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IMPROVED HELICOPTER AIRFRAME RESPONSE THROUGH STRUCTURAL CHANGE 

by A. J. Sabey 

SUMMARY 

The single~point response analysis embodied in the Vincent circle 
theorem, which bas been so prominent in the discussion of helicopter air
frame vibration, is generalised to the case of multiple responses. Its 
geometric optimisation is replaced by a straightforward algebraic one. 
The extension to multiple spring changes extends the study to deal with 
the important design case of multiple forcing, response and spring change, 
and this opens up the possibility of refinement of helicopter airframe 
design for reduced vibratory response. 

INTRODUCTION 

The problem of helicopter vibration reduction may be approached 
from a number of distinct points of view. We may, for example, seek to 
reduce the vibratory loads at source by active or passive control of blade 
pitch, or to reduce coupling between the rotor/gear-box/engine system and 
the airframe by active or passive isolation systems. Equally we may seek 
to ensure that residual vibratory forces reaching the airframe produce 
only minimal response. Indeed, so important is the problem of producing 
an airframe with the lowest possible transmissibility that it is no 
understatement to say that all the advantages of good rotor and isolator 
design could be squandered by inadequate attention to the airframe. Whilst 
careful airframe design will not, of itself, solve the vibration problem, 
failure to achieve the best possible airframe configuration will put at 
risk all other attempts to abate vibration. 

The starting point in our investigations is a valid dynamic model of 
the airframe. For example we may have a NASTRAN model in which we have 
confidence, or alternatively have measured a set of experimental transfer 
functions or modes. In either case, we shall assume that it has been 
possible to construct a matrix of receptances for the appropriate fotcing 
frequency and that these will be representative of the behaviour of the 
helicopter in flight. 

In a number of investigations over the last decade, the use of such 
a matrix to study the effects of structural change has focussed upon the 
circle property first observed by Vincent (1973), The discovery that the 
response locus to a given forcing - when a single structural member is 
altered - is circular, has been exploited considerably as discussed earlier 
(So bey, 1980). 

In this paper, we extend the earlier work in which a single response 
point is surveyed to include as many others as are of interest. A mean 
square measure of weiehted response takes the plac.e of the single response, 
and in place of the geometrically attractive circle proposition, we find a 
corresponding algebraic development of the appropriate optimum stiffness 
for a single spring change. We deal only with stiffness change because 
that is the most effective and innocuous of the possible structural changes 
that we may consider, but the ideas are easily extensible to the case where 
mass is altered. Having solved the problem of choosing the stiffness of a 
single spring for minimizing the measure function, we extend the ideas to 
examine the choice of several springs. 
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This optimum study is dependent on the input loading, which is 
assumed known. In practice, the load varies with flight condition, and 
so the value of a design improvement has to be checked against flight 
condition. In the studies made so far, where the choice of spring values 
is limited by some practical considerations, it bas been found that much 
the same set of springs is·selected as optimal over a considerable flight 
speed variation. Moreover, the techniques developed in this report are 
easily extensible .to include responses to the loads appropriate to 
several different flight speeds, simultaneously analysed. Thus we are 
led to infer that the procedures developed in this paper should lead to 
a valuable capability for the refinement of airframe design. 

2 ANALYTICAL DEVELOPMENT 

We use the notation Grf(= Gfr) to denote the receptance of the 

structure, giving the complex response along freedom 

ture is forced by a unit generalized force along xf 

X 
r 

when the struc-

Where several forces co-exist, say F in number, along freedoms xf 
(f=1,2, ... F), then we write 

where the generalized force along xf has magnitude Ff and phase ef 

with respect to the fundamental reference direction of Grf . 

The response of the structure is examined when one or more of a set 
of S springs is adjusted. Typically s(=l ,2 00 •• 5) denotes a spring given 
a change of stiffness of magnitude k acting along the identical direc
tions xp and xq joining the ends p, q of the spring. We write s , 

or pq , as identifier of this spring and, in general, we study the 
consequences of varying k to the response of the structure. A second 
spring say t th in the series, joins freedoms x and x , or liV , and on u v 
occasions we refer to a third, the w th joining xm and xn , or Tirri ~ 

The fundament relationship between the response 

to a change k in pq with unit force acting 1s 

z G1 -kGzlC1 + kG
3

) r 

where G1 Grf 

G2 (G - G )(Gf - Gf ) rp rq p q 

and 

G3 G - 2G + G 
pp pq qq 
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Where a series of F generalized forces is applied, 

= 

and 

·G = 
2 

(3) 

The bilinear nature of the relationship between z and k under
r 

lies the well-known phenomenon that, as k 

locus in the response plane (Vincent, 1973). 
observation. 

varies, z traces out a circular 
r 

Much has stemmed from this 

of this relationship has been, at one 
liability. For, in identifying the 

The comparative simplicity 
and the same time, an asset and a 
minimum response along xr , say _z . , and its associated spring value, 

mm 
k . , by purely geometric means, 

mm one has avoided recourse to more formal 

minimization techniques. To arrive at such a simple solution may be con
sidered a great boon. However, no attention is paid to the way in which 
responses within the structure are organized in order to achieve a local 
optimum, and it is frequently the case that this local minimum is 
associated with gross deteriorations in response elsewhere in the 
structure. 

This unacceptable situation can only be avoided by making the 
selection of one or more springs in a way that takes due account of 
response at a number of locations. We generalize equation (1) to R 
different locations x, r=1,2, ... ,R. 

r 

We choose a weighted mean response, M say, where 

where w 
r 

conjugate 

M 

R 

'\'wzl1: L r r r 
r=1 

is a weight associated with the freedom 

complex of z 
r 

Substituting from equation (1) 

M 

where 

X 
r 

and z 
r 

is the 

G1, G2 , G4 vary with r, G3 is a spring combinant independent of r . 

(4) 

(5) 

(6) 
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where 

and 

M can be written in the form 

M 

A 

B = 

c 

D 

E 

f(k) 
g(k) 

R 

A + Bk + Ck2 

+ Dk + Ek
2 

L wr(G1G4 + G1G4) 

r=1 

R 

LwrG/,4 
r=1 

G3 + r;3 

G}J'3 

Note that A, B, C, D and E are all real. 

(7) 

(8) 

Although the analysis is developed for a single flight speed, it is 
clear from the form of equation (7) that a superposition of the corres
ponding results for several flight speeds remains of the same form. Hence, 
in our future development, there is no real distinction between analysis 
for one forward speed, or for several treated simultaneously.· 

The stationary values of M are given by dM/dk = 0 , or 

fg' - f'g = 0 

where primes denote differentiation with respect of k . 
f and g leads to the equation governing the values of 
response: 

(CD - BE)k2 
+ 2(C - AE)k + B - AD 0 . 

(9) 

Substituting for 
k for extreme 

(10) 

One of these values corresponds to the min;mum value of M which 
we seek, the other to a maximum. We resolve the question of identity in 
the following way. For the stationary values of M , say V , the 
relationship between V and k is 

V f/g = f'/g' = (B + 2Ck)/(D + 2Ek) 

or 

k (B - DV) /2(EV - C) ( 11 ) 
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Writing v = V/A , we recover finally the following quadratic 
equation for the reduced response v 

F(v) 0 ' 

where d
1 

= (2AE + 2C - BD)/A(D2 - 4E) 

and 

= 

The exceptional case where D2 = 4E is discussed later. 

( 12) 

( 13) 

Equation (12) has two roots, v
1 

and v
2 

, which we show satisfy 

0 

and 

and 

we 

< 

Now F(O) = (B
2

- 4AC)/(D2 - 4E)A2 

On introducing the notation that 

G = gpr + ih p pr 

G3 = g3 + ih3 ' 

can write AC - B2/4 in the form 

R R 

L L ~(g1rg4p - g1pg4r)
2 

+ (g1rh4p - g4rh1p)
2 

r=1 p=r 

r = 1,2, ... ,R; 
p 1 , 2 or 4 

+ (g1ph4r - g4ph1r)
2 

+ (h1rh4p - h1ph4r)
2 t 

R 

+ L (g1rh4r 
r=1 

? 0 . 
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But 

F ( 1) 

and F(oo) is positive. 

4h
2 

< 0 ' so 3 

= 

F(O) is positive. 

0 ' 

Thus, in general, there is one root for v between 0 and 1 ~ 

and one greater than 1 . The minimum'is identified as 

v . 
m~n 

- d1 - .jd~ - d2 . (14) 

If the structure is optimal with respect to the spring considered, 

B AD • ( 15) 

Since, in general, v tends to-be closer to than to zero, an 
alternative u = 1 - v is a more suitable base for computing, where u 
satisfies 

2 22 [2 2 ] (D - 4E)A u - 2 (D - 2E)A + (2C - BD)A u + (B 0 . 

u then, may be sought as a root of equation (16), and a fast algorithm 
developed to yield u, then v, V and k (from equation (11)). 

(16) 

In the exceptional case where o2 4E , or h = 0 , we have the 
3 

situation where the effective impedance between the spring ends is a pure 
stiffnes. In this case 

u (17) 

If there are no restrictions on the choice of 
are acceptable, the criterion for suitability of the 
change is measured by v . and, accordingly, a set 

mm 

k and all values 
s th spring for 

of springs may be 

ranked in order of effectiveness. If 
(kl,ku) say, it is necessary to check 
if not to pick as achievable v , the 
values at the limits kl and ku 

k is restricted, to the range 
if the minimum is in the range, and 
value which is the lesser of the 

In all cases, then, we can examine the su~tability of changing a 
particular spring value for the R response points and the given loading. 
Suppose we are led to believe that S particular springs hold -
individually - promise of a worthwhile reduction in respcr1.3e, how do we 
organize the calculation so as to realise the best mutual result? 

3 THE MULTIPLE SPRING CASE, S > 

Suppose that two springs, the 
and k2 respectively, join pq 
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response in this case takes the form: 

(18) 

where G1 = GrF as before, 

(19) 

(20) 

The coefficients P12 , P10 , P02 , Q12 , Q10 , Q02 in equations (19) 

and (20) are given by 

p10 = - H4H6 

p02 = - HSR7 ' 

Q12 = R1R2 - R2 
3 

(21) 

Q10 = R1 , 

and 

Q02 1!2 

H1' H2, H3' H4' HS' H6' H7 have the values 

Rl = G - 2G + G 
PP pq qq 

R2 G - 2G + G uu uv vv 

R3 = G - G - G + G 
pu pv qu qv 

H4 = GpF - G qF (22) 

Hs = GuF - G vF 

H6 = G - G rp rq 
and 

H7 G - G ru rv 
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It is easily verified that equation (18) is recovered in the three 
equivalent circumstances (a) add k

1 
, then k2 , (b) add k2 , then k 1 

and (c) add k
1 

and k
2 

simultaneously to the basic structure. 

Equation (18) takes the place of equation (1) in evaluating response 
along X 

r 

Following procedures similar to those used for the single spring 
case, we obtain two equations governing the stationary,values of M, 
namely 

and these have the form 

F1(k1,k2) 0 

F2(k1,k2) . - 0 

is quadratic in k1 ' 
biquadratic where F

1 

and F2 is biquadratic in k1 , quadratic 

.} (23) 

in k2 

in k2 

The coupled equations (23) have, in general 16 roots, amongst which 
is the minimum sought (and possibly other minima besides). 

With S springs fitted, the corresponding equations are of the 
form: 

0 s = 1,2, ... ,s. (24) 

where F
5 

is biquadratic in all the stiffnesses k
1 

except 

it is quadratic. The stationary values of this set contain, 
solutions. Even in the simplest case of multiple springs, 
computation of the roots of equations (23) is difficult, and 
any procedure is unworkable. 

k in which 
5 

2S in general, 2 
S = 2, the 
for S > 2 

A preferred procedure is to examine each spring in turn, in an 
order indicated by ranking according to its effect on M when acting 
alone. For the moment we will ignore any restrictions on the allowable 
spring changes and consider only open variation of the k's . 

The procedure runs as follows: 

(1) Establish a basic set of receptance combinations which suffice 
to describe the behaviour of the structure (see below) 
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(2) 

Do (2) and (3) below for s = 1,2, ... ,S. 

Select optimum value of k 
s 

(3) Update (1) for chosen value of k
5 



(4) Increase s and repeat previous steps. 

For each spring, v is either 1 , in which case the system is 
optimal for that spring, or v < 1 and an improvement is possible. Thus, 
in a cycle of changes to all S springs in order, either v ; 1 for all 
springs and no further improvement is possible, or v is reduced. But 
since v > 0 , the process must tend to a limit and an optimal system can 
be found. This minimum may be a local minimum or a global one. For 
example, if S ; 2R it is reasonable to look for solutions in which the 
response at the R points is vanishingly small. In the case of two 
springs and a single response freedom, zero response may be achievable -
in which case there are two sets of spring values that suffice - or it may 
not in which case non-zero minima exist. In a more practical situation -
at least as far as the helicopter is concerned - R will tend to be 
greater than S/2 and one seeks a non-zero minimum. 

A particular example will illuminate this point, but before we 
examine it, some computational notes are appropriate. For R response 
points and S springs each cycle outlined above requires the update of a 

""* set ~ consisting of 

( 1) R values of GrF 

(2) s values of GpF - G qF 

(3) RS values of G - G 
rp rq 

(4) S(S + 1)/2 values of H ( s, t) ; H<Pcl,iiVl 

G - G - G + G 
pu pv qu qv 

These S(S + 3)/2 + R(S + 1) combinations of receptances are the 
only ones which we need to consider in a particular study. The result of 
introducing a stiffness change k in pq is to change any G .. say, to 

~J 

G .. + UF(G. -G. )(G. -G. ) , 
~J 1p ~q JP J q 

where UF is the update factor 

Then 

UF ; 

GrF + GrF +UF G2 (r) 

2G 
pq 

GuF - GvF + GuF - GvF +UF H(pq,uv) (GpF - GqF) 

G - G + G - G +UF H(pq,uv)(G - G ) 
ru rv ru rv rp rq 

H(ilV,fiiD.) + H(uv,mn) +UF H(pq,uv)H(pq,iiii\) . 

(25) 

(26) 

(27) 

(28) 

(29) 
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has 

the 

In the course of evaluating k for pq, G
2

(r) 
been evaluated. All other items in equations (26) 

given by equation (3) 
to (29) are found in 

* set L so that the updating process is straightforward. 

4 ILLUSTRATIVE CASE, S = 2 

For discussion purposes, a case with two springs k 1! k 2 only, is 
sufficiently general to illustrate a number of practical po1nts. The data
base used is that of the Lynx stick model (Fig 1), similar to that used by 

24 

23 

19 

Fig 1 Helicopter stick model 

Done (1981), but with an assumed damping. It is used for discussion pur
poses only and no inferences on the real behaviour of the Lynx helicopter, 
or of putative improvements in its ride quality are to be made. Indeed, a 
two-dimensional model is quite unsuitable for that purpose ,as the nature of 
the forcing is essentially three-dimensional and induces a structural 
response asymmetry from side to side within the helicopter. 

The case discussed has: 

Forcing at node 3 (rotor head) 

Response 

and 

1 unit F/A at zero phase 
2 units vertically at 42 degrees 
25 units pitching at 116 degrees. 

Node 19 F/A 
Node 19 vertical 
Node 11 F I A 
Node 30 F/A 
Node 30,vertical 

weight 
weight 
weight 
weight 
weight 

0.8 
1.2 
1.0 
2.0 
1.5. 

The Bode diagram g1v1ng the variation of M as a function of 
frequency is shown in Fig 2 and it is apparent that the response function 
is strongly influenced by the bending mode some way below nominal exciting 
frequency. It is thus clear that some improvement is to be expected by an 
appropriate unstiffening of the structure, and this is verified in Fig 3 
which shows a contour map of the measure function M of equation (7) as a 
function of k 1, k 2 , where k 1 is the stiffness change in the member 9-19 

and k2 that of 9-15. 
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The sections of this map for k = 0 
l 

and for k = 0 
2 

are s~own in 

We note that (!) each has, as expected, a single maximum and minimum 
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Fig 4 Sections through contour map for k1 = 0 and k
2 

= 0 
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(2) the minimum for kl varying is sharply defined, but for k2 vary-

ing is not so, and differs 
infinitely large values of 

little from the asymptotic value for 

Suppose that k
1 

is first chosen with k2 = 0 ; then, with k 1 
fixed, k

2 
is varied. The resultant change in the double step is a small 

one to the north-west, heading into a valley which eventually runs north
south. Progress along this course is indicated by the numbering 1,2, ... etc. 
Varying first k2 and then k 1 achieves two surprising effects. Fir·stly, 

the high ground to the south is crossed, and a vicinity of the minimum is 
reached in only one step. After ten steps the minimum is, for all practical 
purposes, attained. 

To reach this minimum by variation of k
1 

, then k
2 

, it is 

necessary to leave the northern valley, go round the world, and re-enter 
its continuation to the south of the true minimum so that in effect there 
is a vertical asymptote in the locus of steps. Thus there is a certain 
value of k 1 , say k~ for which k2 is in effect infinite, when the 

spring ceases to function in the normal way and imposes a kinematic 
constraint equalizing displacements at the two ends. For values of k

1 
to the east of k~ we are in the northern valley; for k 1 to the west 

of k~ we are in the southern one. How do we manage to cross this line? 

It is only by rounding error within the computer that such a change 
is possible, for if our analysis were free from approximation, then the 
k 1 - then - k2 process would stay firmly to the east of k1 in the 

northern valley. Progress would become ever decreasing (in the k
1 

change) and k2 would increase indefinitely. Similarly we would follow 
that the valley with a normal minimization routine, heading for the falling 
ground to the north-west of the starting point. 

In a situation where it is clear that we are heading into a valley 
and substantially moving in a fixed direction, we may either be in the 
vicinity of the minimum and converging slowly, or heading up an asymptote. 
In either case, advantage may be taken of this recognized behaviour and 
the search procedure may be speeded up by shooting. 

5 SHOOTING 

Suppose that, in the neighbourhood of a m~n1mum, the contours are 
simple closed curves, all similar, and similarly situated. To be specific, 
we take them to be elliptical, although the subsequent argument is general. 

A series of steps corresponding to searches along two directions in 
turn is illustrated in Fig 5. 
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' ' ' ' ' ' 
' ' 

Fig 5 Convergence process near global minimum 

Here the law of diminishing returns applies: as we approach the 
minimum the changes in each k get smaller, and although we are heading 
towards a minimum, this is never attained. (Had we searched along 
directions parallel to the axes of the ellipses, convergence in two steps 
is assured.) To avoid the consequences of a diminishing return, we may, 
at any stage, recognize the pattern of behaviour and extrapolate forward, 
or t shoott. 

In the example of Fig 5, suppose that two complete cycles of 
iteration are associated with changes: 

in the first cycle 

and 

in the second cycle. 

Then further increments 

2 
llkl ; (kl2) I (kll - kl2) to kl 

and 
2 

- k22) llk2 = (k22) I (k2I to k2 ' 
take the current point to the minimum. 
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Where successive steps suggest a defiriite direction of search, the 
shooting procedure is usually effective, if not in finding a minimum, at 
least in moving the current point significantly towards the minimum. In 
an open-ended valley, as occurs in the discussion example, this accelerating 
procedure is very useful. Its value, however, depends on recognizing when 
a sufficiently well-defined direction of progress is established. The pro
cedure extends readily to any number of dimensions. 

6 LIMITS 

In the examples which have been studied, the number of response 
points R has generally exceeded the number of springs S and only one 
minimum has been found. However speed of convergence is strongly affeCted 
by the order in which the springs are enumerated, as has been seen in the 
simple example of two springs described above. 

Where limits are imposed on the allowed range of springs, several 
minima may exist and the order of search may now determine which mLnLmum 
is reached. Taking the example of Fig 3 and imposing arbitrary limits as 
in Fig 6a, we find that searching first k 1 , then k2 , leads to a 
minimum in the north west valley on the boundary. Taking k2 then k 1 , 
leads to a minimum in the south-east corner. 

Suppose, now, 
k 1 then k2 , leads 

that the limits are all doubled, as in Fig 6b. Taking 
as before to a minimum in the north-west valley, but 

taking k
2 

then k
1 

leads to a minimum in the south-west corner. (In 

fact, quite close to the global minimum.) 

l" 
' ' 

r------

' ' ' ' ' 

' ' 
' ' ' ~. -· (j _, 

!" 
•" 
' 

' ' 

01 

::::::> "' ' 
"' 

,, 
' ' 

L-------------
______ J 

Fig 6a&b Contour maps with 
limited variation 
of k1 , k2 
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These simple, if artificial, examples show the importance not only 
of order of search but of the limits themselves. In the first example, 
approximately equal minima are indicated, each with one increase, one 
decrease in stiffness. The second example produces significantly different 
values of the minimum. 

This experience has been borne out in investigations of a more 
comprehensive character with several springs and confirms that both search 
direction enumeration and the value of the limits are important. The 
former difficulty can be avoided by repeating the calculation with a 
different search order, but the problems that arise with the choice of 
limits can only be resolved with attention to detail. 

In particular, it is necessary to look more widely at responses in 
the helicopter than those included in the measure function. Where there 
are two apparently equal possible configurations, it will be found that 
there is a marked difference in the process by which a minimum has been 
achieved and that consequences away from monitoring points cannot be 
overlooked. 

In Fig 7, the Bode diagram of Fig 2 is recalculated for the structure 
when modified by the fitting of the two springs k

1 
and k

2 
, with their 

values adjusted for minimum response at the rotor speed NR . It is clear 
that a reduction in response of some 30% is possible at NR . However, the 
response continues to fall with increase in rotor speed to a minimum of 
about 25% of the original value. This confirms that the choice of springs 
(9-15 and 9-19) is quite inappropriate for reducing the measure function 
substantially. It is clear that other members (like 24-30, for example) 
would be far more effective to change, but the two springs chosen were 
selected for their usefulness in illustrating points of numerical pro
cedure, and not for their effectiveness in securing a substantial reduction 
in the response of the helicopter. 

To develop these ideas further would take us too far from the main 
theme and will not be discussed here. 

7 VERIFICATION 

Since the claims of response improvement lead to a set of spring 
values which change the basic structure, the modified structure can be 
analysed ab initio using, for example, NASTRAN, and the responses of the 
revised structure can be examined independently of any analysis used in 
the selection of the springs. 

The analytical value of such a check is, however, only partial, in 
as much as the theory presupposes a valid dynamic model to start with. 
Much more valuable would be a programme of work which begins with a piece 
of real structure, whose modes are identified, and which is analysed as 
above. The promised improvement in response can then be verified experi
mentally, thus consolidating the design value of the procedure described. 
Such a programme of work is in hand in the Helicopter Division of Materials 
and Structures Department at the Royal Aircraft Establishment. 

8 CONCLUSION 

In this note, a procedure is presented for the choice of a set of 
springs in order to achieve a minimal weighted mean square response at 
a number of locations throughout the airframe over a range of forward speed. 
An application of a computer program embodying these ideas is presented, 
and some computational aspects are discussed. 
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