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Abstract 

This paper investigates one important source for 
instability of stopped rotors during the decel­
erating and accelerating process. Flapping 

stability is usually lost at advance ratios 
above two, due to strong parameter excitation 
through periodic aerodynamic forces. Reducing 
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the other hand, increases the nondimensional 

flapping natural frequency that has a stabiliz­
ing effect. The differential equation of motion 

is set up for the common rigid blade approxima­

tion, considering spring restrained hinges with 
arbitrary hinge offset. Reverse flew, which will 

be shown to be decisive for the stability bcund­

aries, is included analytically in a straight­
forward way. The effect of the parameter exci­
tation is discussed by means of MATHIEU- and 
HILL-type differential equations. Simple stabil­
ity criteria derived from STRUTT's stability 
diagram will be compared with the computed ei­

genvalues using FLCQUET theory. The effect of 
the forcing function i.e. the amplitude ampli­
fication of the inhomogeneous equation will be 

shown to be even more important than stability. 

Simulation results are presented in order to 
discuss the possibility of suppressing divergent 

flap oscillations by applying high rotor decel­
eration and acceleration rates. 

Notation 

c~ flapping spring constant 
om 

0 
mechanical flap damping 

~1 blade mass 

Qinst max. installed engine torque 
v rotorcraft velocity 

vi induced velocity 

X nondimensional blade coordi-
nate, state variable 

w -rlt 

rotor rotational speed, fre­
quency of parameter excitation 

j(c./I 0 )/Q nonrotating flapping natural 
~ ~ nom frequency nondimensionalized 

by nominal rotor speed 

All variables and quantities not listed here 
can be found in table 2 or in the appendix. 

Introduction 

A lot of R&D effort has been made to increase 

the cruise speed of different VTOL aircraft. 
While in its common helicopter configuration 

the rotorcraft achieves an excellent hover and 

vertical flight performance, which is due to the 
low disk loading, its efficiency drops rapidly 
as soon as the airspeed exceeds values of ap­

proximately 200 kt. One well-known solution, the 
Tilt Rotor aircraft, hopefully will enter pro­

duction in the near future. 

one rarely investigated alternative is to slow 

down the rotor horizontally as soon as higher 
forward speed is achieved, so all the required 

lift can be provided by a fixed wing. The rotor 
blades can then be folded and stowed in order to 

minimize the parasitic drag and to avoid aeroe­

lastic problems such as flutter or divergence. 
Few configurations have been worked out in de­

tail. 
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Ref.[l] describes a small research aircraft with 
twc horizontally stoppable and stowable rotors 
side-by-side. The two convertible engines can be 
switched from shaft power mode to fan-jet thrust 
mode. Some calculations have been perfor.med, in­
vestigating stability and control aspects during 

the transition;convertion phase. Rotor forces 
and moments have been computed, but the calcu­
lations did not cover aeromechanical problems in 
detail. First experience had been gained during 
wind tunnel t.ests of an earlier configuration 
called Me 408. 

Two concept alternatives, namely a single versus 
a tandem rotor configuration have been investi­
gated at NASA Ames, ref.[4]. Several important 
problems associated with the start/stop proce­
dure (e.g. high shaft moments and vibrations) 
are discussed in that publication. Aeromechani­
cal aspects have been studied in more detail 
during a Lockheed research programr ref.[2}, 
that included wind tUMel tests of the full­
-scale stowable rotor system CL 870 in the NASA 
Ames 40x80 ft wind tunnel. The rotor was de­
signed for eventual flight tests on the XH-SlA 
compound helicopter. In that paper, time histo­
ries of the calculated and measured blade loads 
are presented as well as shaft moments for the 
entire acceleration and deceleration phase. 

Flapwise bending moments are also measured for 

the completely stopped rotor. The equations of 
motion are solved by numerical simulation. 

Ref.[S] presents further wind tunnel tests, 
concerning the behaviour of totally stopped 
rotor blades at higher airspeed. Stall flutter 
instabilities have been discovered in the re­

treating blade region. 

The application of the so-called jet-flap rotor 
to a stoppable and stcwable rotor aircraft is 
proposed in ref.(6]. This rotor concept was also 
tested in the NASA Ames wind tunnel. Flapping 
stability was ensured ·through active control 
using azimuth depending feedback gains. Another 
concept proposes to stop the rotor and to con-
vert it into a fixed wing as described in 

[3]. This, however, requires a completely 

ref. 
dif-

ferent rotor design. On the other hand, cormnon­

-sized rotors must be folded and stowed, because 
just to stop the rotor does not improve the drag 
characteristic compared to an unloaded, but ro-

Although the flapping instability at high ad­
vance ratios is generally well understood, there 
are few systematic investigations of this prob~ 

lem in connection with the stoppable rotor. Most 
of the previous published investigations, which 
are concerned with the flapping stability in 
forward flight, leave off at advance ratios well 
below one, refs.[7,8]. 

Two main effects are responsible for the occur.­

rence of divergent flapping: on the one hand, 
the unloaded rotor operates at increasing ad­
vance ratios (up to infinity), if the rotor 
angular velocity is reduced while forward speed 
is constant. This results in strong parameter 
excitation due to periodic aerodynamic forces. 
On the other hand, the nondimensional natural 
flapping frequency rises, too. While the cen­
trifugal force vanishes, the blade root stiff­
ness gains importance in suppressing instabil­
ity. The natural frequency of the nonrotating 
blade, which is nondimensionalized by the nomi­
nal rotor speed is used to describe this char­

acteristic. The effect of wnr is explained in 
fig.l, where the flapping natural frequency is 
shown versus the rotor speed. For the proposed 
and investigated rotors, Wnr ranges from Oq4 to 
0.8, r.efs. (1,2]. Yet, a reduction of these high 

values may become desirable in order to limit 
rotor shaft moments. The ratio between the pe­
riodic excitation and the stabilizing constant 
stiffness will be shown to be decisive for the 
flapping behaviour. 

the aim of this paper is to gain physical in­
~ight into such parameter excited instability 
and to derive some basic criteria for a fea­
~ible rotor design. The investigation presented 
here is based on the following simplified stop­
ping process: 

- vertical take-off and acceleration to 
transition speed in helicopter mode 

- shifting the whole lift from the rotor 
to the wing 
slowing down, folding and stowing the 
rotor at constant fo~ard speed 

- wingborne acceleration to cruise speed. 

Restarting the 
Tab.l presents 

rotor is performed inversely. 
proposed design parameters and 

tating rotor, as it is pointed out in refs.(4,6]. those chosen for this investigation. 
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High transition speed is usually preferred in 
order to enable a wing design that aims at op­
timal cruise perfoonance. This, however, re­

quires the application of high lift devices dur-
ing transition and induces 
problems for the stopped 
they are folded. 

stronger stability 
rotor blades before 

Data as proposed 
in refs. I 1+6] 

Data applied in 
this investigation 

disk loading 480 _760 600 N/m' 
rotor solidity 6.9 12.7 7.6 % 

thrust coeff. 0.07 0.18 0.08 -
blade tip speed 190 - 270 250 nvsec 
transition speed 60 __ so 50 m;'sec 

Table 1: Main data of proposed stoppable rotor 
aircraft (hovering in rotorcraft mode) 

The relationship between rotor angular velocity 

and advance ratio during rotor deceleration, 
which emerges from the chosen data, is shown in 

fig.2. As we proceed in this paper, we must al­
ways bear in mind, that both effects, namely the 
rise of the advance ratio and the reduction of 

the rotor speed, are involved simultaneously. 
First, we will concentrate on the isolated 
flapping degree of freedom at constant rotor 
speed. These results are of interest, if we 
postulate that it must be possible to interrupt 
and reverse the start/stop procedure at any 

time, see ref.[6]. Moreover, this simplified 

problem can be treated analytically and serve as 

ii • [ y D(~) • 2 D~] 0 ~ • [ y K(~) • K~] 0 2 ~ • ( 1) 

• [ y El~l • E0 J 0 2 

where D(~), K(~) and E(~) are periodic coeffi­
cients, which emerge from the aerodynamic oper­
ating condition and therefore are strongly de­
pendant on the advance ratio p. The teem ~~ 
which summarizes the spring effect of the cen­

trifugal forces as well as the blade root re­
straint, depends on the rotor angular velocity. 

Additional mechanical damping can be incorpo­

rated by the constant D~. Pitch-flap coupling 
is considered as tano 3 within the coefficient 
K(~). The excitation by the forcing function 
E(~) on the right hand side is due to inflow, 
blade twist and pitch, whereas the constant part 
E0 describes the blade weight (see appendix). 
The blade data used for most of the following 
calculations are listed in tab.2 and are denoted 
as reference data. 

p 

g 

1.225 kg;m' 
9.81 m;sec' 

air density 
gravity constant 

R 5.00 

Qnom 50 
a/R 0.13 

m ?.s 

181 0.30 
caet 6.25 
A 0.25 

B 1.00 

m rotor radius 
rad/sec nominal rotor speed 

nondimensional hinge offset 
kg;m blade mass per unit length 

(uniform mass distribution) 
m blade chord 

lift curve slope 
nondimensional aerodynamic 
blade origin 
nondimensional aerodynamic 
blade end (tip loss factor) 

the reference case for the transient simulations. Table 2: Reference data 

Blade Model So far, reverse flow has been neglected. 
means, that the calculated lift acts in 

This 
the 

Flaooing Eauation of Motion wrong direction, as long as the retreating blade 

The inhomogeneous flapping equation is set up is crossing the reversed flow region. During the 

for a rigid, spring restrained blade. Hinge 

offset and spring stiffness are adjusted to ob­
tain the desired natural frequency variation 

over the rotor speed. The derivation of the mo­
ments acting on the flapping hinge is presented 
in the appendix. This leads to the well known 

equation 

advance ratio increases, this region spreads out 

over all the azimuth range from n: to 2n:.· The 

impact of this crude approximation is illus­

trated in fig.3. It should be noted, that the 
aerodynamic flapping damping D(~) becomes neg­
ative for the retreating blade; an effect, which 

is physically impossible in this connection. 
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Various publications I e.g. refs. [ 7 1 9] 1 mention 
that problem. Nevertheless, it seems to be use­
ful to study the flapping behaviour, neglecting 
reverse flow. In this case, equation (1) can 
easily be splitted into two MATHIEU-Type differ­
ential equations, for which many comprehensive 
investigations have been conducted (see next 
chapter). 

Consideration of Reverse Flow 

If we assume an equal lift curve slope for flow 
from the leading edge or from the trailing edge 
respectively, then to change the sign of the 
lift coefficient in the corresponding region is 

a simple means of modelling reverse flow. In 

this case, the integrals with respect to the 
blade radius coordinate include the sign-func­
tion, as many authors have pointed out. They 
conclude that integration has to be splitted 
into the range from 0 to -~sinw and -~sinw to B. 

sufficiently damped in hover. Increasing the 
advance ratio (while rotor speed is reduced) 
does not affect the nondimensionalized eigenva­
lue of an articulated rotor, whereas the flap­
ping frequency (divided by the actual rotor 
speed) rises for a stiff rotor. Introducing the 
reverse flow modell into the time average ex­
pressions, which of course is quite unreali­
stic, gives us a rough idea of the stabilizing 

effect of reverse flow. Yet, it has to be em­

phasized that no regions of instability occur in 
either case, in contrast to what we would expect 

to be a particular characteristic of a parameter 
excited system. 

MATHIEU-Type Equation and 
STRUTT's Stability diagram 

In order to become more familiar with the un­
usual behaviour of periodic systems, the well­

known MATHIEU-Type differential equation will be 
Since these limits depend on ~ some authors discu~sed first. Since the flapping equation can 
stress that there is no expression to be found, 
which would cover the whole azimuth range, e.g. 
ref. I 7 J. 

However 1 the appendix shows a rearrangement of 

the integrands in a way that enables an analyt­
ical, closed integration over the whole radius. 
The resulting functions D~(~) are illustrated 
in fig.4 for na0,l,2 , The incorporation of the 
periodic te~ into the flapping equation in­
stead of the constants Dn' leads to extended ex­
pressions for the coefficients DR(w), ~(w) and 
iRiw), which are listed in the appendix, as 
well. Despite the difference in formulation, 

be transformed into a very similar form, the 

same mathematical methods apply in order to exa­
mine stability. The homogeneous MATHIEU-Type 
equation is 

(2) 

where the parameters D, K
0 

and Kc represent the 
damping, the spring stiffness and the parameter 
excitation. Fig.6 above shows the STRUTT stabi­
lity diagram that defines the stability bounda­
ries in the K

0
-Kc parameter plane for o-0. This 

diagram has rarely been calculated for Kc>>l 
(except e.g. ref.ll3)). It can easily be exten-

these functions are equivalent to those pub- ded to the case D>O, in which the unstable re­
lished in ref.[7J. gions move back from the K

0 
axis, as shown in 

refs. I 13+16). 

Flapping Stability of Slowed Rotor 
at Constant Rotor Speed 

Most of the published investigations concerning 
the flapping stability cover the advance ratio 
range from hovering to about 0.5 . As some au­
thors propose (e.g. ref.l8)), a constant coef­
ficient approximation based on the time averaged 

coefficients can be applied with reasonable ac­
curacy. ~ig.S illustrates, however, what happens 

if this method is extended to stopped rotor pro­
blems. We know that the flapping motion is 
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Let us assume that for a certain system, de­
scribed by MATHIEU's equation, the parameters 

K , K rise simultaneously, while D remains con-e c 
stant. This is illustrated in fig.6 for the 

trajecto~ Kc•K
0 

and D-0.15 The two lower 
diagrams show the corresponding eigenvalues. In 
the regions of instability (for 0=0), the real 
parts split in a way that one gains stability 
while the other looses it. This effect is called 

parameter resonance. But, since the trajecto~ 

always remains below the boundaries for 0=0.15, 
stability is not lost. 



As long as parameter resonance occurs, the ei­
genfrequency is engaged to an integral multiple 

of Q/2; that is to say it does not increase 
proportionally with the system stiffness /K

0
• 

All stability diagrams presented in this paper 

have been calculated by the FLCX)UET theory. 

If we now remove the periodicity from the D(~) 

term of the flapping equation (neglecting re­
verse flow) by the transformation 

X • 

I 

t f(K 2 y 1.1 C1 •lnOt) dt 

~ e 

we get the HILL-type equation 

( 3) 

very close to the exact result 
tained by the FLCX)UET theory for 
system. If the precise stability 

wnr<O .171 ob­
the complete 

boundaries of 
STRUTT's diagram are not available for the cor­
responding damping, it may be useful to apply 

one of the very simple sufficient conditions 
given in ref.(lSJ. The most appropriate seems 
to be 

leading to wnr<O.l96, 
far on the safe side. 

a boundary, 

Effect of Reverse E"low and r1odified 

Blade Characteristics on Stability 

( 5) 

which is by 

As it has been explained in the previous chap­
X ... 2 D 0 X ... (Ko ... KccosOt ... Kc2cos(20t ... .p)) 0 2x = 0 ter, stability behaviour of parameter excited 

(4) systems can be described by stability boundaries 

Removing the whole damping teDm, along with its 
constant part, seems to be less useful, because 

in this case the stability behaviour of the 

transformed equation would not be directly com­

parable to that of equation (1). 

The resulting parameters K0, Kc and Kc2, which 
depend on ~ and Q, are defined in the appendix. 
The constant damping is o-K1 y/2. This extended 

MATHIEU-Type equation ( 4) is very similar to 

the one discussed above and has been studied in 
refs. [13, 14,16 J for phase angles of ~ •0 and -180 
deg. If Kc and Kc2 are of the same magnitude, 
the influence of the phase angle on the stabil­
ity boundaries, however, has to be considered 

(e.g. ~·-129 deg. for the reference data). 

If we neglect the interaction of the Kc' Kc2 
terms though, stability for the slowed rotor can 
be discussed by two separated STRUTT diagrams, 
see fig.7 . Calculating the two trajectories 
Kc•f(K

0
) and Kc2·f(K

0
), as well as the corres­

ponding dampings, makes it obvious, that only 
the 2Q term may cause instability for higher p. 

Since the Kc2 trajectory is a straight line, 
stability can easily be determined with the help 

of STRUTT's diagram. As an example, the required 
flapping spring stiffness has been calculated 
for the reference data. According to this, sta­

bility should be assured for wnr;:O.l70, which is 

in the K
0
-Kc plane. For the flapping motion, 

however, it makes more sense to use parameters, 
which are physically connected with the stop ro­
tor problem, as Wnr and p {or 1/Q). In order to 
estimate the current damping, the real part of 

the less stable eigenvalue can be embodied into 

the diagram as the third dimension, see fig.8 
above. It is to be seen, that rlslng the flap 
hinge stiffness will stabilize the flapping mo­

tion at high advance ratios. 

As supposed above, the consideration of reverse 
flow does actually improve the computed stabi­
lity. The behaviour during rotor deceleration 
does not change in principle, but, the whole 
3D stability pattern rises to higher damping 
with increasing advance ratio, as illustrated in 
fig.8 below. This becomes even more obvious in 
fig.9, where both real parts are plotted for an 
intersection at Wnr•const~O.l35 . 

If we project these stability patterns back to 

the wnr-p plane, we obtain the two diagrams, 
fig.lO, which are directly analogous to STRUTT's 
diagram. The shapes of the Re(A)/~0 curves show 
clearly, that less flapping stiffness is re­

quired to assure stability, if reverse flow is 
modeled (wnr=O.lOO for the referenz data). An 

other representation, that may be more common/ 
is chosen in fig,ll . It shows the corresponding 

root locus plots for wnr=0.135 . 
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The influence of different blade design param­

eters on stability has been studied by numerous 

calculations based on the FLO;lUET theory. For 
each case the nondirnensional modal 
plotted versus the advance ratio 
fig.l2 . The main results are: 

damping 
(,u•lO/Q) 

- The most effective means to stabilize 

flapping is to increase the flap hinge 
stiffness. 

- As long as reverse flow is neglected, 

negative pitch-flap coupling does im­
prove stability. If reverse flow is 

considered, however, this coupling 
becomes destabilizing, regardless of 
the sign of &3 (fig.l2, lst and 4th 
column). 

-Additional mechanical damping o~ in­
creases all real parts to exactly the 
same degree, but it does not affect the 

gradient with respect to the advance 
ratio (fig.l2, 5th column). 

If the LOCK number is 

the ratio of inertial 
forces increases}, the 

reduced (i.e. 

to aerodynamic 
range of the 

real part variation becomes smaller, 
yet again, there is no significant 
change of the gradient to be observed 

( fig.l2, 6th column). 

- Reducing the hinge offset (without 

changing the flapping mass, but ad­

justing mass per unit length) slightly 
improves stability. Although the 
amplitudes of both D('l<) and K('!<) 
rise, the stabilizing effect of the 
increased positive 0(~} average pre­

dominates (fig.l2, last column). 

is 
in 

It has to be stressed that wnr was held con­
stant, where c~ was adjusted according to the 
flap inertia ISG Moreover, it should be noted 
that calculations must be continued to advance 
ratios of at least 20, to enable the determina­
tion of a clear stability tendency. 

Effect of Model Refinements 

Since we are using such a straightforward model, 

we also have to discuss whether all applied 
simplifications are reasonable or not, regarding 
our problem. Therefore, the modal damping com­

puted by two refined models has been compared to 
that by the standard model (for the reference 
case at the stability boundary). Fig.l3 above 
presents the results obtained from a numerical, 
nonlinear blade model. It considers 
Compressibility (as well as reverse 

stall and 
flow more 

precisely) utilizing 360 deg. profile data ta­
bles. Stability is evaluated from simulated time 
histories and shows excellent correlation. 

When the rotor speed is reduced, the first 
flapwise mode shape changes considerably. one 
simple possibility is to schedule the hinge 
offset and stiffness for an optimal approxima­
tion of the mode shape (and the corresponding 
natural frequency} at each rotor speed. With 
this blade model, a slight unstable flapping 
behaviour has been computed, as shown in fig.l3 
below. That means, a proper representation of 
the changing mode shape should be incorporated 
in the model. 

Forced Solution of 
Inhomegeneous Equation 

During many investigations concerning compound 
rotorcraft design, the dynamic response turned 
out to be an important problem. Mainly, the 

impact of gusts on the flapping motion was 
studied, where pitch-flap coupling has often 
been proposed as an effective means to restrict 
flapping response. It will be shown that the 
response characteristic is also decisive for the 

stop rotor design. 

In our case, the forcing function contains only 
integral multiples of Q, as long as the blade 
pitch is held constant. But arbitrary discrete 
frequencies may occure on the right hand 
if specific control inputs are applied. 

side, 

There-

fore it will firstly be discussed, which 
different forcing functions exhibit on 

effect 
the 

forced solution of parameter excited systems. 
Comprehensive surveys are given in refs.(13,14]. 
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Ameli tude CUrves of MATHIEU-'I'yoe Equation 

Fig.l4 summarizes the chaLacteristics of the 
forced solution, again choosing 
equation (2) as a simple example. 
show the low FOURIER coefficients 
forced solution 

the MATI!I EU 
The diagrams 

em of the 

x rorced = 

divided by the applied excitation amplitudes 
of the forcing function 

( 6) 

(7) 

plotted versus the system stiffness K
0
•(woiQ)'. 

From this, the following characteristics can be 
deduced: 

- Even a constant term on the right hand 
side, as a0 , produces a periodic response 

that contains all harmonics of Q (incl. 
the Oth harm.). ?eaks of the amplitude 

curves arise in the regions of the (n)­

parameter resonances (fig.14 above). 

- Forcing functions containing frequencies 
of v-(m+l/2)2 lead to peaks in the regions 

of the (n+l/2)-parameter resonances (fig.14 
2nd diagram). 

- Analogous behaviour is observed for forcing 

frequencies of ~rnQ at all (n)-parameter 
resonances (fig.14 3rd diagram). 

- For all other forcing frequencies, reso­
nance peaks develop too, that is, when­
ever the system stiffness results in a 
real part of wonQ±v (fig.14 below). 

- Those amplitude peaks turn out to be mcst 

critical, they are due to low forcing fre­
quencies mQ/2 in the regions of the low 
parameter resonances. In the presented 

example, amplification gets to over 30, 

which is about 10 times stronger than it 

would be for a corresponding constant 

coefficient system. 

Amplitude curves of Flaooing Eauation 

The following diagrams fig.15,16 present ampli­
tude curves derived from the inhomogeneous 

flapping equation. The first six harmonics (Oth 
to 5th) of the forced solution, related 
different parameters of the forcing 
are plotted versus the advance ratio. 

to the 
function, 
The con-

stant term E
0 

describes the effect of gravity. 
The influence of cyclic control inputs is repre­
sented by &

0
, which determines the blade pitch 

variation 6& • &
0
CosQt within the &-term. 

First of all, reverse flow is neglected again. 

It is seen that for the lowest stiffness of 
W0r•0.200 all fOURIER coefficients increase to 
infinity (fig.lS left hand), whereas for 

wnr·0.220 they remain limited, but at a very 
high level (fig.15 middle) and from just about 

wnr·0.240 the amplitudes become reasonable 
(fig.lS right hand). It should be emphasized, 
that all cases are stable, since the correspond­
ing stability bcundary is already reached at 

w
0

r•O .170 

amplitude 
(compare fig.l2a). As we expect, all 
peaks occur at those advance 

for which integral parameter-resonances 
tained (fig.lS bottom). 

ratios, 
are ob-

Modeling reverse flow, we get similar results, 

see fig.16. At the stability boundary w0 r•O.l00 
the amplitude rise proves to be very strong for 
all right hand side terms (fig.l6 left hand). 
For W .. Q.l45 the amplitudes remain limited but nr 
again too high for any technical application 
(fig.16 middle). only from a flap hinge stiff­
ness of Wnr~0.190, rotor deceleration seems to 
be practicable (fig.l6 right hand). Again, the 
relationship between amplitude curves and real 
parts of the homogeneous solution becomes ob­
vious, but the individual amplitude peaks do not 
separate as sharply as in fig.l4 and 15. 

These calculations clearly establish the forced 

solution to be even more critical than the homo­

geneous problem (i.e.stability) with respect to 

the flapping motion of stop rotors. 
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Transient Flapping During Stop 

and Acceleration Process 

So far, rotor speed has been assumed to be 
constant. Therefore, possible instabilities had 
an infinite period of time to develop fully. 
However, with respect to just flight mechanical 
aspects, the start/stop process Pas to be com­
pleted within a few seconds. The published in­
vestigations propose time intervals between 4 
and 22 seconds" With the presented compound air­
craft design, it takes a constant shaft torque 

of e.g. 72%Qinst ••ithin 3 sec. or l2%Qinst with­
in 30 sec. to accelerate the rotor to nominal 
rotor speed. Since the small aerodynamic drag 

forces of an unloaded rotor are not sufficient 
to slow down the rotor in a definite time, a 
rotor brake must be used. Applying brake torques 
corresponding to -65%Qinst within 3 sec. or 
-4%Qinst within 30 sec. would be necessacy to 
stop the rotor. 

In order to study the dynamic flapping behaviour 
during the start/stop process, many numerical 
simulations have been performed, which lead to 
the time histories of the transient flap angle, 
shown in figs.l7,18. Similar investigations di­
rected to a quite different application can be 
found in ref.(ll]. The flapping motion during 
rotor engagement and disengagement on board a 
ship at high wind conditions is discussed there. 

Within the interesting p region, rotor speed 

variation can be assumed to be linear with time 
achieving good accuracy. For the presented time 
histories rotor acceleration 

2-±0.SSrad;sec' correspcnding to 
was 

a shaft 
set to 

torque 

of ±3.5%Qinst• As the results show, even such 
low rotor speed changes affect the flapping 
behavior considerably. 

Fig.l7 indicates that even for an articulated 
rotor (Wnr·O) the flapping angle remains limited 
during the entire simulation. However, the in­
herent instability leads to unreasonably high 
amplitudes which are initiated 

initial disturbance applied to 
system (fig.l7 3rd diagr.), or 

either by a small 
the homogeneous 

by the right hand 
side excitation (fig.l7 4th and last diagr.). If 
the homogeneous system is stable for all p 

(fig.l8 3rd diagr. ), only the forced solution 
exhibits to be critical. In the presented 

example (w
0

r·0,145), the amplitude peaks have 

fallen to almost acceptable values (fig.l8 4th 
and last diagr.). 

Considering only the absolute maximum observed 
during each simulation, a great number of those 
calculations can be described by one single dia­
gram as fig.l9 or 20. First, the homogeneous so­
lutions (excited by a 66 step) have been evalu­
ated for different Q, fig.l9. It becomes obvious 
that through the application of high shaft 
torque flap amplitudes can be restricted to fea­
sible values even for quite instable cases. It 
is worthwhile mentioning that, due to the chang­

ing phase shift between initial disturbance and 
parameter excitation, the 13rnax values vary 

strongly between the plotted curves and ve~ 

small values {destructive interference). Fig.20 
shows a similar trend as above for the forced 

solut~ons. However, the positive influence of 
high Q is somewhat smaller. 

Hence it is seen, that to shorten the start/stop 
procedure by providing high torque to the rotor 
shaft is a possible means to augment flapping 
stability. However, it does not seem to be ap­

propriate to base the rotor design on this 

fact, as pcssible clutch or brake failures etc. 
must be taken into account. 

Conclusions and OUtlook 

Flapping stability behaviour of stopped rotors 

can easily be explained regarding the MATHIEU­
type equation and STR!.ITr' s stability diagram. As 

we expected, modelling reverse flow exhibits 

a considerable influence on calculated damping. 
A most compact analytical formulation is pro­
posed as a direct extension of the case without 

reverse flow. The typical characteristics of 

parameter excited systems can be identified 

clearly in both cases. 

During the investigation the flap hinge stiff­
ness expressed by W proved to be the decisive nr 
parameter: 

- Flapping stability is achieved 

at about Wnr~O.l 

Flapping amplitudes remain 

limited from about w
0

r=0.2 
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- Rotors proposed, investigated 
or tested by other authors are 

designed for wnr~0.4 + 0.8 

With respect to only the flapping behaviour, 
the latter values seem to be quite high, since 
they lead to undesired strong shaft moments. 
Numerical simulations show that the application 
of high rotor deceleration and acceleration 
rates is another means to reduce flapping ampli­
tudes considerably. 

The appropriate modeling of the changing flap 

mode shape turned out to be important. At least 
hinge offset scheduling will be regularly used 
within future calculations. In the reverse flow 
region the aerodynamic forces act approximately 
at 75% chord far away from the feathering axis 
and the center of gravity. Obviously, feasering 
moments are induced, which excite the torsional 
blade motion. In ref.[9] it has been shown that 
this effect can diminish flapping stability. 
Therefore, the torsional degree of freedom will 
be incorporated as a further step towards model 
refinement. 

Lead-lag motion is expected to have small in­
fluence on the results, since the unloaded rotor 
(with ~0 ·0, ~0-0] develops only slide couplings 
between flap and lag motion. However, in the 
region of frequency cross-over, stability should 
be examined. 

Many authors point out that the influence of 
unsteady aerodynamics, commonly modeled as 
dynanUc inflow, decreases with rising advance 
ratio. But when the rotor speed is reduced to 

vecy low values, other aerodynamic effects gain 

importance e.g. radial flow. Moreover, unusual 
stability problems may occure as fixed wing 

divergence or flutter (see ref.[S]]. 

one important question has been fully neglected 
here: how to control the rotor during the start/ 
stop procedure? oeloading must be assured within 
a certain angle of attack range, while shaft 
moments are narrowly restricted with respect 
to flight mechanical demands. These problems 
lead directly to the application of active 
control techniques. One possible approach is 
proposed in ref.[lO], where flapping stabiliza­
tion through cyclic pitch feedback control has 
been investigated. But as the decelerating 

blades increasingly undergo different external 
disturbances and, due to this fact, the rotor 
looses tracking, concepts like the Individual 
Blade Control seem to be more appropriate in 

this case. 

Appendix 

The index 'R' indicates that reverse flow is 
modeled by switching the sign of the aerodynamic 
moment in the reverse flow region. If the index 

is omitted, reverse flow is either neglected or 
the fonmulation is identical for both cases. 

Derivation of flaoping 
eauation of motion 

Flow conditions at blade section: 

- tangential velocity v
1 

= OR(x•IJ.sinl.jl] 

- normal velocity 

v = 0 R [ 0- j_ ( x - ...L) ¥ 1.1 ~ ccsr.j.l J 
" 0 R 

Blade angles: 

- blade pitch 

- angle of attack 

~{t;J) • a- 1 X - a tan 0 3 

R (v•>v,) 
IXctr = I v I 

' 
Moments acting about the flap hinge: 

- inertial moment 

- aerodynamical moment 

- centrifugal moment 

•ptlna Q. - moment of hinge spring M13 = - ca ~-' 

- moment of gravity 

Definition of blade characteristics: 

LOCK nurnbe r I 2 

- flap moments of inertia 

113 =J(r-a) 2 dm 

mbt 

- flap mass moment 

Flapping equation: 

y ' 
p/2Ca•lR 4 

I 0 

I;::Jr(r-a)dm 

m,, 

M; = J< r-a)dm 
m,, 

~ • [ y D(<l>} .Z D~ ) 0 j • [ y K(<!>} • K~] 0 2 
' 

' [ r El<i>} • E0 ] o' 
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Coefficients: 

- damping term 

K1 • K2 11 sinl.j.i 

R R R 
K1 • 2 K2 \.! sin!.V • K3 liz sinzq, 

- spring term 

K(l.j.i) K6 ll costV • K 7 11 2 cosl.j.i sinJ.!! 

• ( Ks • 2 K6 lt sinl.j.l • K 7 11 2 sin 2 !jl) tan .s 3 

R R R 
K 6 11 cosl.j.i • 2 K 7 11 2 cos!jl sinl.j.i • K 8 llJ cosl.j.l sin 2 ~ 

R R R R 
.. ( K5 .. J K 6 \l sinl.j.l<> JK 7 112 sin2$ • K8 11 3 sin 3$) tan S3 

- forcing function 

E(~) = ( K 4 .. 2 K 5 \l sin~+ Kfl 11 2 sin'ZI.j.l) &1 
• ( K5 • 2 K6 11 sinl.j.l + K7 11 2 sin21.j.i) &('-!~) 

• ( K6 • 2 K7 \l sin!.(~) .S 

natural frequen~J (in hover) 

- gravity term Eo = 
MS j()'Z 

I o 
g 

Abbreviations: K4 = Ds·"f·D4 

Ks = o,- ~ OJ 

K " D 4 ~2~D 3 (t)' o, K6 ::: o, - ' ' RD:z 

K-.: = 0 3 -2~0 2 ( t)' o, K, = o, - ~ 01 

KJ = 0 2 ~2~0 1 (-k)' D0 Ka = o, - ~ Do 

Blade integrals: 
B J x•-• dx" Jr(a"- A") 

A 

D~ 

R 2 R ) - ( 2n- 11 W 0 - (n- l)W 0 n-1 n-2 

where DR 
0 I B. w I 

In A+ W 

MATHIEU-type eouation 

ood 

inhomogeneous equation with damping: 

W = 11 sin!jl 

X+ 2 D ()X + (Ko .. KccosOt )O:Zx = o 2 z (al.:coskOt) 
k•O 

homogeneous solution: 

forced solution: 

where p(t) = p(! + 12!..) 
0 

X forced ::: 

TransfoL<mation of flaopina 
equation to HILL-Type 

Transformation: 

' 
X = j3 e 

1J<K2 Y I.L n •lnOd dt 

HILL-Type equation: 

Coefficients: 

- constant term 

- lQ excitation 

- 2Q excitation 

- constant damping o 
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