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Abstract 

Investigation of the stability on the ground single-rotor helicopter with skid landing gear, which has six 

degrees of freedom, blade has lagging and flapping hinges. Differential equations of the perturbed motion of 

the helicopter for this case are derived under the assumption that the blades is rigid, trust the rotor is zero, 

the angular velocity of the rotor rotation is constant. Assuming periodic motion parameters helicopter 

, , , , ,x y z     and blades ,   , the differential equations are expanded in a Fourier series. When substituted 

in the motion equations of the helicopter stiffness matrix for different types of chassis defined unstable zones 

the helicopter, where continuous operation is possible structural failure. 

1. Introduction 

This paper investigates the stability of the blades 

motion by mode of start rotating rotor on the ground 

has the name of ground resonance. This 

phenomenon appears when a helicopter rotor hub 

designs have begun to use the hinge connection of 

the blade that allows the blade to lead-lag in the 

rotation plane and in the flapping plane. In most 

cases, when the ground resonance vibrations could 

not stop, and they lead to the helicopter destruction. 

Only in rare cases, the vibration could stop a timely 

turning off the engine or helicopter takeoff. In the 

history of the helicopter were many cases when the 

helicopter was destroyed by the occurrence of 

oscillations of this type. These circumstances forced 

engineers to work on the development of the theory 

and reliable method of calculating the ground 

resonance phenomenon that would intelligently 

choose the characteristics of the structural elements 

that determine the stability margin of the helicopter 

on the ground at the design stage of the product. 

A.Fayngolda work, R.Colmena, B.J.Zherebtsova, 

M.A.Lernera, A.I.Pozhalostina and other researchers 

who have examined the phenomenon of ground 

resonance and solved the problem of stability have 

contributed to the development of the theory of the 

helicopter stability and the choice of required 

damping to prevent ground resonance phenomenon. 

1.1. Nomenclatures 

,F lm m , – Fuselage mass and mass 

of blade; 

k  – Number of blades; 

, ,x y zI I I  – Moment of inertia about the 

axes; 

xyI  – Centrifugal moment of 

inertia; 

vS  – Static moment of inertia 

relative to lagging hinge; 

oS  – Static moment of inertia 

relative to axis of rotation; 

oI  – Lag rotational inertia of 

blade relative axis of 

rotation; 

1I  – Lag rotational inertia of 

blade around its center of 

mass; 

vI  – Lag rotational inertia of 

blade relative lagging 

hinge; 



2l  – Distance from axis rotation 

to lagging hinge; 

0
l  _ Distance from the center 

hub to the plane of rotor. 

 C  – Stiffness matrix of landing 

gear; 

 W
 

– Column-vector 

displacement of helicopter 

 F
 

– Forces of flex landing gear 

  – Rotational speed of the 

main rotor; 

0y  – Distance from center of 

mass to axis rotation; 

j
  – Lead-lag angle of j

th
 blade; 

j
  – Flapping angle of j

th
 blade; 

2 2

j jp T
V V V   – Total velocity of  approach 

flow; 

jp
V  – Component of the flow 

velocity in the plane of 

rotation of j
th
 blade; 

jT
V  – Component of the flow 

velocity perpendicular to 

jp
V ; 

ind
V  – Induced velocity; 

j
  – Angle between the 

aerodynamic chord and the 

plane of rotation of j
th
 blade; 

p
  – Angle of attack of j

th
 blade; 

 2 1
j

j
t

k


 


   

– Azimuth angle of  j
th
 blade. 

1.2. The governing equation of motion 

Using the procedure described in the writings of 

TsAGI [1], we obtain the motion equations of the 

helicopter: 
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where 
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The system (1.2.1) is the complete system 

motion equations of the helicopter on an elastic 

foundation with rigid blade connected to the hub 

flapping and lagging hinge, with the influence of the 

aerodynamic forces acting on the rotor blades. 

The system (1.2.1) has been obtained on the 

basis of the hypotheses used in [1], but with these 

equations we get a closed system of equations, 

since they were obtained in our view unjustified 

exclusion of some terms of the equations in the 

derivation of the basic equations for the blades. 

1.3. Stability analysis of helicopter 

To analyze the stability of the helicopter during 

the promotion of the rotor, there are several 

methods.  A common method is the R.Coleman and 

B.Ya.Zherebtsova [2], which is widely used for the 

analysis of simplified systems. 

We obtained for the system (1.2.1) is not possible 

to use the method R.Coleman and 

B.Ya.Zherebtsova, so to analyze the stability of the 

method of expansion of differential equations in a 

Fourier series. The solution of the system (1.2.1) 

reduces to the solution of algebraic equations with 

constant coefficients. This can be done by 

expanding the parameters , , , , , , ,j jx y z       of the 

Fourier series, assuming their periodic: 
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Substituting (1.2.2) into the helicopter equation of 

motion, we get the vector equations with unknown 

coefficients ,i na  and ,i nb  in the form of: 

(1.3.2)  , ,( , ) 0, 1, , 1,i i n i nF a b i k n N   . 

Each 
thi equation as a real periodic function with 

period T can be expanded in a Fourier series: 
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The system of equations of motion can be written 

in the general form: 

(1.3.4)   ,0 ,1 ,1 , ,, , ,..., ,
T

i i i i i n i nz z zc zs zc zs    . 

Expressing a system of equations (4.22) for the 

coefficients of the Fourier series can be written in 

matrix form: 
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where   - the characteristic matrix, which in this 

case describes the properties of the oscillations of 

the form "Ground" resonance. 

The motion equations were obtained using the 

software package Maple, it is a written program for 

the formation of the matrix. In the future, for more 

convenient and fast work with the matrix and output 

the results to have been written in the program 

package Matlab. Calculation on a modern computer 

is no more than two minutes. 

1.4. Results of calculation 

The initial data for program testing and 

calculations were chosen skid landing gear, used in 

the design of the helicopter ANSAT. Was selected 

three possible the landing gear: composite, high 

steel and staffing steel operated by helicopter 

ANSAT. 

Mathematical model of the landing gear in the 

equations represented by the matrix compliance, 

which defines its stiffness characteristics as the 

characteristics of the elastic foundation. To construct 

the matrix compliance skid landing gear using a 

software package ANSYS, in which a finite element 

model. Loading sequence design matrix is formed 

compliance. 

The results are compared with the results of the 

method R.Coleman and B.Ya.Zherebtsova [2], 

where the problem of the plane motion stability of a 

http://www.multitran.ru/c/m.exe?t=5744712_1_2
http://www.multitran.ru/c/m.exe?t=5744712_1_2


mechanical system, mounted on an elastic 

foundation, which is the hub of heavy blades fixed 

on her with lagging hinge with the dampers. 

Comparison of the results shows satisfactory 

convergence of the results, as shown in Figures 

1.4.1 – 1.4.3. In the figures, there are areas that are 

by R.Coleman and B.Ya.Zherebtsova not covered 

due to lack of flapping blades. 

Considered a composite landing gear (see Figure 

1.4.1), which has three areas of instability: 13-20 

rad/sec, 34-42 rad/sec, 47-59 rad/sec. Operating 

speed of the main rotor fall into the second area, 

which is illegal and can lead to the destruction of the 

helicopter. The helicopter on the high steel landing 

gear (Figure 1.4.2), there are two areas of instability: 

14-22 rad/sec, 33-47 rad/sec. In this case, the area 

also gets into the zone operating speed of the main 

rotor. On staffed landing gear (Figure 1.4.3) there 

are two areas of instability: 22-33 rad/sec, 56 and 

above rad/sec. Operating speed of the main rotor 

are located away from areas of instability. Ground 

resonance at preset rpm, the first region of instability 

is at a high speed rotor, which does not lead to 

significant problems in the promotion of the main 

rotor. 

 

Fig.1.4.1. Stability analysis of helicopter R.Coleman 

method and a method for composite landing gear 

 

Fig.1.4.2. Stability analysis of helicopter R.Coleman 

method and a method for high-steel landing gear 

 

Fig.1.4.3. Stability analysis of helicopter R.Coleman 

method and a method for staffing landing gear 

 

2. Modeling start rotating helicopter rotor in a 

software MD Adams 

The paper deals with modeling of start rotating 

rotor on elastic foundation (Fig. 2.2) using the 

software MD.Adams. We compare the results of 

Adams with the results obtained by the simplified 

mathematical model calculation, as described in [2]. 

MD.Adams is an integral part of the software 

product family MD (MD.Nastran) and is intended for 

complex modeling of complex mechanical system, 

create virtual prototypes for virtual testing. 



 

Fig. 2.1. Simplified model of promotion rotor on 

elastic foundation 

(1 -  fuselage, 2 - support, 3 - blade, 4 - lagging 

hinge) 

In MD.Adams built a solid model, where the 

elastic base is a spring (Fig. 2.2). The cylinder is the 

main rotor shaft and is the axis of rotation. The box 

is a hub with a width equal to resound lagging hinge. 

 
Fig. 2.2. Scheme of representing a simplified model 

helicopter in MD.Adams 

In the joint hub and blades fitted lagging hinge 

and springs in torsion. The center of mass is put a 

damper spring with the longitudinal axis, and set 

limits on the movement in all directions except the 

cross. 

The initial data is the mass-inertial characteristics 

of the body and blades of the helicopter, as well as 

the stiffness characteristics of the elastic foundation 

and lagging hinge, which are derived from the 

calculation of natural frequencies of helicopter on 

the landing gear. According to their own frequencies, 

determined the most dangerous frequency, affecting 

the stability. These values are chosen frequency of 

the spring in the center of mass of the helicopter 

used in the model as input. 

2.1. Results of calculation 

The initial data for the calculations are the mass-

inertia and stiffness characteristics of the helicopter 

Ansat. 

On the stage of the calculation is required to 

determine the number of steps per unit of time 

sufficient to produce a reliable result. Screw spun 

constant acceleration to the angular velocity of 65 

rad/sec for 50 seconds, while making 50 000 time 

steps. Research has proven that the minimum 

number of points for the shortest period of oscillation 

should be 20-50, which will provide enough reliable 

solution. Otherwise, the solution can disperse. 

 

Fig. 2.3. Instability zones by the method [2] and 

MD.Adams 

2.2. Conclusions 

To analyze the stability start rotating rotor of the 

helicopter was considered a complete system of 

motion equations of the helicopter. A distinctive 

feature was the consideration of the motion of the 

main rotor blades in two planes, accounting for all 

six degrees of freedom of the helicopter fuselage, 

and the study of various options skid landing gear. 

Method to analyze the stability of the helicopter 

by expansion differential equations, Fourier series 

shows the instability of oscillations of the earth's 

resonance. 

The calculation results in a package MD.Adams 

with the previously used method shows satisfactory 

agreement, which can be seen from Fig. 2.3. This 

means that MD.Adams reveals vibrations such as 

ground resonance.  
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