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Abstract
An optimization framework for helicopter rotors based on high-fidelity coupled CFD/CSM analyses is 
presented. For this purpose the optimization software DAKOTA has been linked to a parametric geometry 
unit, a mesh generation unit and a fluid-structure module which consists of the DLR flow solver FLOWer 
coupled with the Comprehensive Rotorcraft Code HOST from Eurocopter. 
The optimization framework is first applied to various optimization problems in hover starting with the easy 
task of optimizing the twist rate for the 7A model rotor. The complexity of the optimizations is increased step 
by step and finishes with an optimization case involving all seven design parameters showing its superiority 
over simpler optimization problems with respect to the achieved improvement. 
In the next step the framework is operated in forward flight condition also for the optimization of the twist 
rate. Small improvements with respect to the 7A rotor are made though indicating the conflicting nature of 
hover and forward flight requirements. Thus a multi-objective optimization for the twist of the 7A rotor is 
carried out. 
  

Notation
c  Chord 
ce  Equivalent Chord 
r,R  Radius 
Cq  Torque Coefficient 
�  Forward Flight Ratio 
�0  Collective Pitch Angle 
F
�

  Vector of aerodynamic loads 

DF2
�

  Vector of aerod. loads from HOST 
FObj  Objective Function 
FM  Figure of Merit 
FF  Forward Flight 
EGO  Efficient Global Optimization 
CONGRA Conjugate Gradient 
DACE  Design and Analysis of Computer 

Experiments 
EIF  Expected Improvement Function 
WOF Weighing of Functions 

1. INTRODUCTION  

The design of helicopter rotor blades is a quite 
challenging task. While high fidelity computer 
analyses in the fixed wing community are widely 
employed today, the rotary wing community still 
relies heavily on low fidelity models. Although 
being less time consuming, the ability of these 
models to reproduce the behaviour of the physical 
model vanishes quickly with increasing complexity 
of the geometry. Since CFD has reached a 
sophisticated level of maturity, manufacturers 
want to integrate these methods into their design 
process. Because of the high aspect ratio of rotor 
blades fluid-structure-interaction needs to be 
taken into account. This also helps reducing the 

number of design cycles. 
Most studies during the last 30 years such as [5] 
and [19] were devoted to aeroelastic and dynamic 
optimization with the aim of reducing vibratory 
loads and dynamic stresses. The majority of these 
works has relied on simple aerodynamic models 
based on blade element momentum theory 
because the application of CFD inside the 
optimization was prohibitively expensive. In recent 
years some works such as [6], [7], [16], [17], [18] 
have put their focus on the optimization of 
aerodynamic efficiency. While these studies have 
already incorporated CFD analysis tools within the 
optimization loop either the amount of 
computations or the number of design scenarios 
was limited. Therefore the new rotor blade was 
only optimal for a single flight condition or the 
uncertainty with respect to the efficiency 
improvements was high. This is due to the known 
deficiency of blade element theory to accurately 
predict complex 3D flow phenomena which prevail 
especially in the tip region of the blade. 
The goal of this paper is to describe an 
optimization approach for helicopter rotor blades 
based on a weak fluid-structure coupling scheme 
combined with an optimization algorithm in order 
to improve the performance of the rotor in hover 
and forward flight. The CFD analysis on the one 
side is realized with the 3D Navier-Stokes solver 
FLOWer. In hover steady computations are used, 
while in forward flight unsteady time-accurate 
evaluations for one blade are carried out until a 
periodic solution is reached. On the other side 
blade dynamics and elasticity are taken into 
account by the Comprehensive Rotorcraft Code 
HOST from Eurocopter. The structural model 
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consists of an extended 1D Euler-Bernoulli beam 
model. The optimization procedure is focused on 
the aerodynamic performance. Periodic loads and 
geometric changes of the blade planform are 
communicated to the structural model. The 
structural model itself though is not modified 
during the optimization. In order to assess the 
effectivity of different optimization algorithms a 
comparison between three different types of 
algorithms has been done. 
First the general strategy of the optimization 
procedure is introduced and the functionality of 

the different optimization algorithms is explained. 
Secondly the parameterization, the grid 
generation, the flow and structural simulation tools 
as well as the weak coupling procedure are 
described. Subsequently optimization results for 
various design variables and flight scenarios are 
presented. While optimizations in hover include 
up to seven design variables, forward flight and 
multi-objective optimizations contain only one 
design parameter. 
 

 
Figure 1: Flowchart of the optimization framework 

2. OPTIMIZATION FRAMEWORK 

The optimization framework as shown in Figure 1 
consists of three elements, i.e. the optimizer, the 
preprocessing module and the fluid-structure 
module. The DAKOTA-Software from Sandia Labs 
[1] is used as optimization tool. It contains different 
optimization algorithms and steers the overall 
process by generating the design parameter sets, 
starting the individual evaluations and collecting the 
result from each analysis. The parameter set is then 
passed to the preprocessing unit where the mesh is 
created. The preprocessor starts with a series of 2D 
profiles which are lined up on the quarter chord line 
along the blade radius. The resulting 3D blade 
surface is then transferred to the grid generator 
where the volume mesh of the computational 
domain is generated. In a last step the monoblock 
grid is partitioned into multiple blocks in order to 
make it applicable to a parallel computation. 
The fluid-structure module is initiated by a trim 
computation with HOST. This delivers the dynamic 
response of the rotor and the elastic deformation 
which serve as input for the flow computation. After 
the periodic coupling has been carried out for a 
predefined number of iterations, the aerodynamic 
coefficients are extracted and passed to the 
optimizer which decides upon the next set of design 
parameters. The process is continued until the 
improvement falls below a predefined threshold. 

2.1. Optimization algorithms 

Optimization algorithms can be categorized into 
three different types: deterministic methods, 
probabilistic methods and surrogate methods. Most 
algorithms of the first group rely on a relatively 

simple mathematical background. They are easy to 
implement and behave well on non-noisy, unimodal 
functions. While probabilistic methods such as 
genetic algorithms usually have a higher potential in 
finding the global optimum, they are considered 
obsolete for this study because of the numerous 
evaluations which are necessary for the 
convergence in combination with the lengthy CFD 
analyses. Algorithms of the third group, namely the 
surrogate methods, pose a good compromise 
between the capability of finding the global optimum 
and the effort needed to do so. Three different 
algorithms have been chosen for comparison, e.g. a 
gradient-based method, termed CONGRA, a non-
gradient-based method, called Subplex and a 
surrogate method, named EGO. 

2.1.1. CONGRA 

The well-known conjugate gradient method uses 
function values as well as gradient information in 
order to determine a new search direction. Since 
analytic gradient information is not available it must 
be deduced from finite differencing. Although this 
operation can be done in parallel, it can become 
costly if many design variables are involved. The 
subsequent line search is conducted until no further 
improvement is observed. At this point a new search 
direction has to be computed. This can be done e.g. 
according to the formula of Fletcher-Reeves which 
takes into account the search direction from former 
iterations. The conjugate gradient method is 
superior to the simpler steepest descent method on 
objective functions where the curvature highly differs 
in different dimensions. Theoretically the method 
converges in n steps, with n being the number of 
design variables. Though this is only true for smooth 
convex functions. 
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2.1.2. Subplex 

The Subplex method belongs to the group of 
gradient-free algorithms also called pattern search 
algorithms. Its main advantage is its robustness and 
the fact that the objective function does not need to 
be differentiable. The necessary operations, such as 
expansion, contraction or reflection of the simplex, 
are determined by reasonable comparisons of the 
objective function values; a simplex being the 
simplest volume in the n-dimensional parameter 
space that consists of n+1 points. The biggest 
disadvantage of the Subplex method is the slow 
convergence to the end of the optimization, 
especially if the parameter combination is ill-
conditioned, i.e. when strong discrepancies between 
the different parameters with respect to their 
influence on the objective function exist. Under such 
circumstances it is advisable to restart the algorithm. 
Another drawback of this method is the inability to 
abandon a local optimum in expectation for a global 
optimum. 

2.1.3. EGO 

The EGO algorithm [13] belongs to the group of 
surrogate methods. The general procedure consists 
in evaluating the true objective function at a number 
of arbitrary design points. Subsequently the method 
generates an approximation model of the objective 
function by means of the DACE predictor technique. 
In the next step the global optimum of the surrogate 
function and the uncertainty with respect to the true 
objective function is found by the aid of a genetic 
algorithm. The next design point for an evaluation of 
the true objective function is determined via the so 
called expected improvement function (EIF) which is 
created from the surrogate function and the 
uncertainty distribution. The use of the EIF provides 
for a balance between exploration of unknown 
places of the design space and exploitation of 
promising regions of the design space. Because of 
this dual character the method is very well suited to 
deal with multiple local optima. The only drawback is 
that the algorithm works sequentially after the 
generation of the first surrogate model leading to 
long turn-around times. 

2.2. Design variables 

The amount of evaluations during an optimization 
depends on the number of design variables. 
Because CFD computations are very time 
consuming, it is important to limit the number of 
design parameters. A trade off between the 
possibility of designing complex planforms and the 
number of design variables has to be made. Figure 
2 shows the design variables: a) twist, b) sweep, c) 
taper, d) anhedral, e) starting point of transition to 
second profile (dimensions have been 
superelevated), f) starting point of blade tip area 
(Tipstart).  
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Figure 2: Design Parameters 

Parameters a) to e) can be optimized separately or 
simultaneously. Changing the starting point of the 
blade tip will naturally only affect the design if at 
least one other parameter is chosen. The thickness 
of the blade can be controlled by varying the radial 
position of the transition between the two different 
airfoils. The twist is modified by changing the 
geometric twist over the blade span. While the 
geometric twist varies non-linearly over the blade 
span because of the two different profiles involved, it 
is ensured that the aerodynamic twist varies linearly. 
In order to avoid solidity effects the thrust weighted 
area is held constant according to equation 1). This 
means reducing the blade tip chord will result in an 
increased chord for the main part of the blade. 
Sweeping the blade is achieved by prescribing an 
inplane offset value for the quarter chord line at the 
outmost profile of the blade (r/R = 1.0). The sweep 
distribution is then given by a parabolic distribution 
law with zero deflection and zero slope at the 
starting point of the blade tip and the full deflection 
at the outmost section (r/R = 1.0). The anhedral of 
the blade is realized in the same manner. 

1) 
�
� �

�
drr

drrc
ce 2

2

 

For optimizations in hover the blade collective pitch 
angle �0 is also added as a design variable. This 
way the rotor thrust is not fixed during the 
optimization. Considering two rectangular blades, 
the one with the higher collective pitch angle will 
always have the higher figure of merit as long as the 
flow is attached. Therefore the optimizer will strive 
towards high collective pitch angles assuring that 
the optimizer will reach the maximum figure of merit 
for each design configuration. 

2.3. Grid generation 

Once the blade surface has been constructed 
according to the new design variables the algebraic 
grid generator GEROS [10] is used for meshing the 
computational domain. All grids show a C-H 
topology. The tab is modelled with a sharp trailing 
edge. The profiles at the root and tip cap are 
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degenerated to a single line. Hover and forward 
flight optimizations are carried out on coarse 
meshes. In order to confirm the results the optimal 
rotor configuration at the end of each optimization 
run is being recomputed on the fine mesh. While y+-

values on the coarse meshes range between 3-4, 
for the fine meshes they lie below 1. Since GEROS 
is only capable of constructing monoblock meshes, 
grids have to be split afterwards in order to run the 
CFD computations in parallel. 

2R

2R

RR

R

R

 
Figure 3: Hover 
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R

R

R

 
Figure 4: Single Blade Mesh (FF) 

 
Figure 5: Chimera Configuration (FF) 

 
 Mesh Number of elements c x r x n Total number of elements 

Coarse 60+28 x 24+12 x 8+24 101367 
Hover 

Fine 200+56 x 60+24 x 16+48 1376256 

Coarse 96+32 x 8+32+8 x 24+16 245760 
FF

Fine 4 x 192+64 x 8+64+8 x 48+32 4 x 1638400 + 3548160 

Table 1: Number of elements for hover and FF grids: c = number of elements in chordwise direction (number of 
elements on blade surface + number of elements for the wake), r = number of elements in the radial direction 
(number of elements on the blade + number of elements from tip to farfield) and n = number of elements in the 
normal direction (number of elements in the boundary layer + remaining number of elements to the farfield) 

In hover the radial symmetry can be used to 
further reduce the computational domain as can 
be seen in Figure 3. Therefore only ¼ of the 
domain has to be meshed. Table 1 summarizes 
the number of elements used for the coarse and 
the fine mesh. Optimizations in forward flight are 
undertaken with a single blade as depicted in 
Figure 4 thus also reducing the number of grid 
elements drastically. For confirmation optimization 
results are also recomputed using fine meshes 
(Figure 5) and the Chimera approach in order to 
include the interference between the rotor blades. 
The number of grid cells corresponds to the 
notation in hover while for the chimera 
configuration 3.5 million elements have to be 
added for the background grid. 

2.4. Aerodynamic module 

All CFD calculations in this paper have been 
achieved with the block-structured flow solver 
FLOWer from DLR [14]. The program solves the 
Reynolds-averaged Navier-Stokes equations, 
transformed into a moving blade-fixed coordinate 
system. The discretization of space and time is 
separated following the method of lines [12]. For 
the spatial discretization the cell-centered finite 
volume formulation is used. In order to avoid 

spurious oscillations, a blend of first and third 
order dissipative terms is introduced. Two layers 
of auxiliary points the so called ghost layers are 
added in order to assure second order accuracy 
across inner and outer block boundaries. In the 
present work a modified version of the 2-equation 
Wilcox k-� model is applied. 
Hover computations are accelerated with multigrid 
and local time stepping techniques. Forward flight 
computations are conducted with the dual-time 
stepping technique with a second order implicit 
time integration operator [11]. Elastic blade 
motions are accounted for by transfinite 
interpolation based on hermite polynomials. Free 
stream consistency for deforming grids is 
guaranteed by the geometrical conservation law 
[8]. 

2.5. Structure module 

Blade dynamics and blade elasticity in this study 
have been calculated with the Comprehensive 
Rotorcraft code HOST [4] from Eurocopter. The 
program is mainly used for calculations of flight 
paths and stability issues and therefore disposes 
of a simple aerodynamic module based on lifting-
line theory. The aerodynamic coefficients are 
determined from 2D airfoil tables depending on 
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the sectional Mach number and the angle of 
attack. Because of the high aspect ratio the rotor 
blade is modelled as a quasi-1D beam based on 
an extended Euler-Bernoulli formulation. For that 
purpose the blade is divided into small rigid 
segments which are connected via real or virtual 
joints. Moderate deformations in flap and lag 
direction as well as the elastic torsion are 
considered. On the other hand shear deformation 
and longitudinal expansion are neglected. Offsets 
between local center of gravity, bending and 
torsion are allowed in order to account for 
coupling effects between bending and torsion. 
The deformation of the blade is directly 
determined through the solution of the lagrange 
equation. The separation of space and time is 
achieved by a modal approach which at the same 
time helps reducing the number of degrees of 
freedom. 

2.6. Fluid-structure-coupling 

Evaluation of the rotor blade's aerodynamic 
performance is done using a weak coupling 
approach between the flow solver FLOWer and 
the simulation tool HOST. The calculations for 
each discipline are carried out alternately. The 
blade dynamics and deformations are passed 
once per revolution in the form of blade mode 
shapes and generalized coordinates. The 
aerodynamic loads resulting from integration of 
the surface pressure distribution (Figure 6) on the 
other hand are transferred in the rotating rotor hub 
system (Figure 7) as a function of radius and 
azimuth. Afterwards the loads are transformed 

into a fourier-series and transmitted to the CSD-
mesh via linear interpolation. Therefore the weak 
coupling procedure is very well suited for the 
analysis of periodic flight conditions [3]. Another 
advantage of this method is that it automatically 
provides a trimmed solution. 
The goal of the method is to successively replace 
the aerodynamic loads computed by HOST's 
simple aerodynamic module with those obtained 
from the high-fidelity aerodynamic model. The 
correction of the aerodynamic loads changes the 
dynamic response of the rotor and vice versa until 
a steady periodic solution is reached. The 
procedure of the weak coupling is as follows: 

1. Calculation of blade dynamics and elastic 
deformation for one revolution with HOST. 

2. Evaluation of aerodynamic loads with 
FLOWer with respect to the previously 
computed blade motion and deformation 
(Figure 8). 

3. The subsequent trim is performed with the 
corrected aerodynamic loads which read 
as follows: 

2) 1
2

1
32

�� ��� n
D

n
D

n
D

n FFFF
����

 
4. Steps (2) and (3) are repeated until the 

difference of the aerodynamic loads 
between two subsequent trim iterations 
tends to zero, namely:  

3) 01
222 ���� �n
D

n
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n
D FFF

���
 

In this case the rotor is trimmed with the 
aerodynamic loads of the high-fidelity module. 

 

 

2.7. Objective function 

A helicopter rotor requires the highest power in 
hover and fast forward flight. Therefore it is 
desirable to adapt the blade design such that the 
consumed power at those flight conditions 
becomes minimal or the attained thrust becomes 
maximal. One way to do so is to improve the 
rotor's efficiency which is represented by the 
figure of merit (FM). Although care has to be 
taken when comparing the figure of merit of 
different rotors (see section 2.2), it is chosen as 

the objective function for hover because 
optimizations can be carried out in an efficient 
manner. 
When dealing with forward flight, power is not only 
consumed for the generation of thrust but also for 
propulsive force. Since no gauge as the FM exists 
for forward flight the objective function was taken 
to be the rotor torque coefficient cq which is 
directly proportional to the consumed power. In 
order to be able to compare different rotors, they 
have to be trimmed to match the same thrust and 
propulsive requirements. 

 
Figure 6: Surface pressure 

 
Figure 7: Forces on t/4-line 

 
Figure 8: Mesh Motion 
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In the multi-objective case a weighted sum 
approach is favoured. In order to balance the 
different flight conditions correctly, the nominal 
values for FM and cq are divided by reference 
values resulting in equation 4): 

4) 
refq

q

ref
obj c

c
FM
FMF 21 		 ��  

 

 
Optimizer   Congra SubPlex1 SubPlex2 EGO 

Parameter Start Constraints End End Start End End 

Theta 10.0 30.0 19.98 26.83 20.0 26.52 26.67 

Twist -4.32 -20.0 -11.36 -19.98 -10.0 -19.99 -20.0 

Chord 1.0 0.2 0.23 0.97 0.25 0.52 0.44 

FM 0.5073  0.6712 0.6917 0.6604 0.6988 0.6993 

Table 2: Reference values for parameters and goal function of the optimization algorithms 

3. OPTIMIZATION RESULTS 

3.1. Comparison of optimization algorithms 

Before starting the optimization studies for the 
challenging cases, i.e. fluid-structure coupled 
analyses with multiple parameters, the three 
different optimization algorithms presented in 
section 2.1 have been revised with respect to their 
efficiency. The test case was chosen to be a 3-
parameter - namely Theta, Twist and Chord - 
optimization in hover with rigid blades. Table 2 
shows the reference values for the parameters 
and the goal function for all three algorithms. The 
test case is very well suited for an efficiency 
assessment because the result is known a-priori 
from basic theory. The optimal hovering rotor as 
first described in [9] will offer a high twist and high 
taper, i.e. small blade tip chord (Table 2) resulting 
in a large blade root chord. Another challenging 
aspect for the optimizer is the different sensitivity 
of the chosen parameters. While theta and twist 
have a considerable influence on the goal 
function, the effect of the blade chord distribution 
plays a much less important role. 
Figure 9 - Figure 11 show the convergence 
histories of the three optimizers for the three 
parameters and the goal function (twist values 

have been multiplied by -1 for illustration 
purpose). In the first case using the CONGRA 
algorithm it can be seen in Figure 9 that even with 
more than 40 iterations the optimizer does not 
reach the foreseen value for twist. Although the 
bound constraint for the tip chord is obtained, the 
optimization gives only a modest result for the FM 
attaining a value of 0.6712. The main 
improvements have to be attributed to the twist for 
which the constraint value is not reached. The 
reason for the bad performance of the algorithm 
can be found when looking at the step size for 
computing the gradient with finite differences. As 
a matter of fact no preliminary study in order to 
identify the correct step size has been done. 
Obviously the chosen step size was too large or 
too small resulting in a wrong gradient and 
therefore misleading the algorithm. 
The SUBPLEX algorithm exhibits a much better 
behaviour. It closes the first optimization run after 
about 50 iterations with more promising values for 
theta and twist with a consequently higher value 
for FM of 0.6917. Notice that the final value for 
theta is increased as a result of the higher twist 
value. While having found the optimal value for 
twist, SUBPLEX encounters difficulty when 
optimizing the tip chord. Although having changed 
the parameter throughout the optimization the 
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Figure 9: Congra 
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Figure 10: SubPlex 
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Figure 11: EGO 
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optimizer returns to an almost rectangular blade 
at the end of the optimization. This is due to the 
much smaller influence of this parameter and also 
the known deficiency of the optimizer for 
premature convergence. Restarting the optimizer 
with a new parameter set close to the last best 
shows immediate remedy, i.e. a huge drop for the 
chord parameter can be observed in Figure 10 for 
iteration 49. The value for chord stays there while 
the value for twist quickly returns to the constraint 
value of -20.0 degrees. With a total of 107 
iterations the algorithm attains a respectable 
result with a figure of merit of 0.6988. Figure 11 
demonstrates the calculation history for the EGO 
algorithm. The graph has been manipulated for 
illustrating reasons, i.e. the order of the 
calculations has been changed in favour to 
ascending FM-values. Nevertheless it can be 
deduced from the graph that the optimizer 
achieves a better value for the FM in a single run 
with fewer iterations than both the other 
algorithms. The performance of each of the 
algorithms will always depend on the initial and 
internal settings. Therefore a quantitative fair 
comparison will be hard to achieve. Qualitatively it 
can be stated that the EGO algorithm shows the 
most efficient procedure for this kind of 
engineering example and is least error-prone.  

3.2. Optimization in Hover 

At first the optimization framework is applied for 
hover flight conditions. The baseline configuration 
is the four-bladed ONERA 7A model rotor which 
was tested in the Modane wind tunnel [2]. The 
rotor has a rectangular planform, a radius of 2.1 m 
and a chord of 0.14 m. The tip Mach number was 
chosen to be 0.646. Three different parameter 
combinations will be presented in detail. 

3.2.1. Twist 

This simple test case is well suited to validate the 
functioning of the optimization framework, 
because a high twist is known to be beneficial in 
hover. In fact, by increasing the twist of the blade 
the lift production is shifted further inboard of the 
blade, see Figure 13. This reduces the strength of 
the tip vortex and gives a more uniform 
distribution of the induced velocities, therefore 
decreasing the induced power consumption. In 
Figure 12 the objective function (negative FM 
because optimization has been formulated as 
minimization problem) has been plotted as a 
function of theta and twist. It can be seen that the 
optimal parameter set is found for high theta and 
high twist values (deep blue). That is the region 
where the optimizer has chosen the most 
parameter sets (black squares). Figure 14 and 
Figure 15 show the polars of the baseline and 
optimized rotor on the coarse and on the fine grid 
respectively. The optimized rotor (red circles) has 

a higher FM over the whole range of thrust 
coefficients. Moreover the difference in FM of 
approximately 7 points between the baseline and 
optimized rotor on the coarse mesh is almost kept 
on the fine mesh (6 points). The best FM is also 
shifted towards higher thrust coefficients. 
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Figure 12: Objective 
Function 
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Figure 14: Polar on 
coarse grid 
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3.2.2. Twist and Sweep 

This optimization case is chosen in order to verify 
the functionality of the fluid-structure interaction. 
The second parameter (sweep) adds 
disproportionately more complexity to the design 
task since sweeping the blade tip induces a 
twisting moment which acts on the structure. This 
was not the case in the previous design problem. 
In Figure 17 the FM is plotted with respect to the 
design variables. The contour resembles an 
alpine topography with mountains representing 
high values of FM and valleys being related to low 
values of FM. Unlike in the previous case where 
the contour of the objective function exhibited a 
parabolic shape the objective function in this case 
is multimodal. Sweep is represented by a color 
coding, red values indicating a strong backward 
sweep, blue a strong forward sweep. Blue values 
can hardly be seen suggesting they are hidden in 
the valleys. In fact forward swept blades exhibit an 
intrinsically unstable behavior from a dynamic 
point of view. Most of the evaluations for strong 
forward swept blades have failed corresponding 
to low FM values and therefore cannot be seen in 
the plot. Contrary most of the peaks appear in 
green indicating that a moderate deflection of 
approximately 0.2*chord seems to be the most 
beneficial. In fact the highest peaks can be found 
in the far right corner which signifies that the best 
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parameter set is reached with high theta, high 
twist and a moderate sweep. At higher sweep 
values the elastic torsion becomes too big 
resulting in a degradation of the radial thrust 
distribution because the angle of attack of the 
outer sections has become too small. This can be 
seen in Figure 18 where the elastic torsion for 
three different cases (marked with a circle in 
Figure 17) is being compared. Clearly the elastic 
torsion depends on the amount of sweep, twist 
and collective pitch. 
 

Figure 16:Top view of blade surface of optimal rotor
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 Theta Twist Sweep Tor_el 

Case1 18.3 -7.9 0.17 -4.6 

Case2 17.0 -10.6 1.0 -6.8 

Case3 29.0 -12.2 1.0 -15.4 

Opt 30.0 -16.4 0.15 -6.0 

Table 3: Design parameters and elastic torsion for 
three different cases 

Summing up the values for theta, twist and elastic 
torsion (Tor_el) in Table 3 for the different cases 
shows that the angle of attack of the outmost 
station is the biggest for case 1 with 5.8°. Case 3 
shows an angle of 1.4° and for case 2 the angle is 
even slightly negative. As can be observed in 
Figure 19 this results in a significant decrease of 
thrust in the outer section of the blade for case 2 
and case 3 compared to case 1 which exhibits an 
almost triangular thrust distribution. 
Figure 20 illustrates the polar of the baseline and 
the optimal parameter set (see also Table 3) on 
the coarse grid. A considerable improvement of 
about 7 points can be recorded. Again this benefit 
can be maintained on the fine grid (Figure 21) and 
is also being shifted to higher thrust coefficients. 

3.2.3. All Parameters 

Adding parameters means increasing the 
optimizer’s choice but also the complexity of the 
problem. The present analysis needed more than 
200 evaluations in order to converge to an optimal 
parameter set. Furthermore combining certain 
parameters may create interdependencies. Figure 
22 depicts the correlation between the different 
parameters and the FM. It can be seen that when 
the objective function is confined to a scale of 
0.69 to 0.71 clear relations for each individual 
parameter exist. That means that for an objective 
function in this interval theta has to be in a range 
of 25° to 30° and the twist will be between -10 and 
-20°. This is not surprising since it is in 
accordance with the other optimization runs. The 
same is true for the tip chord which lies between 
0.5 and 0.8 which helps to unload the tip 
decreasing the intensity of the tip vortex and 
improving the radial thrust distribution. Unlike in 
section 3.2.2 where a moderate sweep was the 
best choice in this optimization an almost linear 
trend can be observed towards higher sweep 
values nearly reaching the constraint of 1.0. The 
reason for this can be found when correlating 
sweep with chord as is achieved in the upper right 
graph in Figure 22 with a color map. Then it 
becomes obvious that the higher sweep values 
always match with a small tip chord resulting in a 
smaller twisting moment and consequently lesser 
elastic torsion. The result for anhedral seems 
surprising at first since the optimal value is very 
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close to zero. Taking a closer look at the 
geometry in Figure 23 reveals that an anhedral 
can be seen though. The reason for this lies in the 
combination of twist and sweep which induce an 
anhedral when applied in the correct order. 
Because the blade is twisted at first and swept 
afterwards, the blade tip is not only deflected 
inplane but also out of plane. The reader should 
note that the starting point of the tip also 
influences the sweep and anhedral angle while 
nominal values stay the same. Since the optimal 
rotor shows a considerable twist and sweep, a 
distinct anhedral angle of about 32° is reached. 
This might also be the reason why a small tip 
region is preferred by the optimizer. As shown in 
the previous section a small tip region in 
combination with a small tip chord helps 
unloading the tip and the combination with a 
strong sweep generates a desirable nose down 
elastic twist. The scope for the profile transition 
(from OA213 to OA209) is shifted further inboard 
between 0.5 and 0.7. This is quite reasonable 
since the optimal rotor operates at a considerably 
high collective pitch angle (even when taking into 
account the twist) and a thinner profile helps 
reducing the local Mach number and therefore the 
shock on the profile. 
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Figure 22: Correlation between parameters and FM 
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Figure 23: Blade surface of optimal rotor (w/o twist) 

Figure 23 shows the optimal hovering rotor for an 
optimization with all parameters. The tip chord 
and the sweep can be viewed in the top view. The 

parameter values are summarized in Table 4. 
 

Theta Twist Chord Anhedral 

30.0 -20.0 0.50 0.008 

Sweep Tipstart Protrans  

0.87 0.955 0.557  

Table 4: Parameter set of the optimal rotor 

3.3. Optimization in Forward flight 

Optimizations in forward flight are somewhat more 
cumbersome than in hover since unsteady CFD 
computations have to be conducted. The flight 
condition is a fast forward speed (� = 0.4) case 
with a tip Mach number of 0.646. The rotors were 
trimmed to a total thrust of 4400 N and a 
propulsive force of 563 N.  
In Figure 24 the objective function (torque 
coefficient) is presented as a function of the twist 
rate. The squares correspond to the evaluations 
during the optimization (single blade 
computations), the circles represent the results 
from the full chimera computations. As can be 
seen a close correlation between the single blade 
and the full chimera evaluations exists. This can 
be attributed to the fact that the blade vortex 
interaction for this flight condition is very limited. 
Although differences become apparent when 
detailed information such as normal force over 
azimuth is compared, the effects become less 
influential when considering integral values. 
Regardless of the computation technique (single 
blade or chimera) it can be deduced from Figure 
24 that the optimal twist for forward flight is about 
-6° which is not very far from the twist rate of the 
reference rotor (-4.32°). Changing the twist rate to 
smaller or higher values leads to a worsening of 
the objective function. Although in general the 
idea for optimizing a blade in forward flight is the 
same than in hover, i.e. shifting the thrust 
distribution inboard as far as possible, the 
realization is far more difficult because of the 
conflicting requirements in the different azimuthal 
quadrants.  
Nevertheless when analysing the lower end of the 
twist spectrum, e.g. a slightly twisted blade (-3.1°) 
with the optimal twisted blade (-5.96°) that is 
exactly the case. Regarding Figure 25 and Figure 
26 it can be seen that the slightly twisted rotor 
produces more thrust on the outer part between 0 
and 210° azimuth. This is also illustrated for an 
azimuth position of 120° in Figure 27. In 
consequence the slightly twisted rotor consumes 
more power in the outer region of the rotor which 
is demonstrated by the red color in Figure 28, 
thus resulting in a small power degradation of 0.4 
kW. 
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Figure 24: Objective function on coarse and fine mesh 
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Figure 25: Thrust 
distribution for slightly 
twisted blade 
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Figure 26: Thrust 
distribution for optimal 
twisted blade 
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Figure 28: Power 
difference between slight 
and optimal twisted blade 

As stated before this trend cannot be continued to 
very high twist rates. Figure 29 and Figure 30 
compare the thrust distribution of a highly twisted 
blade (-10.47°) and the optimally twisted blade. 
As in the previous example the rotor with the 
higher twist rate generates more thrust at the 
inboard sections of the blade which is shown for 
an azimuth position of 120° in Figure 31. 
However, the thrust distribution for the highly 
twisted rotor cannot be regarded as beneficial 
anymore because a huge negative thrust region 
has developed on the outer part of the blade 
between 90 and 150° azimuth. This cannot be 
prevented, since the trim objectives have to be 

obtained. In order to compensate for the strong 
downward thrust of the outboard sections the 
blade has to be adjusted to a high collective pitch 
resulting in a power penalty in this region. Adding 
up the different contributions yields an overall 
consumed power of 104.4 kW for the highly 
twisted blade and 101.0 kW for the optimally 
twisted blade leaving a benefit of 3.4 kW. 
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Figure 29: Thrust 
distribution for highly 
twisted rotor 
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Figure 30: Thrust 
distribution for optimal 
twisted rotor 
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Figure 31: Radial thrust 
distribution at psi=120° 
for high and optimal 
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Figure 32: Power 
difference between high 
and optimal twisted rotor 

3.4. Multi-objective Optimization 

Optimizing a helicopter rotor for a single flight 
condition is a necessary task in order to 
understand the effect of different design 
parameters. On the other hand it is not a relevant 
case for real rotors since a rotor optimized for 
hover will suffer from huge performance deficits in 
forward flight and vice versa. Thus it is of great 
interest to design a rotor for hover and forward 
flight simultaneously. Since the optimization in 
forward flight has already shown to be time 
consuming the simplest case of twist optimization 
has been chosen for the multi-objective case. The 
objective functions and flight conditions are 
chosen as in the single-objective case which 
means that the collective pitch has to be added as 
a design parameter. For the combination of the 
two flight conditions a weighing of function 
approach (WOF) is chosen according to equation 
4). 
Five different sets were computed: pure hover (w1 
= 0.0, w2 = 1.0), hover predominance (w1 = 0.25, 
w2 = 0.75), equal weighing (w1 = 0.5, w2 = 0.5), 
forward flight predominance (w1 = 0.75, w2 = 
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0.25), pure forward flight (w1 = 1.0, w2 = 0.0). 
Before the two objectives can be summed up they 
are divided by reference values as can be seen in 
equation 4) in order to reach unity in both cases. 
Otherwise the chosen weights would be 
meaningless in terms of an equal comparison. 
Figure 33 shows the result of the different WOF 
sets. For the pure hover set the result as in the 
single objective case e.g. maximum twist (-20°) is 
reached. Therefore the hover objective function 
(Obj_hov) is equal to one meaning the FM has 
attained the reference value. For the pure forward 
flight set the reference value is also reached but 
at a slightly smaller twist rate as in the single 
objective case. When closely observed this is not 
a disturbing issue since it can be seen in Figure 
24 that the gradient of the objective function in this 
region is quite small. In fact, when comparing the 
different computations within this set it becomes 
clear that an increase in twist rate of about 1° 
results in only a petite performance degradation. 
Furthermore the convergence in the MDO case is 
slower than in the SDO because optimizations are 
done with two parameters (collective pitch angle). 
Therefore a better performance at a higher twist 
rate could have also been reached if the 
optimization had been carried out further. 
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Figure 33: Multidisciplinary optimization of twist 
with WOF approach 

Increasing the twist rate to values of about -9° 
(green squares) shows a good improvement for 
the hover objective function without huge 
performance degradation in forward flight as can 
be seen in Figure 33. In this case the two 
objectives are weighed equally. Shifting the 
importance further to the hover case (w1 = 0.25, 
w2 = 0.75) pushes the twist rate to values of about 
-14° and results in a strong performance penalty 
for forward flight. 

4. CONCLUSION 

An optimization framework for helicopter rotors in 
hover and forward flight based on high-fidelity 

coupled CFD/CSM analyses has been presented. 
At first the mesh generation process and the fluid 
structure module have been illustrated. In a 
second step the effectiveness of different 
optimization algorithms has been revised showing 
the superiority of the EGO algorithm over the 
traditional gradient and pattern search method. 
Optimizations in hover reveal the importance of 
the twist distribution for this flight condition. In 
comparison with other parameters the principal 
gains result from an increased twist rate. Although 
a non-linear twist distribution would be favourable 
the main improvements are achieved with a linear 
twist giving the advantage of having only one 
design parameter. 
Optimizations including the sweep as design 
parameter demonstrate the necessity of taking 
into account the fluid structure interaction. While 
forward swept blades exhibit an unstable 
behaviour moderate backward swept blades show 
a favourable influence on the elastic torsion which 
improves the rotor’s efficiency. Furthermore the 
test case showed the unconditional need for a 
global optimization algorithm which does not get 
stuck in a local optimum. 
In hover the variation of the chord can add only a 
slight additional improvement. Nevertheless it is 
important in combination with other parameters. 
Furthermore this parameter will gain more 
importance for forward flight optimizations since 
sweeping the blade without tapering will induce 
huge twisting moments quickly reaching the 
structural limits of the blade. 
An optimization of a hovering rotor considering 
many design parameters increases the parameter 
space and therefore the possibility of reaching a 
higher FM. On the other hand it has become clear 
that more parameters increase the complexity of 
the design problem and therefore the chance of 
missing the global optimum since the objective 
function has become highly multimodal. Another 
important aspect is that the parameters heavily 
interact with each other making it difficult to isolate 
individual effects. The major blade changes have 
been made to the blade tip, since this is the most 
effective part of the blade. It will be left to further 
researches to investigate the possibility of 
stronger modifications to the inner part of the 
blade. The starting point should be a 
parameterization for individual blade sections 
which will in turn increase the number of design 
variables. 
In forward flight it could be demonstrated that the 
chosen procedure of optimizing with only a single 
blade is valid. The trend of the objective function 
was very well predicted showing an almost 
constant offset between the single blade and the 
full chimera approach. As expected a high twist 
rate in forward flight increases the torque 
coefficient dramatically. Moderate twist rates do 
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not degrade forward flight performance too much 
but offer substantial improvements for the hover 
condition. 
This could also be shown in the MDO case. 
Increasing the twist rate to values of up to -9° 
gives reasonable improvements in hover while not 
strongly degrading forward flight performance. 
Since a lot of computations have to be done in 
MDO only few parameters can be analysed. 
Strategies for lowering computational costs seem 
to be a key element for future researches. 
In summary it can be said that very promising 
results have been achieved. For the first time CFD 
computations have been extensively used inside 
an optimization. The superiority of this approach 
for complex geometries in comparison with 
traditional methods could be demonstrated. 
Although the calculations are quite time 
consuming different strategies have been adopted 
to make such optimizations feasible in the 
scientific context. Nevertheless some major 
drawbacks still exit, i.e. the properties of the 
structure are fixed during an optimization. 
Although it is expected that the structural 
properties can be adjusted to meet the predicted 
aerodynamic expectations it cannot be 
guaranteed. Furthermore it cannot be stated if the 
optimization had proceeded in the same way if the 
structural properties had been changed during the 
optimization. Another interesting aspect is the 
applicability of the outlined procedure for other 
flight regimes. More challenging flight conditions 
such as BVI-cases will need additional modeling 
techniques on the CFD side. Last but not least 
methods for reducing the computational costs will 
be crucial for an industrial acceptance. 
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