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ABSTRACT 

Fatigue life is a random variable. The reliability of a conservative fatigue life prediction for a component in the helicopter 

dynamic system thus needs to be substantiated. A standard analytical substantiation method uses average manoeuvre 

loads instead of seeing manoeuvre loads as a random variable whose distribution is estimated with limited precision. 

This simplification may lead to inaccuracies. A new simulation-based method is developed to conservatively predict 

fatigue life while also accounting for the full random distribution and uncertainty of manoeuvre loads. Both methods fully 

account for uncertain fatigue strength but assume that the mission profile is known or can at least be conservatively 

estimated. Simulations under synthetic but realistic engineering conditions demonstrate that both methods may be used 

for accurate substantiation of conservative fatigue life predictions. The simulations also demonstrate that, under the 

tested conditions, uncertainties from manoeuvre loads may be neglected in fatigue life substantiations as the resulting 

error is not significant with respect to uncertainties in component fatigue strength. 

1 INTRODUCTION 

Failure of components in the helicopter dynamic system, 

such as the main rotor mast or the levers that control the 

angle of attack of main rotor blades, may have 

catastrophic consequences. The period between crack 

initiation and component failure is usually too short to 

detect a crack in time during inspection intervals. Such 

components thus need to be replaced before the 

probability that a large crack initiates becomes too high. 

Rotorcraft certification according to FAR 27.571 or FAR 

29.571 by means of AC 27-1B MG11 requires providing 

appropriate fatigue life substantiation for each of these 

components. If necessary, an upper limit to the time a 

component can be used is set by a fixed Service Life Limit 

(SLL).  

Fatigue life of a component can be predicted when one 

knows how fatigue damage accumulates (i.e. Palmgren-

Miner hypothesis), the component’s fatigue strength (i.e. 

S-N curve) and the loads during life (i.e. load spectrum). 

The exact fatigue strength of a specific component is 

never known in advance. Scatter in, for example, material 

properties, dimensioning, machining or other 

manufacturing processes demands that fatigue strength 

be considered as a random variable.  

The loads that a component experiences during its life 

depend on numerous variables, for example, the type of 

missions that are flown, how these missions are executed 

(i.e. speed, duration, number and type of manoeuvres 

etc.), the precise technique of the pilot(s) executing the 

manoeuvres, the weight and centre-of-gravity of the 

helicopter during the manoeuvres, or even the 

meteorological conditions. The loads that occur during life 

must thus be regarded as a random variable as well. 

Clearly, the fatigue life of a specific component cannot be 

predicted exactly but must also be considered as a 

random variable. For certification, it is common to show 

that the probability of a fatigue failure during the specified 

maximum service life of a randomly selected component 

in the fleet is not higher than a certain probability, e.g. 

Pfial(SLL) =  10
-6

. 

The load spectrum that a component is subjected to 

during its life may be decomposed into two random 

variables. First, the mission profile (i.e. the sequence and 

timeshare of turns, hovers, landings etc.) and second the 

loads that occur when flying a manoeuvre (e.g. the 

maximum load during landing is likely to be between 85N 

and 260N) 

A common standard analytical method to predict a 

conservative fatigue life simplifies manoeuvre load 

distributions to only their averages and derives its full 

reliability substantiation from the distribution of component 

strength. Such a method thus assumes that uncertainty in 

manoeuvre loads is negligible with respect to uncertainty 

in fatigue strength. The validity of this assumption is 

however not obvious and may not be general. This paper 

therefore introduces a new simulation-based method to 

predict fatigue life while also accounting for the full 

random distribution and uncertainty of loads. Both 

methods assume that the mission profile is known or can 

at least be conservatively estimated. 

The two methodologies are applied to a realistic but 

artificial fatigue life prediction problem. It is demonstrated 

that under the conditions of this problem, errors do arise 

from not fully accounting for uncertainty in manoeuvre 

loads. However, it is also demonstrated that these errors 

are in practise insignificant and that it is therefore allowed 



to represent manoeuvre load distributions only by their 

averages. 

2 ANALYTICAL FATIGUE LIFE PREDICTION 

A baseline standard analytical fatigue life prediction 

methodology is outlined here. This analytical method is 

similar to the approved lifetime prediction methods applied 

by Airbus Helicopters Germany for rotorcraft dynamic 

components. This simple to apply method is characteristic 

for industry practise. Section 4 later introduces a newly 

developed simulation-based method that features more 

complexity but promises higher accuracy. 

2.1 Fatigue damage accumulation model 

A fatigue damage accumulation model is needed to 

predict fatigue life for given component strength and loads 

during life. The model employed here is widely used (e.g. 

Schijve 2009 [1]) and consists of: 

 A Weibull-type S-N curve that defines the number of 

load cycles until fatigue failure under constant 

amplitude loading: 

(2.1) 
10log

( ) | ulta a

a R a
N

N

e





 
  

   
  
   


   

where:  a  is the applied stress amplitude (at stress 

ratio R); N  is the number of load cycles (until failure); 

a 
is the stress amplitude of the endurance limit or 

fatigue limit (at stress ratio R); 
ulta  is the ultimate 

stress amplitude determined by: 
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where ult is the ultimate stress; R  is the stress ratio 
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; { , }  are component specific Weibull curve 

parameters.  

 The Goodman-relation to translate load cycles to the 

stress ratio for which the S-N curve is valid: 
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where: |
ia R and |

im R are the stress amplitude and 

mean stress of the i
th

 load cycle class respectively 

 Rainflow counting (according to ASTM E1049-85) 

preceded by Peak-Valley (PV) filtering to determine 

the number of cycles in each load cycle class (load 

spectra are discretized) 

 

 The Palmgren-Miner linear damage accumulation 

hypothesis to define fatigue failure under spectrum 

loading: 

(2.3) Fatigue failure 1i
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where: in is the number of load cycles in the i
th

 load 

cycle class; iN is the number of cycles until fatigue 

failure under constant amplitude load defined by the 

i
th

 load class 

2.2 Random strength model 

As fatigue strength is a random variable, both the shape 

and position of the S-N curve can be considered as 

uncertain. While ignoring shape variations, the following 

S-N-P curve is used to model random fatigue strength: 
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The strength factor SF is a random variable distributed 

according to a lognormal distribution (as a transformation 

of an associated standard normal distribution  ): 
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  are Maximum Likelihood Estimates 

(MLEs) of the S-N curve parameters, given component 

static test results and/or component constant amplitude 

fatigue tests.
1
 As the strength distribution (i.e. the 

distribution of SF) should have its mean equal the 

expected S-N curve, ̂  must be zero, so that the mean 

strength factor value equals one.  

Since the strength factor is assumed independent of N 

(i.e. homoscedastic noise assumption), it is allowed to 

translate all fatigue test results used to fit the S-N curve to 

an arbitrary N. It is then straightforward to obtain ̂ , the 

MLE of the standard deviation of strength. 

With the full S-N-P curve defined, a conservative working 

curve can be derived.  For example, if the working curve 

should represent the fatigue strength of the (on average) 

weakest component out of one million randomly selected 

components, then SF can be computed according to:  

(2.6) 
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 The embellishments above symbols only distinguish 

different parameters for which equal symbols are used. 



with 
 1

denoting the inverse Cumulative Distribution 

Function (CDF) of the normal distribution. 

Figure 2.1 and  

Figure 2.2 illustrate such a working curve. 

 
Figure 2.1: Example of constant amplitude fatigue test 
results, the MLE S-N curve and conservative working 
curve for a component from the dynamic system. 

 
Figure 2.2: Exemplary fatigue test results (normalized by 

the MLE S-N curve), the derived MLE estimate of the PDF 

of normalized fatigue strength (SF), and the strength 

factor corresponding to the conservative working curve.  

It is impossible to make a perfect estimate of the S-N-P 

curve as only a limited number of fatigue tests can be 

done. Therefore it is considered that the estimate of the 

Probability Density Function (PDF) of the SF itself, and 

thereby also the conservative strength quantile (2.6), is 

imperfect. To account for this uncertainty, a confidence 

interval for the conservative SF quantile (2.6) is computed. 

(i.e. to require a 95% upper single sided confidence level 

here means that, if the set of fatigue tests would be 

repeated many times, then 95% of the conservative SF 

estimates, one for each new set of fatigue test results, 

would really meet a 0.999 reliability requirement. The 

remaining 5% conservative SF estimates would in fact 

correspond to a probability of failure that would be higher 

than 10
-3

). (e.g. Hahn & Meeker [2] further explain 

confidence intervals) 

Both the mean ̂ and standard deviation ̂ (of the 

associated normal distribution) of the strength factor SF 

(2.5) must thus be considered as random variables and 

are distributed according to:
 
[2] 
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where:  ,t     denotes the Student t-distribution;  2 

is the Chi-squared distribution; both with  degrees of 

freedom; testn denotes the number of test results that are 

available to fit the S-N-P curve. 

The conservative strength factor for the working curve at a 

reliability level 1  (i.e. 1-10
-3

) and a lower single sided 

confidence level  (i.e. 95%) can be computed by: [3]
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2.3 Load model 

The loads during the service life are represented by a load 

spectrum that is cycle counted from a load sequence. 

Ideally, this load sequence would be the continuous load 

signal measured on the component during its life. In 

practise though, an (conservatively) estimated load 

spectrum is used instead.  

The first step in obtaining this load spectrum is to define a 

set of manoeuvres that cover how the helicopter can be 

flown. For example: A: take-off; B; level flight; C: hover; 

etc. Using these regimes, a mission profile can be made. 

This mission profile sets how much time (percentage) the 

helicopter spends in each manoeuvre, e.g. [A: 3%; B: 

80%; …], and in which sequence the manoeuvres are 

flown per unit of time, e.g. [A C B F B …] every 100 flight 

hours (FH).  

In practise, this mission profile is generally based on pilot 

and operator surveys as well as experience. In any case, 

it must be conservative for all helicopters in the fleet for 

which fatigue life is predicted.  



Test flights with a specially instrumented helicopter may in 

practise provide continuous recordings of component 

loads during the manoeuvres. The same manoeuvres are 

generally flown multiple times to, for example, cover 

variations in manoeuvre execution. 

The fatigue damage that is accumulated during a flight is 

computed with a load spectrum of the type as in Figure 

2.3. 

 
Figure 2.3: Manoeuvre (flight regime) loads and Ground-
Air-Ground loads. These loads together make out the full 
load spectrum. 

The total (fatigue relevant) load spectrum for a flight is 

thus the summation of the load spectra of each flight 

regime and the load spectrum from the Ground-Air-

Ground (GAG) load sequence. The GAG load sequence 

accounts for the transitions between the manoeuvres and 

is the most severe load signal that goes through the 

extreme (i.e. minimum or maximum) load in each 

manoeuvre. 

There is uncertainty regarding the manoeuvre loads and 

regime extreme loads when predicting the loads during 

the full fatigue life. In case of the manoeuvre loads, the 

measured load spectra (one for each time the manoeuvre 

was flown during test flights) are averaged and scaled to a 

reference time, i.e. 100FH. The extreme loads from 

multiple instances are also simply averaged. Inserting 

these averages into the conservative mission profile (and 

according to the model in Figure 2.3), leads to the average 

load spectrum per unit of time. 

2.4 Perfect modelling assumption 

It is further assumed that the outlined models for fatigue 

damage accumulation, random fatigue strength and loads 

are perfect, i.e. do not introduce additional uncertainties. 

This is in line with standard practise in rotorcraft industry 

and in compliance with AC 27-1B MG11. 

2.5 Substantiated fatigue life prediction 

The Service Life Limit is set according to a maximum 

allowed probability of fatigue failure during the service life, 

e.g. Pfail(SLL) = 10
-6

. SAE ARP4761 specifies reliability 

requirements as a probability of failure per flight hour and 

not per service life. It is a ‘rule-of-thumb’ to multiply 

Pfail(SLL) by 10
-3

  when converting a probability of fatigue 

failure per service life to per flight hour. 

For example. the standard analytical method substantiates 

a SLL with a probability of failure of 10
-9

/FH at a 95% 

single sided upper confidence level with the following:  

 A working curve with 6    and     in (2.9).  

 A load spectrum according to a conservative mission 

profile and average manoeuvre (extreme) loads. 

It is thus assumed that all reliability can be substantiated 

by the working curve. Note that it is in general not possible 

to derive reliability from the conservative mission profile. 

The reliability requirement must be met for all helicopters 

and for all flight hours. If reliability would be derived from 

conservatism in the mission profile then the reliability 

requirement would only be met for (at most) averagely 

demanding operators (i.e. it would be met for VIP 

operators but not for Search & Rescue).  

3 STATE-OF-THE-ART IN PROBABILISTIC 

FATIGUE LIFE PREDICTION 

Questions have been raised during the last decades on 

the accuracy of the reliability substantiation in standard 

fatigue life predictions, for example by Lombardo & Fraser 

[4]. Obviously, the assumption of perfect (or at least 

conservative) modelling of fatigue damage accumulation 

can be questioned. However, to the best of the authors’ 

knowledge, there has so far been no systematic attempt to 

compute accuracy bounds for these models. This is also 

outside the scope of this paper. The influence on 

predicted fatigue life of uncertainties in mission profile and 

regime loads has however been researched before. 

Thompson & Adams [5] were one of the first in the 

rotorcraft industry to extensively model the reliability of 

SLLs. They included the combined uncertainty from 

variance in component strength, regime loads and mission 

profiles in a reliability substantiation model by using a 

Basic Monte Carlo (BMC) simulation and a random 

strength, load and usage model. For the random load 

model, the average load spectrum per regime and also the 

statistical distribution of regime maximum loads was 

computed from results of dedicated flight tests. The 

regime load spectrum was assumed linearly proportional 

to the maximum load, i.e. when a maximum load is drawn 

that is twice the average, then the corresponding 

spectrum is the average spectrum but with the number of 

cycles multiplied by two. Not accounting for GAG loads 

and assuming that helicopters randomly change mission 

profile every 10
3
FH, the percentage of time spent in each 

regime is set as a random variable as well (based on 

extensive usage data). Their (random) strength model was 

similar to the model in section 2.2. Due to the low 

efficiency of BMC for aerospace typical low failure 

probabilities it was necessary to estimate these 

probabilities by tail extrapolation of a distribution fit 

through a limited number of BMC samples.  



This work was extended by Zhao & Adams [6,7] where 

use was made of Importance Sampling preceded by First 

and Second Order Reliability Modelling (FORM/SORM) to 

first estimate the critical failure region in the parameter 

space. 

Benton [8] and others [9,10,11,12] have all introduced 

(semi-)analytical fatigue life reliability substantiation 

models. These all require specifying a PDF for the 

amplitude and number of cycles of every load case (i.e. 

constant amplitude loading block) to be considered and 

also made use of a random strength model similar to 

section 2.2. This framework is displayed in Figure 3.1. 

All previous work on fatigue life prediction reliability 

substantiation confirmed the importance and value of 

explicit and combined modelling of uncertainty in strength, 

loads and usage. Thompson & Adams used their work to 

re-confirm their standard fatigue life design methodology. 

 
Figure 3.1: Schematic of the random model framework for 
recent (semi-)analytical SLL reliability models (shown with 
two load cases). 

The following limitations in previous work are however 

identified: 

 It is challenging to model situations of complex 

spectrum loading, i.e. as in Figure 2.3, in the 

framework of current (semi-) analytical methods (i.e. 

as in Figure 3.1). 

 The manoeuvre load model of Thompson & Adams, 

effectively bounds the maximum spectrum load to the 

highest load measured in test flights. In practise it is 

however observed that the extreme load during a 

manoeuvre can be considered as an unbounded 

random variable. Due to the non-linearity of the S-N 

curve, PV filtering and range counting, it is expected 

that only scaling of the number of cycles in a 

reference spectrum will generally not accurately 

reflect random variations in manoeuvre damage. E.g. 

even when considering a spectrum with only one 

cycle, then doubling the maximum load of this cycle 

can have a much different effect on manoeuvre 

damage than doubling the count of this cycle. 

 None of the work set out to present tolerance 

intervals (i.e. confidence intervals on quantiles), 

despite the high uncertainty associated with 

probabilistic fatigue life predictions derived from few 

statistical samples. 

4 SIMULATION-BASED SUBSTANTIATION 

A new simulation-based methodology to substantiate 

fatigue life predictions for critical components in the 

helicopter dynamic system is presented. This new method 

aims to meet the following main requirements: 

 Model combined uncertainty from loads and strength 

 Applicable to problems of very high dimension (i.e. 

mission profiles with many manoeuvres) 

 Suitable up to very low failure probabilities (i.e. 10
-9

) 

 Improve accuracy and generality with respect to 

previously introduced models 

 Provide tolerance intervals 

 Feature reasonable computational costs  

4.1 Modelling assumptions 

The following fundamental assumptions are made in the 

development of this model: 

 Perfect fatigue modelling (see section 2.4) 

 Helicopters’ mission profile is known or can be 

conservatively assumed and can be modelled as in 

section 2.3. 

 Flight regime loads are independent (I.e. an abnormal 

high load in a turn to the left is uncorrelated to the 

load in a next right turn) 

The practical implementation of the model presented also 

assumes that regime loads are identical throughout the 

fatigue life. (I.e. all turns are flown identically) This 

practical assumption is expected to promote variance in 

lifetime and thus to be conservative (i.e. loads do not 

average-out during life). This feature can however easily 

be lifted and is not a necessary condition for practical use 

of the proposed model. 

4.2 Modelling of random variables 

The substantiation model features an independent 

probabilistic strength model and a strength-dependent 

combined probabilistic manoeuvre load & fatigue damage 

model which is similar to the model used by the virtual 

fatigue damage accumulation sensor from Dekker et.al. 

[13]. 

4.2.1 Stochastic fatigue strength model 

The implemented random fatigue strength model is equal 

as in 2.2. Note that as the proposed substantiation model 

is simulation-based, the new methodology may easily be 

adapted to accommodate other (shape-invariant 

homoscedastic) strength models. 

4.2.2 Stochastic load spectrum model 

Ideally, manoeuvre loads can be modelled in full and with 

only a small number of random parameters. (i.e. by means 

of Fourier decomposition and/or Principle Component 



Analysis) It was found that especially in complex and 

dynamic manoeuvres, the high frequency content of load 

signals is most relevant for fatigue damage modelling. 

Unfortunately, there is often not enough flight data 

available to reliably derive the high number of model 

parameters that would be necessary to properly include 

these high frequency load signal features.  

However, it was found that modelling of the fatigue 

damage that is equivalent to the full load signal during a 

manoeuvre is easier than attempting to model the full load 

signal. Distribution fits through large samples with 

synthetically generated flight regime load sequences 

showed that, for a given S-N curve, and given that there is 

at least one half-cycle above the endurance limit, the flight 

regime fatigue damage follows a generalized extreme 

value (GEV) distribution.  

The GEV distribution of a parameter x is defined as 

follows: 

(3.1)
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where   
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,k are distribution parameters. 

The magnitude of the minimum and maximum load that 

occurs within a manoeuvre is also described by a 

generalized extreme value distribution. Again, distribution 

fits through large samples with synthetically generated 

manoeuvre load sequences, but as well as through 

available test flight data, are in agreement with this choice. 

 
Figure 4.1: Pie chart showing how probable it is that there 
are load cycles within a particular manoeuvre above the 
endurance limit (Z) or not (NZ). 

A random model that represents the load model as in 

Figure 2.3 can now be established, for a given fatigue 

strength, by defining for each manoeuvre: 

 The probability that the loads within the flight 

manoeuvre cause fatigue damage. This can easily be 

estimated by computing the fatigue damage for each 

available manoeuvre sample and computing the ratio 

between the number of times the manoeuvre was 

flown with and without damage. A visualization of a 

resulting binomial distribution is shown in Figure 4.1. 

This feature circumvents a discontinuity in the 

manoeuvre damage distribution. Due to the 

endurance limit, many manoeuvre instances may not 

cause any manoeuvre damage at all, whereas the 

damage of the damaging instances is GEV 

distributed. 

 If there is no regime damage, a multivariate 

probability density function for the minimum and 

maximum load during the manoeuvre. Such a 

distribution is shown in Figure 4.2.  

 Or, if there is manoeuvre damage, a multivariate PDF 

for manoeuvre damage and extreme loads. Figure 4.3 

shows an example of such a distribution. 

 
Figure 4.2: A large sample from a fitted multivariate flight 
regime minimum and maximum load distribution. (i.e. 
manoeuvre damage is zero) The corresponding marginal 
distributions are also shown. 

 
Figure 4.3: A large sample from a fitted multivariate flight 
regime damage and extreme load distribution. 

The multivariate distributions in the practical 

implementation of the model are realized by t-copulas 

(Genest & Favre [14]). An alternative implementation by 

means of NATAF transformation (Hurtado [15]) resulted in 



non-conservatively biased and inaccurate results 

according to an idealized and synthetic verification test. 

(Such a verification test is described in section 5.2.2) 

4.3 Review of reliability estimation methods 

The reliability of a Service Life Limit is one minus the 

probability that a component (in the fleet for which the SLL 

is valid) experiences a fatigue failure before it reaches the 

SLL: 

(3.2)       SLL 1 SLL    with   failure SLLfailR P L  

Considering that the fatigue life L is a function of the 

random parameter vector   (i.e. containing the sampled 

strength factor and sampled loads and damages of the 

manoeuvres), the following indicator function   ... can be 

defined: 
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Analytically, Pfail can now be computed as: 
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However, such an integral over the parameter space   is 

not expected to be mathematically tractable for the model 

in section 4.2. 

4.3.1 Practical numerical reliability estimators 

The most intuitive way to estimate  SLLfailP is by a BMC 

estimator: 

(3.5)     
1

1
SLL | SLL      as     

simn

fail i sim

isim

P L n
n




       

which is simply drawing a large number, nsim, of parameter 

vectors from the parameter PDF  p  , computing the 

corresponding fatigue lives and then the fraction of 

parameter vectors that produce a fatigue life lower than 

the SLL.  

The coefficient of variation (CoV) of a BMC estimate of 

failP approximately approaches: 

(3.6) 
1

fail

fail

fail

P fail
P

P fail sim

P
CoV

P n






 


 

The estimation error is thus proportional to 1/ simn and 

independent of the dimension of  . This is a highly 

advantageous feature as the dimension of the parameter 

vector according to the model in section 4.2 is generally 

high. However, when the precision of the estimate needs 

to have a CoV of 30%, then it is required to evaluate 

approximately 10 / failP BMC samples. This means that 

estimating an aerospace typical small Pfail becomes highly 

impractical due to the very large number of samples that 

need to be evaluated. 

Importance Sampling [15] is a common technique to 

improve the efficiency of the BMC estimator. However, 

this requires defining a special sampling distribution 

around the critical region (i.e. where   SLLL   ). 

Improperly setting this special sampling distribution may 

cause large errors in the estimate of Pfail. The model in 

section 4.2 dictates a high dimension and complexity of 

the parameter space. Setting a proper sampling 

distribution is thus difficult and importance sampling was 

therefore judged as an unattractive solution method.   

Traditionally, reliability problems have been solved semi-

analytically by First and Second Order Reliability Methods 

[15]. These methods are however only accurate under 

strict conditions, require transformation of the parameter 

space to a (multivariate) standard normal distribution (e.g. 

by NATAF transformation) and their computational costs 

are strongly dependent on the dimension of  . 

Application of FORM/SORM was therefore also judged 

unattractive. 

Most other studied methods, such as BMC acceleration by 

statistically ‘learned’ indicator functions (e.g. Kriging [16] 

or Support Vector Machines [15]) or very recent Particle 

Algorithms [17] were also considered unappealing, mainly 

due to their complexity and difficulties due to the high 

dimensionality of  . 

4.3.2 Subset Simulation 

The method of choice that is implemented to estimate Pfail 

is Subset Simulation (SS) and was developed by Au & 

Beck [18]. The core concept is to divide a difficult problem 

of estimating a total probability of failure into multiple sub-

problems that are by themselves easy to solve. 

Considering the CoV of the BMC estimator (3.6), then it 

shows that estimating a, for example, 1/10 probability of 

failure can be done with reasonable accuracy while using 

‘only’ one hundred samples, independent of the dimension 

of the parameter space. Subset Simulation exploits this 

benefit by estimating the total probability of failure by 

multiplication of a sequence of conditional high failure 

probabilities. 

A set of intermediate failure events can be defined such 

that: 

(3.7)    1 2 ... mF F F F  

This means that the failure event SLLm mF L  is a 

subset of the (more probable) intermediate failure event 



1 1SLLm mF L
 
  , which is in turn a subset of the (even 

more probable) intermediate failure event 

2 2SLLm mF L
 
  , and so further.  

The total probability of failure is now: 

 




 
1

,1 ,
2

j

m

fail fail fail j F
j

P P P  (3.8) 

Here, Pfail,1 is the probability of the first intermediate failure 

event F1. And 
1

,
j

fail j F
P is the probability of failure event Fj , 

given that (the more probable) failure event Fj-1 occurs. 

Computation of Pfail,1 can be done straightforwardly by a 

BMC estimator, especially when the (first) intermediate 

failure event F1 is set such that Pfail,1 equals an easy to 

compute probability  , i.e. 1/10. Now, a limited number of 

samples are drawn, i.e. one hundred, and the fatigue life 

is predicted for each of these samples. The intermediate 

failure event F1 is then defined such that    1SLLP L . 

I.e. the first intermediate limit state SLL1, or intermediate 

failure boundary (an implicit hyper-surface in  ), is set 

such that ten out of one hundred of the initial samples lie 

in the first intermediate failure domain. 

A similar procedure can be followed for the subsequent 

(intermediate) failure events. Again making use of a 

simple BMC estimator, it is now however necessary to 

generate samples that are part of the intermediate failure 

domain Fj-1. Generation of a random sample that is 

conditional on the domain Fj-1 can be done with Modified 

Metropolis Hastings Markov Chain Sampling (see [18] for 

a detailed description).  

Additional intermediate failure events are added until the 

actual SLL for which Pfail needs to be known is reached. 

Figures 4.4, 4.5 and 4.6 show an example of computing 

 SLL,fail iP s  by subset simulation. 

4.4 Estimating the reliability of a SLL 

The load model from section 4.2.2 causes that the PDFs 

for regime damage and extreme load are dependent on 

the fatigue strength s, which is itself a random variable. 

Therefore, Pfail should be computed according to: 

(3.9)

               SLL SLL, SLL,
binn

fail fail fail i i

i

P p s p s ds P s P s

 

The discretized integral is evaluated by discretizing the 

strength distribution into i intervals (bins) and while 

assuming that within each strength interval: 

 Regime damage is constant and according to the 

lowest strength value in the interval 

 Correlations between regime extreme loads (and 

regime damage) are invariant 

 
Figure 4.4: Example of Subset Simulation where it takes 
three intermediate failure events (black stars) to reach the 
SLL under evaluation (red diamond).  The initial lifetime 
sample is in yellow, the lifetime distribution conditional on 
F1 is purple and the lifetime distribution conditional on F2 is 

light blue.      SLL, 0.1 0.1 0.2 0.002fail iP s  

 
Figure 4.5: Strength samples from SS from the example in 
Figure 4.4. Note that the strength generally decreases as 
the intermediate failure events become less probable. 

 
Figure 4.6: SS samples of the minimum load, maximum 
load and regime damage of a flight regime from the 
example in Figure 4.4. Note that, for example, the 
maximum load (middle) generally increases with less likely 
intermediate failure events, as would be expected. 

The parameter PDFs are now fixed for each strength 

interval. The strength PDF in one such interval is as in 

Figure 4.7. Note that in general, the coarser the strength 

discretization grid, the more conservative the estimates of 



Pfail., as regime damage is consistently overestimated. 

This was confirmed by simulations under both ideal and 

small sample size conditions. Although high imprecision 

may arise if too few samples per subset are used in 

combination with a very coarse strength grid. 

 
Figure 4.7: Example of strength PDF that is conditional on 
a strength interval (upper right thick blue box) 

4.5 Confidence interval on SLL reliability 

In practise, the number of fatigue tests and flight tests that 

can be done is limited. Also, computational resources are 

generally limited so that, for example, the sample sizes 

used in Subset Simulation must be limited. This means 

that both the parameter distributions themselves, as well 

as computational results from (3.8), are actually subject to 

significant uncertainty. It is assumed that other sources of 

uncertainty (i.e. establishing of the copulas) can be 

neglected or are conservatively hedged. 

Confidence intervals on Pfail are computed by (non-) 

parametric bootstrapping [19]. Essentially, this means that 

Pfail is computed for several alternative variants of the 

strength, regime extreme load and regime damage 

distributions and for several alternative SS estimates. 

Thus, a distribution for Pfail can be estimated and, for 

example, the upper 95
th

 percentile of Pfail can be selected 

for the upper single sided 95% confidence interval. An 

example is shown in Figure 4.8. 

Au and Beck [18] provide an algorithm to estimate the 

coefficient of variation ,failP iCoV  for  SLL,fail iP s  in (3.9), 

while assuming that  SLL,fail iP s  is normal distributed. 

The standard deviation of Pfail can then be estimated as: 

(3.10)    
2

,ˆ SLL,
bin

fail fail

n

P P i fail i i
i

CoV P s P s       

This feature is important as it allows using small sample 

sizes in SS (i.e. for low computational costs) while still 

ensuring conservatism. 

 

Alternative regime loads are determined by non-

parametric bootstrapping (i.e. random ‘reshuffling’ with 

allowing duplicates) of the available manoeuvre load tests 

results. Note that standard literature indicates that non-

parametric bootstrapping is inaccurate and generally not 

conservative for small sample sizes. This was also 

confirmed by extensive simulations by the authors. 

Nevertheless, it is assumed that this inaccuracy is 

negligible, i.e. small in comparison to variance due to 

parametric bootstrapping of the estimated strength 

distribution. Previous sensitivity studies, e.g. by Zhao & 

Adams, show that fatigue strength is (much) more 

influential than manoeuvre loads in fatigue life prediction 

and thereby support this assumption. 

Alternative strength factor distributions are simply drawn 

from the parameter PDFs (2.7) and (2.8) (i.e. parametric 

bootstrapping, which the authors confirmed to be accurate 

by means of extensive simulations). 

 
Figure 4.8: Example of the PDFs of bootstrap estimates of 
Pfail(SLL). The width of a PDF represents uncertainty due 
to limited SS accuracy and the variance in the mean of the 
different PDFs represents uncertainty due a low number of 
fatigue and manoeuvre load tests. It demonstrates that 
imprecision from SS is small with respect to uncertainty 
due to a low number of fatigue and manoeuvre load tests. 
(Result for seven available fatigue tests and fifteen 
instances per manoeuvre) 

5 VALIDATION OF SUBSTANTIATION 

MODELS 

5.1 Synthetic reference problem 

Validation on a real fatigue life prediction case is 
fundamentally impossible due to the extremely large 
sample sizes that would be required, e.g. to define the real 
fatigue life. Therefore, the analytical and simulation-based 
fatigue life prediction substantiation models are both 
tested on a synthetic reference problem for which the 
‘true’ fatigue life distribution can be simulated. This 
reference case is designed to be realistic but is not 
specific for any particular helicopter component. 

The definition of the S-N-P curve is as in Figure 5.1. The 
strength factor standard deviation is set to a realistically 
low value to maximize the relative influence of variance in 



loads on fatigue life. This is important as the simulation-
based model is meant to improve accuracy by explicitly 
accounting for the influence of uncertainty in loads on 
fatigue life. 

Random synthetic flight regimes are used to do ‘virtual 

manoeuvre load testing’. A Fourier series is used to form a 

random load signal for the i
th

 synthetic regime of the i
th

 

virtual manoeuvre load test: 

 (3.11) , , , ,

1

[Load signal]  sin( )
k

i i n i n i n i n

n

a f t m


     

For each manoeuvre, random manoeuvre type 

parameters set a multivariate normal distribution. K = 5 

signal parameters are randomly drawn from the 

distributions that these random manoeuvre type 

parameters define, each time a virtual manoeuvre load 

test is performed: 

(3.12)

   , , , , , ,, , , , , , , , , ,i i i i a i f i m i a i f i m ia f m            
 

          

To define the virtual flight manoeuvres, ‘type’ parameters 

for i = 15 different manoeuvres are randomly drawn from 

uniform and/or normal distributions, for example: 

    10,10 2.7 0,1 1.4m mU        

 
Figure 5.1: Definition the S-N-P curve in the reference 
problem. See also equations (2.1) and (2.5). “Loads” 
refers to all sampled load signals, as in Figure 5.2. 

Some load signals from this random flight regime model 

are shown in Figure 5.2. Corresponding distributions for 

regime minimum and maximum load are given in Figure 

5.3. Figure 5.4 then shows corresponding regime damage 

distributions, computed with strength factors according to 

the distribution defined in Figure 5.1. 

The mission profile is randomly defined by drawing a 

random sequence of 150 flight regimes and setting the 

regime timeshare proportional to the number of 

occurrences of the regime in the random sequence. 

Figure 5.5 shows an example of a drawn sequence of 

manoeuvre extreme loads. 

Defining a reference problem in this way allows doing a 

virtually infinite number of flight and fatigue tests. For a 

randomly generated problem, it is thus possible to very 

accurately simulate the ‘true’ distribution of fatigue life by 

simple BMC simulation. Figure 5.6 shows such a 

reference fatigue life distribution. All the reference 

distributions that are used for validation contain 10
5
 

samples. The CoV of the ‘true’ Pfail of the ‘true’ 10
-3

 lifetime 

quantile is then 10% (according to (3.6)). This means that 

it is roughly 99.7% certain that the Pfail of the ‘true’   10
-3

 

lifetime quantile is actually between 1.3·10
-3

 and 0.7·10
-3

. 

This imprecision must be considered when regarding 

observed estimation errors of the models. 

 
Figure 5.2: Example of artificially generated test flight 
data. Note the similarity between samples for the same 
regime and the difference between the regimes. 

 
Figure 5.3: Example of reference flight regime maximum 

(above) and minimum (below) load (marginal) distributions 

 
Figure 5.4: Example of reference flight regime damage 
(marginal) distributions 

 
Figure 5.5: Example of sampled GAG extreme manoeuvre 
loads before extreme load and PV-filtering. 



5.2 Verification test under idealized circumstances 

First, the ideal performance of the standard analytical 

(section 2) and new simulation-based (section 4) fatigue 

life substantiation models are tested to see if these 

models are asymptotically correct. Ideal conditions are 

defined as having 5·10
5 

fatigue tests and 10
4
 flight tests 

available. Hence, if a model makes wrong estimates, then 

this must be due to fundamental shortcomings in the 

model itself, as there is practically no uncertainty in the 

fitted strength and load distributions that serve as input to 

the models. 

5.2.1 Standard analytical method 

The standard method is tested by using the ‘true’ lifetime 

distribution to compute the actual Pfail of the lifetime 

quantile that the standard method predicts. As in Figure 

5.6, this actual Pfail is about 7·10
-3

, i.e. the failure 

probability of the predicted lifetime is about seven times 

higher than the target of 10
-3

. This indicates that the 

standard reliability substantiation model is, under ideal 

circumstances, inaccurate and non-conservative. The 

cause is that the standard method only computes with the 

average (extreme) loads and neglects effects of their 

variance. 

 
Figure 5.6: Comparison between the (synthetic) 10

-3
 

lifetime quantile according to the reference distribution and 
the standard prediction method. 

5.2.2 Simulation-based method 

The new simulation-based fatigue life substantiation 

model is tested differently as it does not directly predict a 

lifetime percentile. It is only tested if the new model indeed 

predicts a 10
-3

 probability of failure for the lifetime that is 

already known to be the 10
-3

 quantile of the ‘true’ 

reference lifetime distribution. As in Figure 5.7, the 

predicted  SLLfail refP  is 1.05·10
-3

. This is practically a 

perfect result, as the estimate is well within an 

approximate ‘one sigma’ confidence interval of the ‘true’ 

reference quantile. The test result therefore provides very 

strong evidence that the newly proposed fatigue life 

substantiation model is asymptotically correct. This is in 

contrast to the standard model. 

 
Figure 5.7: SS results under ideal circumstances. The 

circles in the blue line show  SLLfail refP for the i
th

 strength 

interval. Note that this failure probability is conservatively 
assumed for most intervals as this probability approaches 
zero as strength goes up (i.e. practically none of the 
components fails before the SLL for strength factors 
higher than about 0.9). The probability of having a 
component in the i

th
 strength interval is displayed by the 

squared red line. The triangulated black line shows the 
point-wise multiplication between Pfail given strength and 
the probability of this given strength. The dotted green line 
finally shows the cumulative probability of failure, which 
here accumulates to 1.05·10

-3
. The computation was 

executed with 10
3
 samples per subset and a strength 

distribution discretized in 250 intervals (Hence a very 
accurate but computationally expensive configuration). 

5.3 Validation test with realistic small samples 

In practice, the number of tests that can be done is small 

and computational resources are limited. Therefore, the 

validation tests are repeated but now while assuming that 

only seven fatigue tests have been done and that every 

flight regime was only test-flown fifteen times. 

Computational costs are limited by dividing the strength 

distribution in wide intervals and by using low number of 

samples per subset distribution. 

It can now no longer be expected that any of the models 

perfectly predicts the 10
-3

 fatigue life percentile.  The small 

amount of test results available to make a prediction does 

not give a perfect representation of the ‘true’ load and 

strength distributions and thus causes inevitable errors. 

Instead, it is tested if the models give a conservative 

estimate of the 10
-3

 fatigue life quantile in 95% of the 

cases. 

5.3.1 Standard method 

Figure 5.8 shows 250 repetitions of estimating the same 

conservative lifetime quantile with the standard method.  

Seven virtual fatigue tests and fifteen virtual tests per 

manoeuvre were newly performed per repetition. It shows 

that if no confidence interval would be computed, only 

about 40% of the lifetime predictions would actually meet 

the 1-10
-3

 reliability requirement. This can be understood 



by noting that the estimator of the variance, most notably 

of fatigue strength, is biased towards underestimating the 

variance. The error in the estimate of the true standard 

deviation   is proportional to  testn    . Simulations 

confirm that it is ‘normal’ to underestimate the standard 

deviation in about 60% of the cases if only seven tests are 

done. In case of the standard fatigue life prediction 

method this automatically means that the lifetime 

percentile is non-conservatively overestimated in 60% of 

the cases, as strength dominates the prediction. However, 

Figure 5.8 shows that if the 10
-3

 lifetime quantile is 

computed with a single-sided 95% confidence interval, 

then the method is successful in achieving the targeted 

confidence level. Only 9 out of 250 of repeated predictions 

failed to meet the 1-10
-3

 reliability requirement, showing a 

realized confidence level of 96.4%.  

 
Figure 5.8: Testing of the standard fatigue life prediction 
method for realistically small samples. 

The test as in Figure 5.8 was repeated 25 times for 

redrawn synthetic problems to increase confidence in the 

accurate behavior of the standard method. The distribution 

of the realized confidence levels is shown in Figure 5.9. 

Considering that the ‘one-sigma’ confidence intervals of 

the realized confidence levels themselves have an 

approximate width of 2.8%, then it may be concluded that 

the standard method yields practically perfect estimates, 

at least for the tested problem family. To even further 

increase confidence in the accuracy of the standard 

method, the test as in Figure 5.9 is repeated but while 

simulating that ‘only’ seven, instead of fifteen, manoeuvre 

load tests were performed per manoeuvre. So the relative 

uncertainty in estimated manoeuvre loads is increased. 

The realized confidence levels followed a comparable 

normal distribution as in Figure 5.9 but with slightly 

increased variance (imprecision).  This means that the 

error that the method generally makes by neglecting any 

effects of uncertainty in loads is in practice not significant 

in comparison to the effects of uncertainty in strength, 

which is duly accounted for.  

 
Figure 5.9: Repeated testing of the standard fatigue life 
prediction method for realistically small samples. 

 
Figure 5.10: Testing of the simulation-based fatigue life 
substantiation model for realistically small samples. The 
simulation used 150 samples per subset, a strength 
distribution discretized in 25 intervals and 25 bootstraps 
per repeated sample. (Hence a computationally ‘cheap’ 
configuration). 

5.3.2 Simulation-based method 

The new simulation-based method is first tested by 

checking if it indeed predicts a 10
-3

 probability of failure for 

the lifetime that is already known to be the 10
-3

 quantile of 

the ‘true’ reference lifetime distribution. The predicted Pfail 

may not be lower than 10
-3

 for 95% of the load and 

strength sampling repetitions when the method targets a 

95% single sided confidence interval. Figure 5.10 shows 

that 5/100 of the repeated predictions were too optimistic 

regarding the probability of failure of the true  10
-3

 lifetime 

quantile. This is practically ‘perfect’ performance when 

considering the precision of this ‘true’ reference. The test 

as in Figure 5.10 is also repeated while simulating that 

‘only’ seven manoeuvre load tests were performed per 

manoeuvre. Then, 89/100 MLE estimates and 99/100 

upper confidence level estimates were observed to meet 

the actual reliability requirement. This too conservative 

result is believed to be caused by an over conservatively 



designed custom procedure that hedges practical issues 

in fitting multi-dimensional distributions through few 

sample points. The authors are confident though, that a 

simple adjustment in the fitting procedure will yield more 

accurate results. 

The practical engineering problem is however not to 

predict Pfail of a given lifetime but rather to predict a 

lifetime that meets a reliability requirement (i.e. 1-10
-3

).   

Hence, a custom Reliability Based Design Optimization 

(RBDO) application was developed to use the simulation-

based lifetime substantiation model to ‘design’ lifetimes 

that meet a reliability requirement. Figure 5.11 shows an 

illustrative result from the RBDO application.  

 
Figure 5.11: Illustrative result from a custom developed 
RBDO application to predict fatigue life using the 
simulation-based fatigue life substantiation model. Note 
that Pfail estimates around the same lifetime do not differ 
much, demonstrating the high precision of SS in the newly 
proposed method (i.e. with 150 samples per subset). 

Figure 5.12 shows 50 repetitions of estimating the same 

conservative lifetime 10
-3

 lifetime quantile with the custom 

RBDO application, while having only seven fatigue and 

fifteen manoeuvre load tests available. It shows that none 

of the repeated lifetime designs fell below the ‘true’ 10
-3 

lifetime quantile. As a 95% upper single sided confidence 

level was targeted, this test clearly demonstrates too 

conservative results. The validation test of the simulation-

based Pfial(SLL) estimates, as in Figure 5.10, was passed 

successfully. Therefore, the authors are confident that 

manageable adjustments of the RBDO application will 

yield more accurate results. 

5.3.3 Simultaneous comparison 

The results in Figure 5.12 also allow direct comparison 

between the simulation-based and analytical method. The 

test result demonstrates that lifetime quantiles designed 

by the simulation-based method are similar to estimates 

from the standard method, though somewhat over-

conservative. In general though, it therefore seems that, 

for the tested problem family and with realistically small 

sample sizes, the ideally attainable precision in estimating 

a reliable lifetime is simply governed by the precision up to 

which a quantile of a lognormal strength distribution can 

be estimated. 

 
Figure 5.12: Testing of both the simulation-based and 
standard fatigue life quantile prediction models. (The 
simulation used 150 samples per subset, a strength 
distribution discretized in 20 intervals and 25 bootstraps 
per repeated sample.) 

6 CONCLUSIONS 

It is demonstrated that a fundamental and non-
conservative error is made when the reliability of a 
predicted fatigue life is substantiated using only the 
distribution of fatigue strength and simplifying the flight 
manoeuvre load distributions to their mean values. A new 
simulation-based fatigue life prediction method was 
successfully validated and was shown to yield accurate 
results under all tested conditions. 
 
Strikingly however, it is also demonstrated that the 
standard method does nevertheless feature practically 
perfect performance under all tested and realistic 
engineering conditions. Direct comparison under these 
realistic conditions between the standard analytical and 
simulation-based method actually revealed no practically 
significant differences in precision. This means that under 
small sample size conditions, uncertainties in manoeuvre 
loads may be fully neglected and the full reliability 
substantiation may be derived from the fatigue strength 
distribution only. 

As the standard analytical method is much easier (and 
cheaper) to apply it is therefore recommended to only 
resort to the new simulation-based method when 
circumstances are encountered that clearly indicate that 
variance and uncertainties from manoeuvre loads are no 
longer insignificant in comparison to variance and 
uncertainty from fatigue strength. (i.e. in situations where it 
is precisely known that strength has a very low variance 
but where loads are still quite uncertain) 
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