 10 • 

The consequence of including the flow separation (viscous) model is 
illustrated in figure 11, predominantly affecting the later stages of 
circulatory lift. Using values of TP and TF of 1.7 and 2, respective
ly, the model predicts a rapid growth of separation at around 'L = 2.5 
but the total lift is not immediately affected due to the build up of 
vortex lift which ceases, however, at ~ = 4.5. The only exception to 
the good agreement between the indicial and Navier-Stokes solution 
occurs at 't = 0. 73, just after cessation of the motion where an 
extremely rapid and complex change in the chordwise distribution of 
loading is taking place. An additional point at ~ = 0,63, not included 
in reference 12, ~<as obtained from a pressure distribution subsequently 
provided by the author and emphasises the rapid changes occuring at 
this time. 
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12. Conclusions 

Rotor load calculation• require a. versatile method for evaluating the 
unsteady lift response to angle of attack forcing which may vary in a 
discontinuous or almost arbitrary manner. A.t the same time the local 
freestream Mach number is varying rapidly. The indicial formulation is 
appropriate to meet these requirements and has been in use for several 
years. The continued development of more refined analyses for unsteady 
transonic flow, their application to idealised motion and availability 
of wind tunnel test data, again, for idealised motion, has provided an 
opportunity to assess and refine the indicial formulation. 

From the theoretical solution for the indicial response to a step 
change in angle of attack it is possible to produce an approximate and 
generalised indicial lift function. From the generalised indicial lift 
function it is possible to derive an even more general transfer 
function relating unsteady lift response to angle of attack and this 
may be used to derive explicit expressions for the idealised forcing 
used in experimental and theoretical studies, for example, the 
frequency response to harmonic forcing. 

Using the above approach, use of the generalised indicial lift function 
has been validated and refined. Comparison with both theory and test 
is favourable. 

Application to rotor calculations requires numerical procedures that do 
not impose· undue limitations on the sampling interval for azimuthal 
stepping. This is for economy in computation. The unsteady lift 
transfer function has been used to derive improvements in the current 
numerical procedures which have been evaluated for sensitivity to 
sampling. 

The analysis and procedures developed above have been applied for 
comparison with a compressible, time dependent, Navier-Stokes solution 
for an extremely abrupt idealised ramp and hold motion. The indicial 
solution has been extended to include the separation effects which are 
present in this case and, again, the resulting comparison is favour
able. 
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