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Abstract

This paper investigates one important source for
instability of stopped rotors during the decel-
erating and accelerating process.
stability is wusually lost at advance
above two, due to strong parameter
through pericdic aerodynamic forces.
the anquiar velocity of a hingeless
the other hand, increases the nendimensional
flapping natural fregquency that has a stabiliz-
ing effect. The differential equation of motion
is set up for the common rigid blade approxima-
tion, considering spring restrained hinges with
arbitrary hinge offset. Reverse flow, which will
be shown to be decisive for the stability bound-
aries, is included analytically in a straight-
forward way. The effect of the parameter exci-
tation is discussed by means of MATHIEU- and
HILL-type differential equations. Simple stabil-
ity criteria derived Efrom STRUTT's stability
diagram will be compared with the computed ej-
genvalues using FLOQUET theory, The effect of
the forcing function i.e. the amplitude ampli-
fication of the inhomogeneous equaticn will be
shown to be even more important than stability,
Simulaticn results are presented in order to
discuss the possibility of suppressing divergent
£lap oscillations by applying high rotor
eration and acceleration rates,

Flapping
ratios
excitation
Reducing
rotor, on

decel-

Notation
cs flapping spring constant
Dg mechanical flap damping
L blade mass
Qinst max. installed engine torgue
v rotorcraft velocity
v, induced velocity
% nondimensicnal blade coordi-

nate, state variable

g flap angle

Y LOCK-number / 2

§m (aV%vi)/(QR} inflow ratio

83 pitch-flap coupling

#q blade pitch angle

4y blade twisg

A = Re{a)+jIm{A)  eigenvalue of flapping motion
- =8+ jw

u o= V/{QRY advance ratic

v forcing frequency

Y blade azimuth angle

Q rotor rotational speed, fre-—

quency of parameter excitation

w = y{Cc/1,)/9 nenrotating flapping natural
ax B/ g7 “nom frecuency nondimensionalized
by nominal rotor speed

All variables and quantities not listed here
can be found in table 2 or in the appendix.

Introduction

A lot of R&D effort has been made to increase
the cruise speed of different VIOL aircraft.
while in its configuration
the rotercraft achieves an excellent hover and
vertical flight performance, which is due to the
low disk loading, its efficiency drops rapidly
as soon as the airspeed exceeds values of ap-
proximately 200 kt. Cne well-known sclution, the

common helicopter

Tilt Rotor aircraft, hopefully will enter pro-
duction in the near future.
One rarely investigated alternative is to slow

down the rotor horizontally as soon as higher
forward speed is achieved, so all the required
1ift can be provided by a fixed wing. The roter
blades can then bhe folded and stowed in order to
minimize the parasitic drag and to avoid aerve-
lastic problems such as flutter or divergence,
Few confiqurations have been worked out
tail.

in de=-
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Ref,{1l] describes a small research aircraft with
two horizontally stoppable and stowable rotors
side-by-side. The twe convertible engines can be
switched from shaft power mode to fan-jet thrust
mode. Some calculations have been performed, in-
vestigating stability and control aspects during
the transitions/convertion phase. Retor
and moments have been computed, but the calcu-
lations did not cover aeromechanical problems in
detail. Pirst experience had been gained during
wind tunnel tests of an earlier configuration
called Me 408.

forces

Two concept alternatives, namely a single versus
a tandem rotor configuration have been
gated at MNASA Ames, ref.[4]. Several important
problems associated with the start/stop proce-
dure {e.g. high shaft moments and vibrations)
are discussed in that publication,
cal aspects have been studied detail
during a Lockheed rtesearch program, ref.[2],
that included wind tunnel tests of the full-
~scale stowable rotor system CL 870 in the NASA
ames 40x80 ft wind tunnel. The rotor was de-
signed for eventual flight tests on the XH-S1A
compound helicopter. In that paper, time histo-
ries of the calculated and measured blade loads
are presented as well as shaft moments for the
entire acceleration and deceleration phase,
Flapwise bending moments are also measured £or
the completely stopped rotor. The
motion are solved by numerical simulation.
Ref.[5] presents further wind tunnel tests,
concerning the behaviour of totally stopped
rotor blades at higher airspeed. Stall £flutter
instabilities have been discovered in the
treating blade region.

investi-

Aeromechani-
in more

equations of

T

The application of the so-called jet-flap rotor
to a stoppable and stowable aircraft is
proposed in ref.{6]. This rotor concept was also

rotor

tested in the NASA Ames wind tunnel. Flapping
stability was ensured -through active control
using azimuth depending feedback gains. Ancther

concept proposes to stop the rotor and to con-
vert it into a fixed wing as described in ref.
[3]. This, however, resquires a completely dif-
ferent rotor design. On the other hand,

-gized rotors must be folded and stowed, because

common—

just to stop the rotor does not improve the drag

characteristic compared to an unloaded, but ro—

tating rotor, as it is pointed out in refs.[4,6].

Although the flapping instability at high ad-
vance ratios is generally well understocd, there
are few systematic investigations of this prob-
lem in connection with the stoppable rotor. Most
of the previous published investigations,
are concerned with the

which
flapping stability in
forward flight, leave off at advance ratios well
below one, refs.[7,8].

Two main effechs are responsible for the
rence of divergent flapping: on the
the unloaded rotor cperates at increasing ad-
vance ratios (up to infinity), if the
angular velocity is reduced while forward speed
is constant. This results in strong parameter
excitation due to periodic aerodynamic forges.
On the other hand,

QCCur—

one hand,

rotor

the nondimensional natural
flapping frequency rises, too.

While the cen-
trifugal force vanighes, the blade oot stiff-
ness gains importance in suppressing instabil-

ity. The natural frequency of the nonrotating
blade, which is nondimensionalized by the nomi-
nal rotor speed is used to describe this char-
acteristic, fThe effect of anr is explained in
fig.l, where the flapping natural frequency is
shown versus the rotor speed. For the proposed
and investigated rotors, ahr ranges from 0.4 to
0.8, refs.[1,2]. Yet, a reduction of these high
values may become desirakble in order to limit
rotor shaft moments. The ratio betwesen the pe~

ricdic excitation and the stabilizing ceonstant

stiffness will ke shown to be decisive for the
flapping behaviour.

The aim of this paper is to gain physical in-
sight into such parameter excited instability

and to derive some basic criteria for a fea-
sible rotor design. The investigation presented
here is based on the following simplified stop-
ping process:

- vertical take-off and
transition speed

acceleration to
in helicopter mode
- shifting the whole lift from the rotor

to the wing
- slowing down, folding and stowing the
rotor at constant forward speed

wingborne acceleration to cruise speed.

Restarting the rotor is performed inversely.
Tab.l presents proposed design parameters

those chosen for this investigation.

and
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High transition speed is wusually preferred in
order to enable a wing design that aims at op-
timal cruise performance. This, re—
quires the application of high lift devices dur-
ing transition and stability
problems for the blades before
they are folded.

however,

induces
stopped

stronger
roter

Data as proposed Data applied in
in refs.[1+6) this investigation
disk loading 480 760 600 N/m?
rotor solidity 8.9_12.7 7.6 %
thrust coeff. 0.07__0.18 0.08
blade tip speed 190__ 270 250 mssec
transition speed 60___ 80 3¢ mysec

Table 1: Main data of proposed stoppable rotor

aircraft (hovering in rotorcraft mode)

The relationship between rotor angular velocity
and advance ratio during rotor deceleration,
which emerges from the chosen data, is shown in
fig.2. As we proceed in this paper, we must al-
ways bear in mind, that both effects, namely the
rise of the advance ratio and the
the rctor speed,
First,

reduction of

are involved simultaneously.
en  the isolated

constant

we will concentrate

flapping degree of freedom at
speed. These results are of interest,
postulate that it must be pessible to
and reverse the

rotor
if we
interrupt
start/stop procedure at any
ref.{6]. this simplified
problem can be treated analytically and serve as
the reference case for the transient simulations.

time, see Morecver,

Blade Model

Flapping Eguation of Motion

The inhomogeneous flapping equaticon is
for a

set up

rigid, spring restrained blade. Hinge
offset and spring stiffness are adjusted to ob-
tain the desired natural frequency wvariation
over the rotor speed, The derivation of the mo-
ments acting on the flapping hinge is presented
in the appendix. This leads to the well known

equation

8- vDWw+zDy Job« [vK@Y+Kg 028 = (1)
= [ vEW + B, |02

where D{y}, K{y) and E{v¥) are pericodic coeffi-
cients, which emerge from the aerodymamic

oper—
ating condition and therefore are strongly de-
pendant on the advance ratio x. The term Kg,
which summarizes the spring effect of the cen-
trifugal forces as well as the blade root re-
straint, depends on the rotor angular velocity.
Additional mechanical damping c¢an be incorpo-

rated by the constant Dg. Pitch-flap ccupling
is censidered as tan&3 within the coefficient
K(y). The excitation by the forcing
E{y) on the right hand side is due to inflow,
blade twist and pitch, whereas the constant part
E, describes the blade weight (see
The blade data used for most of the following
calculations are listed in tab.2 and are denoted
as reference data.

function

appendix),

8 1.225 kg/m? air density

g 9.81 mssec? gravity constant

R 5.00 m rotor radius

Qom 50 rad/sec nominal rotor speed

a/R  0.13 nondimensional hinge offset

m 7.5 kg/m blade mass per unit length
{uniform mass distribution)

lBl 0.30 m blade chord

Can 6.25 lift curve slepe

0.25 nondimensional aerodynamic

blade origin

B 1.00 ncndimensicnal aerodynamic
blade end (tip loss factor)

Table 2: Reference data

So far, reverse flow has been neglected.
that the calculated lift acts
wrong direction, as long as the retreating blade
is crossing the reversed flow region. During the
advance ratio increases, this region spreads out
to 2n. The
is 1illus-
that the
becomes

This

means, in the

over all the azimuth range from =«

impact of this crude approximation
trated in £ig.3. It should be noted,
aerodynamic flapping damping D{y)
ative for the retreating blade; an effect, which

neg-

is physically impossible in this ccnnection.
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Various publications, e.9. refs.[7,9], menticﬁ
that problem. Nevertheless, it seems to be
ful to study the flapping hehavicur, neglecting
reverse flow. In this equation (1} can
easily be splitted into two MATHIEU-Type differ-
ential equations, for which many comprehensive
investigaticns have been conducted
chapter).

use-

case,

(see next

Consideration of Reverse Plow

If we assume an equal lift curve slope for flow
from the leading edge or from the trailing edge
respectively, then to change the sign of the
lift coefficient in the corresponding region is
a simple means of modelling flow. In
this case, the integrals with respect to the
blade radius coordinate include the sign-func-
tion, as many authors have pointed out. They
conclude that integration has to be splitted
into the range from 0 to -usiny and -usiny to B.
Since these limits depend on ¢ some authors
stress that there is no expression to be found,

which would cover the whole azimuth range,
ref.[7].

reverse

e.g.

However, the appendix shows a rearrangement of
the integrands in a way that enables an analyt-
ical, closed integration over the whole radius,
The resulting functions Di(w} are illustrated
in fig.4 for n=0,1,2 . The incorporation of the
periodic terms into the flapping equation in-
stead of the ccnstants Dy leads to extended ex~
pressions for the coefficients o), K(w) and
BR(w), which are listed in the appendix, as
well. Despite the difference
these fungtions are
lished in ref.[7}.

in formulation,
equivalent to those pub-

Flapping Stability of Slowed Rotor
at Ceonstant Rokor Speed

Most of the published investigations concerning
the flapping stability cover the advance
range from hovering to about 0.5 . As scme au~
thors propose {e.g. ref.[8}), a constant
ficient approximation based on the time averaged
coefficients can bhe applied with reasonable ac-
curacy. Fig.5 illustrates, however, what happens
if this method is extended to stopped roter pro-
blems. We know that the

ratio

coef-

flapping motion is

422

sufficiently damped
advance ratio {(while

in hover. Increasing the
speed is reduced)
does not affect the nondimensionalized eigenva-
lue of an articulated rotor, whereas the
ping frequency (divided by the actual rotor
speed) rises for a stiff rotor. Intreducing the
reverse flow medell into the
pressions, which of course is quite
stic, gives us a rough idea of the stabilizing
effect of reverse flow, Yet, it has to be em-
phasized that no regions of instability occur in
either case, in contrast to what we would expect
to be a particular characteristic of a parameter
excited system.

totor

flap~

time average ex-

unreali-

MATHIEU-Type Equaticn and
STRUTT's Stability diagram

In order to become more familiar with the un-
usual behaviour of periodic systems, the well-
known MATHIEU-Type differential equation will be
discussed first. Since the flapping equation can
be transformed into a very similar form, the
same mathematical methods apply in order to exa-
stability, MATHIEU-Type
equation is

nine The homogeneous

¥+2D0x% + (Ky+Keeost)Zx = 0 {2)

where the parameters D, K, and K, represent the
damping, the spring stiffness and the parameter
excitation, Fig.6 above shows the STRUIT stabi-
lity diagram that defines the stability bounda-
ries in the K, ~K, paremeter plane for D=0, This
diagram has rarely been calculated for Hc>>1
(except e.qg. ref£.{13}). It can easily be
ded to the case D0, in which the unstable
gicns move back from the Ky axis, as
refs.[13+16]3.

exten—
re-
showny in

Let us assume that for a certain de-
scribed by MATHIEU’s equation, the parameters
Ko' Kc rise simultanecusly, while D remains ccn-
stant. This is illustrated the
trajectory K. =K, and D=0,15% The two lower
diagrams show the corresponding eigenvalues. In
the regions of instability (for D=0}, the real
parts split in a way that one gains stability
while the other looses it. This effect is called
parameter resonance. But, since the

system,

in fig.6 for

trajectory
always remains below the boundaries for D={.15,

stability is not lost.



As long as parameter resonance occurs, the ei-
genfrequency is engaged to an integral multiple
of @/2; that is to it does not increase
proportionally with the system stiffness JKO.
21l stability diagrams presented in

have been calculated by the

say

this paper
FLOQUET theory.

If we now remove the pericdicity from the D(y)

term of the flapping

equation {neglecting re-

verse flow) by the transformation

t
%J(sz u O sinct) gt
X = Be {3)

we get the HILL-type equation

x+2DOx » (Kg+KecosOt+ K c0s(20t+9) ) %x = 0
9 o4 c2
(4)

Removing the whole damping term, aleng with its
constant part, seems %o be less useful, because
in this case the stability behaviour of the

transformed equation would not be directly com-
parable to that of eguation (1).

The resulting parameters Ko’ Kc and Kcz' which
depend on v and R, are defined in the appendix.
The constant damping is DuKIyVZ. This extended
MATHIFU-Type equatien (4) is very similar to
the one discussed above and has been studied in
refs.[13,14,16] for phase angles of ¢=0 and -180
deg. If K. and K., are of the same magnitude,
the influence of the phase angle on the stabil-
ity boundaries, however, has to be considered
(e.g. ¢=-129 deg. for the reference data}.

If we neglect the interaction of the Kor Kooy
terms though, stabkility for the slowed rotor can
be discussed by two separated STRUTT diagrams,
see fig.7 . Calculating the two trajectories
Kcsf(Ko) and Kcz-f{KO), as well as the corres—
pending dampings, makes it cbvious, that only
the 22 term may cause instability for higher 4.
Since the Xy trajectory is a straight line,
stability can easily be determined with the help
of STRUTT's diagram. As an example, the required
flapping spring stiffness has been calculated
for the reference data., According to this, sta-
bility should be assured for &nr20.170, which is

very close to the exact result &nr20.171 ob-
tained by the FLOQUET theory for the complete
system. If the precise stability boundaries of
STRUTT's diagram are not available for the cor-
responding damping, it may be useful to apply
one cf the wvery simple sufficient conditions
given in ref.(15}. The most appropriate
to be

seems

Kes{ Ky - D )tanh2sD (5)

leading to Bnrgo.lSG, a boundary, which is by
far on the safe side.

Effect of Reverse Flow and Modified
Blade Characteristics on Stability

As it has been explained in the previous chap-
ter, stability behaviour of parameter excited
systems can be described by stability boundaries
in the L plane. For the flapping motion,
however, it makes more sense to use parameters,
which are physically connected with the stop ro-
tor problem, as Gnr and # {or 1/Q). In order to
estimate the current damping, the real part of

the less stable eigenvalue can be embodied into
the diagram as the third dimension, see fig.8
above. It is to be seen, that rising the flap

hinge stiffness will stabilize the flapping mo-
tion at high advance ratics.

As supposed above, the consideration of
flow does actually improve the
lity. The behavicur during rotor deceleration
does not change in principle, but, the whole
3D stability pattern to higher damping
with increasing advance ratio, as illustrated in
£fig.8 below. This becomes even more

reverse

computed stabi-

rises

chvious in
£ig.9, where both real parts are plotted for an
intersection at Bnr-const=0.135 .

back to
the anr"# plane, we obtain the two diagrams,
f£ig.10, which are directly analogous to STRUIT's
diagram. The shapes of the Re{\)/@=0 curves show
clearly, that less

If we project these stability patterns

flapping stiffness is
quired to assure stability, if reverse flow is
modeled (5nr=0.100 for the referenz data). Aan
other representation, that may be
is chosen in £ig,11 .

re-

more  common,
It shows the corresponding

root locus plots for Enr=0.l35 .
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The influence of different blade design param-
eters on stability has been studied by numerous
calculations based on the FLOQUET theory. For
each case the nondimensional modal damping is
plotted versus the (u=10/9) in
fig.12

advance ratio

. The main results are:
- The most effective means to stabilize
flapping is to increase the flap hinge

stiffness.

- As long as reverse flow is
negative

neglected,
pitch~flap coupling does im-

prove stability, If reverse flow is

considered, however, this coupling
becomes destabilizing, regardless of
the sign of &5 (fig.12, Ilst and dth

column) .

~ Additional mechanical damping DE in-
creases all real parts to exactly the
same deqree, but it does not affect the
gradient with respect to the advance
ratic (£ig.12, Sth column}.

- If the LOCK number is reduced (i.e.
the ratic of inertial to aercdynamic
forces increases), the vange of the
real part wvariation becomes smaller,
yet again, there is no significant
change of the gradient %o be observed
{fig.12, &th column).

- Reducing the hinge offset (without
changing the flapping mass, but ad-
justing mass per unit length) slightly
improves stability. Although  the
amplitudes of both D(y) and Ky
rise, the stabilizing effect of the
increased positive D{y)
dominates (£ig.12, last column).

average pre-

It has to be stressed that anr
stant, where cg Was adjusted according to the
flap inertia IB“ Moreover, it should be noted
that calculations must be continued to advance
ratios of at least 20, to enable the determina-

tion of a c¢lear stability tendency.

was held con-

Effect of Model Refinements

Since we are using such a straightforward model,
we also have to discuss whether all applied
simplifications are reasonable or not, regarding
cur problem. Therefore, the modal damping com-
puted by two refined models has been compared to
that by the standard model (for the reference
case at the stability boundary). Fig.l3 above
presents the results obtained from a numerical,
nonlinear blade model. It considers stall and
compressibility {as well as flow more
precisely) utilizing 380 deg, profile data ta-
bies. Stability is evaluated from simulated time
histories and

reverse

shows excellent correlation.
When the rotor speed is
flapwise mode shape changes considerably.
simple possibility is to schedule the

offset and stiffness for an optimal
tion of the mode shape (and the

each

reduced, the first

One
hinge
approxima-
corresponding
natural frequency) at rotor speed. With
this blade model, a slight unstable £lapping
behavicur has been computed, as shown in £ig.13

below, That means, a proper representation of

the changing mode shape should be incorporated
in the model,
Forced Solution of
Inhomegenecus Equation
puring many investigations concerning compound

rotoreraft design, the dynamic
out to be an

response turned
important problem., Mainly, the
impact of qusts on the flapping motion was
studied, where pitch~flap coupling has often
been proposed as an effective means to restrict
shown that the

response characteristic is alse decisive for the

flapping response. It will be
stop roter design.

In our case, the forcing function centains only
the blade
pitch is held constant. But arbitrary discrete
frequencies may occure on the right hand side,

integral multiples of @, as long as

if specific control inputs are appiled. There-
fore it will firstly be discussed, which effect
exhibit on the
excited systems.

Comprehensive surveys are given in refs.{13,14].

different forcing functions
forced sclution of parameter
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Amplitude Curves of MATHIEU-Type Equaticon

Fig.l4 summarizes the characteristics of the
again choosing the MATHIEU
equation (2) as a simple example. The

show the low FOURIER coefficients Co

forced solution

forced solution,

diagrams
of the

Xtorced = m‘go(cmcos(mﬁtﬂpm)) (6}

divided by the applied excitation amplitudes

a
k
of the forcing function

o=
= (1% T (a,c0tkOt)
k=0

(7N

plotted versus the system stiffness Kow(wc/ﬂ)z.
From this, the following characteristics can be
deduced:

-~ Even a constant term on the right hand
side, as 8y produces a pericdic response
that contains all harmonics ¢f Q
the Oth harm,}. Peaks of the

curves arise in the regions

(incl.
amplitude
of the
parameter resonances (fig.ld above).

(n}=-

- Forcing functions containing f£requencies
of we(m+l/2)Q lead to peaks in the regions
of the (n+l/2)-parameter resonances {(fig.l4
2nd diagram},

- Analogous behavicur is observed for forcing
frequencies of w=m@ at all (n)-parameter
resonances {fig.l4 3crd diagram).

- For all other

forcing frequencies, teso-
nance peaks develop too, that is, when-
ever the system stiffness results in a
real part of wsn2v (fig.14 below).
- Those amplitude peaks turn out to be most

critical, they are due to low forcing fre-

quencies mQ2 in the regions of the low

parameter resonances, In the presented
example, amplification gets to over 30,
which is about 10 times stronger than it

would be for a corresponding constant
coefficient system,

425

Amplitude Curves of Flapping Equation

The following diagrams f£ig.15,16 present ampli-
tude curves derived £from the  inhomogeneous
flapping sgquation. The first six harmonics (0Oth
to 5th) of the forced socluticn, related to the
different parameters of the forcing Ffunction,
are plotted versus the advance ratio. The c¢on-
stant term E describes the effect of gravity.
The influence cf ¢yclic control inputs is repre-
sented by ¢, which determines the blade pitch
variation 4% = & cosQt within the &-term.

First of all, reverse flow is neglected again,
It is seen that for the lowest stiffness of
anr-O.ZOG all FOURIER coefficients increase to
infinity {fig.15 left  hand), whereas for
w,.~0.220 they remain limited, but at a very
high level {£ig.l15 middle} and from just about
anr~c.24o the amplitudes become
(£ig.15 right hand). It should be emphasized,
that all cases are stable, since the cortrespond-
ing stability boundary is already reached at
Enr-0.170 {compare fig.l2a). As we expect, all
amplitude peaks occur at those

reascnable

advance ratioes,

for which integral parameter-resonances are ob-
tained (fig.l5 hottom).
Modeling reverse flow, we get similar vresults,

see fig.l6. At the stability boundary Enruo.lOO
the amplitude rise proves to be very strong for
all right hand side terms (£ig.16 Ileft hand).
For Bnr-O.lds the amplitudes remain limited but
again too high for any technical applicaticn
(£ig.16 middle). Only from a flap hinge stiff-
ness of Rnr20.190, rotor deceleration seems to
be practicable (fig.l6 right hand}. Again, the
relationship between amplitude curves real
parts of the homogeneous solution becomes ob-

and

vious, but the individual amplitude peaks deo not
separate as sharply as in fig.l4 and 13,

These calculaticns clearly establish the forced
solution to be even mote critical than the homo-
geneous problem {i.e.stability) with respest to
the flapping motion of stop retors.



Transient Flapping During Stop
and Acceleration Process

So far, votor speed has been assumed to be

constant. Therefore, possible instabilities had
an infinite period of time to develop fully.
However, with respect to iust flight mechanical
aspects, the start/stop process has to be

pleted within a few seconds. The published
vestigations propose time

COom—

in-
intervals between 4
and 22 seconds. With the presented compound air-

craft design, it takes a constant shaft torque

cf e.q. 72%Q nge within 3 sec. or lZ%Qinst with-~
in 30 sec, to accelerate the
rotor speed. Since the

rotor to nominal
small aerodynamic drag
forces of an unloaded rotor are not

to slow down the roter in a definite

sufficient

time, a
rotor brake must be used. Applying brake torques
corresponding to —65%Qinst within 3 sec. or
"4%Qinst within 30 sec. would bhe necessary to

stop the rotor.

In order to study the dynamic flapping behaviour
during the start/stop process, many numerical
similations have been performed, which lead to
the time histories of the transient flap angle,
shown in figs.17,18, Similar investigations di-
rected to a quite different application can be
found in ref.(1l]. The flapping motion during
rotor engagement and disengagement on beard a
ship at high wind conditions is discussed there.
Within the interesting u region,
variation can be assumed to be

rotor speed
linear with time
achieving good accuracy. For the presented time
@istories rotor acceleration was set to
Q=t0.85rad/sec? corresponding to a shaft torque
of tBBS%Qinst. As the results show,
speed changes affect the

behavior considerably.

even such

low rotor flapping

Fig.1l7 indicates that even for an articulated
rotar (an:-O) the flapping angle remains limited
during the entire simulation. However, the
herent instability leads to unreasonably high
amplitudes which are initiated either by a small
initial disturbance applied to the homogenecus
system (£ig.17 3rd diagr.), or by the right hand
side excitation (£ig.17 4th and last diagr.). If

in—-

the homogeneous system is stable for all u
(£ig.18 3rd diagr.), only the forced seclution
exhibits to be critical. In the presented

example (&nrno,zas), the amplitude peaks have
fallen to almost acceptable values (fig.l18 4th
and last diagr.).

Considering only the absolute maximum cobserved
during each simulation, a great number of those
calculations can be described by one single dia-
gram as f£ig.l19 or 20. First, the homogeneous so-
lutions {(excited by a 68 step) have been evalu-
ated for different é, £ig.19. It hecomes obvious
that through the application of high shaft
torque f£lap amplitudes can be restricted to fea-
sible values even for quite instable cases. It
is worthwhile mentioning that, due to the chang-
ing phase shift between initial disturbance and
parameter excitation, the 8 . = values vary
strongly between the plotted curves and very
small values {destructive interference). Fig.20
shows a similar trend as above for the forced
solutions, However, the positive influence of
high é is somewhat smaller,

Hence it is seen, that te shorten the start/stop
procedure by providing high torque te the
shaft is a possible means

tetor
to augment £lapping
stability, However, it does not seem to be ap~
propriate to base the rotor design on this

fact, as possible clutch or brake failures etc.
must be taken into account.

Conclusions and Outlook
Flapping stability behavicur of stopped rotors

can easily be explained regarding the MATHIEU-
type equation and STRUTT's stability diagram. As
modelling flow exhibits
a censiderable influence on calculated damping,

we expected, reverse

A most compact analytical formulation is pro-
posed as a direct extension of the case without
reverse flow. The ¢typical characteristics of

parameter excited systems can be identified

clearly in both cases.

stiff-
proved to be the decisive

puring the investigation the flap hinge
ness expressed by @,
parameter:

T

- Flapping stability is achieved
at about Enr=0.l

- Flapping amplitudes remain
iimited from about Enrnﬁ.z
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- Rotors proposed, investigated
or tested by other authors are

designed for @, =0.4 + 0.8

With respect to only the f£lapping behaviour,
the latter values seem to be quite high,
they lead to undesired strong shaft moments.
Numerical simulations show that the application
of high rotor deceleration and acceleration
rates is another means to reduce flapping ampli-
tudes considerably.

since

The appropriate modeling of the changing flap
mode shape turned out to be important. At least
hinge offset scheduling will be reqularly used
within future calculations., In the reverse flow
region the aerodynamic forces act approximately
at 75% chord far away from the

feathering axis
and the center of gravity. Chvicusly, feasering
moments are induced, which excite the torsiocnal

blade moticn. In ref.[9] it has been shown that
this effect can diminish £lapping stability.
Therefore, the torsional deqree of freedom will

be incorporated as a further step towards model
refinement,

tead-lag moticn is expected to have small in-
fluence ¢on the results, since the unloaded rotor
(with 3,0, 8 =0) develops only slide couplings
between flap and lag motion. in the

region of frequency cross—over, stability should
be examined.

However,

Many authors peoint ocut that the
unsteady aercdynamics,

influence of
commonly modeled as
dynamic inflow, decreases with rising advance
ratic. But when the rotor speed is reduced to
very low values, other aerodynamic effects
importance e.q. radial flow.
stability problems may occure as
divergence or flutter (see ref.[5}).

gain
Moreover, unusual

fixed wing

One important question has been fully neglected
here: how to control the rotor during the start/
stop procedure? Deloading must be assured within
a certain angle of afttack range, while shaft
restricted with respect
to flight mechanical demands.

moments are narrowly
These problems
lead directly to the application of active
control techniques. One possible approach is
proposéd in ref.[10], where flapping stabiliza-
tion through cyclic pitch feedback contrel has
been But as the

investigated. decelerating

blades increasingly undergo different external
disturbances and, due to this fact, the rotor

like the 1Individual
Blade Control seem to be more appropriate in

looses tracking, concepts
this case.

ndix
The index 'R’ indicates that reverse flow 1is
medeled by switching the sign of the aercdynamic
moment in the reverse flow regicn., If the index
is omitted, reverse flow is either neglected or
the formulation is identical for both cases.

Derivation of flapping

equation of moticn

Flow conditicns at blade section:

-~ tangential velocity v, = QR[x+psing]
- normal velocity
var OR[5- 2 ixe 2w cony]
Blade angles:

- blade pitch ]

"

Slud -8, x ~ B tan 3y
- angle of attack
v R vﬂ+8v)
Catr (“GJ.:‘*S') . Xors '( i"’!l *
Moments acting about the flap hinge:

lnert

inertial moment M,

= -[Bﬂ

i

B
aerodynamical moment Mg = %lca:RzJ.acnvlz(x- T)dx
A

cEnir

- centrifugal moment My = -lg0%8
- moment of hinge spring My "™z -cgp
- moment of gravity Mg = -Mjs

Definition of blade characteristics:

p/ 2 Cau | R*
~ LOCK number / 2 Y 8 ———

- flap momgnts of inertia

1 =J(r'a)zdlﬂ 15=jr(r-a)dm

Mgy Myy
- flap mass moment
Flapping equation:

e+ [vpwy-20y Jobd+ [ vk eKg]a2s =

= [ YEW) By ] 07
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£4 i ) =
Coefficients: Xforced ° mgo(cm cos(mt + ¢ )}

- damping term
D) = K, + K, sicg Transformation of flapping
ecuation to HILL~Type

Q
£
n

R R R

Ko+ 2K, using « K5 u?sinly
Transformation:

- 8pring term

1
4 [ O slnnt) 4
K{$) = Kyucosy K, u? cosd sing ZJ 2¥ U sla0t) dt

x = fe
+{Ks+ 2K, psind + K- p?sin?¢ ) tand
& 7 3

HILL-Type equation:
KR(tb) = Ksu coatb*ZK.,Ruz cosy sind +K§g3 cos sinld Eh
'(KifJK}:u sing * 31(}:#2 sin2 g ,Ki:ngian_p) tan §, X+2DOx » (KQ ~chosﬂt*Kczco:(ZQl‘v)}nzx =0
~ forcing function Coefficients:
E(@) = (K +2ZKgusind+Kgu? sin®¢ ) 8, m L2
- = . 2,2
C(Kg+ 2K, poing « K, p? sin2p) 8() constant term Ko = Ky - gK; v2u
(K, « 2K, using )3
- 12 excitation Ke= Lyuyiek, ~k,)0 v kikiy?
ERg) = (Ki:" ,3::;]:‘; ‘i"¢'3K?uzsin2¢ "Kfussin"d})sl c* 32 J 6 2 1 Ko
kT 3R L it s KT 42 gin2 s kL3 gind
G- 3Gy KT - KD MW g excitation ke, ¢ Le et (K K ve
(K, »ZK using + Kgu?sin2¢ )8
; . L
- natural frequency (in hover) - constant damping D = 7 YK
(. 13+e,/ 07 ) uoe)
°r IS i o {#=tan SJIO
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