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ABSTRACT 

The paper presents a novel free mesh morphing 
technology based on Moving Least Square (MLS) 
applied to Structural Optimisation. The proposed 
approach moves from the field of surface reconstruction 
from 3D scattered data. From a more general 
standpoint, MLS methods seem promising 
methodologies to solve different morphing problems 
where existing meshes can be modified without specific 
needs to change their topology, i.e. their connectivity 
information. In this respect, MLS is a very effective and 
promising methodology for mesh morphing. 
The proposed MLS morphing methodology has been 
applied to the optimisation of composite stiffened 
panels. The goal of the optimisation is to reduce the 
overall panel weight finding the best layups (thickness 
and percentages) for skin and stringers as well as the 
optimal shape for the stringers via MLS morphing, 
considering stability and strength constraints. The 
optimisation process acts on the shape of the stringers, 
via the proposed MLS approach, without requiring any 
remeshing towards the optimisation process. Nonlinear 
Finite Element analyses are used to predict the overall 
behaviour of the panels in terms of force vs. shortening 
curve up to final failure, discriminate between local skin 
instabilities and global ones, eventually leading to the 
overall failure of the structure. Strength criteria are 
additionally accounted by monitoring the maximum 
Tsai-Wu failure index overall the structure. 
 
 
 

INTRODUCTION 

Composite stiffened panels are nowadays widely used 
in primary lightweight structures: airplane wing covers, 
fuselage panels, helicopter tails and tailplanes are but 
few examples. Recent works underlined how the use of 
composite assemblies has been crucial in the structural 
design of modern tiltrotor structures requiring complex 
optimization processes since several constraints 
including those related manufacturing and dynamic 
stability have to be accounted for [1]. 
Optimisation of stiffened composite panels subjected to 
buckling and strength constraints has been dealt with 

several studies in the last decades. Among the first 
studies on this field a minimum weight design was 
performed by Butler and Williams [2] using VICONOPT; 
other minimum weight optimisations including buckling 
load constraints were proposed by Wiggenraad et al. 
[3]. Often, the presence of local optima and integer 
variables, like the number and the orientation of the 
layers, made the use of the genetic algorithms (GA) 
appealing in optimisation involving composite structures 
[3,4,5,6]. As an example, Kaletta and Wolf [7] applied a 
parallel computing GA, considering buckling and 
maximum strength constraints, to stiffened composite 
plate panels. The fitness evaluation was performed 
using directly eigenvalue finite element analyses.  
However GA may require a higher number of function 
evaluations to converge to the optimum than other 
gradient-based or direct search algorithms. Attempt to 
reduce computational efforts have been made by using 
response surface techniques. As an example multi-
objective GA were used together with response 
surfaces to optimise composite stiffened panels to 
working in post-buckling field [8]. 
The work herein presented moves from this literature 
review and tries to identify the optimal design of a 
stiffened composite panel by changing not only laminate 
thicknesses and percentages but also the geometry of 
the stringers, fully modelled in the FE models. Such 
approach will normally require to re-mesh the panel for 
each analysed configuration. Instead, the paper 
presents a non-linear morphing technology based on 
Moving Least Square approximations to morph the 
mesh of the stringers. 
At first the Free Mesh Morphing technique is reviewed 
and applied to a typical stiffened panel to control the 
geometry of the stringers. Then a typical optimisation 
problem is presented and solved by coupling the MLS 
morphing technique with an effective Simplex (Nelder-
Mead [9]) optimisation procedure enhanced using a 
constraint vs. objective ranking to account for non-linear 
constraints. 
 
 

FREE MESH MORPHING  

Strictly speaking Free Mesh Morphing is a general 
purpose technique used to deform an existing mesh - or 
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better the nodes upon which mesh connectivity is 
defined - without requiring explicit information on the 
geometry initially used to create the mesh.  
More in particular Free Mesh Morphing allows to modify 
the position of a set of target nodes in the space by 
defining a continuous and smooth deformation field to 
be added to the original position of the nodes. Morphing 
algorithms can thus be distinguished based on the way 
they define the deformation field to be applied. 
In the structural field three main schemes have been 
used: 

 Linear scheme: in this scheme the deformation 
field is defined by a linear combination of linear 
deformations spanned wise a set of controlling 
handles. This technique is known to be used by 
MSC and Altair in their size and shape tools. 
Generally speaking this technique is intuitive and 
easy to use as it produces very predictable 
deformation fields. It is also computationally 
effective but as main disadvantage it often  leads to 
broken meshes; 

 non-linear scheme: these have been more 
recently introduced in many research activities [10-
14]: Radial Basis Function (RBF) and MLS 
approaches seem to be the more commons one. 
Despite being more computational expensive and 
sometimes less intuitive to use, they outperform the 
linear scheme with respect of smoothness and final 
quality of the deformed mesh. Both RBF and MLS 
can also be adapted to perform linear interpolation 
by properly down-selecting their inner interpolation 
functions. 

 
More in particular this paper focuses on the use of MLS 
as available in Shaper [15] - a commercial software for 
general purpose size-and-shape optimisation.  
From a general standpoint, MLS techniques belong to 
the field of data approximation form a scattered set of 
points. Applications of MLS can be found many different 
fields: computer graphics and visualization, image 
processing, regression models, supervised learning, 
mesh-free finite element methods are but few examples 
[10-14]. 
The following section briefly outlines the fundamentals 
of MLS approximation methods. More detailed 
information can be found in [14]. 
 

Moving Least Square: 

The Moving Least Square technique can be used to 
solve any function approximation problem. The problem 
can be formulated as follows: 

Given N points located at positions 
3ix where 

 Ni ,,1 , find a globally defined function  xp that 

approximates a set of given values )( if x .   

In order to have the maximum versatility, no specific 

structure is supposed in the data point distribution ix , 

which can be considered scattered in the space 
3 .  

While this problem seems very abstract, it may be easily 
applied to mesh morphing. For instance, by solving 
function approximation it is possible to find the function 
that represent the mesh nodes displacement field given 
the displacement of few points, the controlling handles.  
 
A classical approach to solve this problem is 
represented by the Least Square that looks for the 
solution of the following minimization: 
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The real problem here is to find the appropriate 

functional space for the function  xp able to be a good 

approximation of the real function  xf globally. Usually 

the space of polynomial of maximum degree m is taken.  
To avoid the necessity to find a functional approximation 
space that is valid globally, Lancaster and Salkauskas 
proposed the MLS technique [14]. The idea is to 
perform individually a Weighted Least Square for each 
point x in the domain. So, the global approximation  

 xp  is obtained from the union of a series of local 

functions i.e.    xx xpp  , where the functions  xxp

are obtained as solution of the following minimization 
problem: 
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The function   is a non-negative weight function that 

depends only from the Euclidean distance between 
points in the solution space. The approximation is 

localized as much as possible if  r  is rapidly 

decreasing as r . Extremely useful as weight 

functions are the compact support RBF functions 
suggested by Wendland [16]. 
Then, the approximation problem with MLS is localized 
in two ways:  

 first, a local polynomial fit is evaluated 
continuously over the entire domain; each point 
x has is own local approximation. 

 second, the number of points ix  that effectively 

have an influence on the local polynomial 
representation at x  is kept limited by using RBF 
weight functions (better if with compact 
support). 

By looking at Eq. (2) it is easy to see that if   0

the MLS fit will be forced to interpolate the prescribed 

values at known points )( if x . 

Of course, the MLS approach is definitely more 
expensive than other approach because for every point 
x  where the solution must be computed it is required to 
solve a Linear System of Equations to find the minimum 
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of Eq. (2). However, the size of these LSEs  can be kept 
small by using small support dimension for the weight 
functions. 
 
In order to solve the MLS problem the user has to take 
a decision with respect to these parameters 

1. The functional space for the local 

approximation functions  xxp . Usually the 

functions are polynomial, so the user must 
decide the maximum polynomial order. 

2. The type of weight functions. This choice may 
have an influence on the smoothness of the 
obtained approximation (see [13]). 

3. The size of the local support of the weight 
function. Usually a good strategy is to fix the 
number of points that must belong to each 
support, and then adapt the local size 
accordingly. In this way a natural adaptation of 
the algorithm is realized, since where there are 
few spread points the support is large, while for 
more dense areas the support becomes 
smaller. 

 
 

Samples: 

This section presents a first example on how MLS 
morphing techniques can be used to modify the shape 
of a very simple FE mesh: a cube made of bricks (8-
nodes solid elements). The deformation field is defined 
by using 8 control points (so called free handles in 
Shaper) located on the 8 vertices of the cube.  
 
 

 

 
 
 
 
 
 
 
 

 

 
 

 
 
Fig. 1: a first example of MLS morphing: a) original 

mesh; b) single handle movement; c) 
combined handle movements. 

Figure 1.A) presents the original FE mesh of the cube 
together with 8 controlling handles located at the 
vertices. In Fig.1.B) a handle on the bottom-face is 
translated and the cube deformed accordingly; finally in 
Fig. 1.C) a new handle is added on the upper face of 
the cube and it is linked (by means of a rigid constraint) 
to the other 4 top-face handles. The handle is then 
translated vertically and rotated of 90 degrees, the 
mesh of cube following the deformation imposed by the 
handles. The same configuration of handles would as 
an example allow to inflate and to contract the cube as 
well as to deform it to become a more general 
parallelogram.  
 
It is worth noticing that: 

 a relative small number of handles has been 
required to apply a deformation field overall the 
model; 

 the deformation field works by deforming elements 
the more they are closer to a moving handles. This 
is exactly what we expect from a morphing 
algorithm assuring the mesh to remain almost 
untouched in those regions where no handles are 
moved; 

handles can be hierarchical combined to assure rigid 
transformations and, if required, more morphing 
operators can be superimposed using different 
controlling handles. 
 

STIFFENED PANEL CONFIGURATION: 

The Free Mesh Morphing technique described in the 
previous section is applied to the optimisation of a 
composite stiffened panel assembly representing a 
typical wing cover section.  
Clearly, the scope of the work is not the actual design of 
a real-world composite wing cover - requiring to 
consider many different design criteria - but mainly an 
attempt to explore the advantages of free mesh 
morphing and optimisation techniques in the preliminary 
design phases. In this respect, a simplified design 
approach has been followed attempting to minimise the 
weight of the structure against buckling and strength 
criteria. 
As reported in Fig. 2, the considered structure consists 
of a low-curvature stiffened panel 2000mm wide and 
1750mm long, with a curvature radius of 15700mm. 
Five stringers with back-to-back C cross section are 
equally spaced with a pitch of 250mm.  
A central strip of the panel skin - corresponding to the 
rib landings - has been constrained not to translate 
vertically as well as the lateral edges of the structure 
corresponding to the spar landings. Reinforcement pad-
ups have been added to these areas by increasing the 
nominal thickness of the panel skin.  
 
 

A) 

B) 

C) 
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Fig. 2: considered structure assembly: a two-rib 

composite stiffened panel. 
 
 
 
The panel is made of a unidirectional CRFP material 
whose nominal mechanical properties are reported in 
Tab. 1 below. 
 
 
 

Description Value 

Elastic modulus  E11 13500[N/mm
2
] 

Elastic modulus  E22   8500 [N/mm
2
] 

Poisson coefficient  12    0.35 

Shear modulus  G12=G13   4200 [N/mm
2
] 

Shear modulus G23   3150[N/mm
2
] 

Compression strength X   1280[N/mm
2
] 

Compression strength Y     250[N/mm
2
] 

Tension strength X   2210[N/mm
2
] 

Tension strength Y       75[N/mm
2
] 

In plane shear strength       95[N/mm
2
] 

Nominal ply thickness 0.30[mm] 
Density 1600[Kg/m

3
] 

 
Tab. 1: mechanical properties of the stiffened 

panel’s material. 
 
 
 
The rationale is to optimise not only the thicknesses of 
panels and stringers but also the cross section of the 
latter. After a brief discussion on the adopted FE model, 
two different morphing options are presented: the first 
one uses a reduced number of control handles to shape 
the stringer cross section to remain constant span-wise; 
the second one exploits the non-linear behaviour of the 
MLS approximations to shape the foot and head flanges 
in a smooth way. 
Whilst the second morphing approach has been used to 
underline the capabilities of MLS, the first has been 
selected to perform the optimisation described in the 
following. This choice is motivated not only by the need 
to contain as much as possible the number of 
controlling handles and - as a consequence - of design 
variables during the optimisation search, but also by 
other manufacturing and general cost related 
considerations. 

 

Finite Element Model: 

Finite Element Analyses have been performed to predict 
the behavior of the structure assembly using Abaqus 
[17].  
All parts of the structure have been modeled using 
laminated shell elements with four nodes (S4R) with six 
degrees of freedom at each node and a single 
integration points throughout the thickness for each 
generalized composite ply. The elements used to model 
the skin have characteristic dimension of about 25mm, 
resulting in a total number of 4900 elements. Each 
stinger is modeled using 1260 shell elements: 4 
elements on each side of the foot flanges 3 elements on 
each side of the upper ones and 4 elements along the 
web. Linear material models are used. 
The connection between the skin and the stringer feet 
has been modeled using tie contacts so to allow the 
nodes of the foot flange to change their position, as a 
result of the morphing, without needs to modify the 
mesh of the skin. 
Boundary conditions have been defined to account for 
spars and ribs: vertical translations of nodes 
corresponding to spars and ribs landings have been 
constrained not to translate perpendicular to their plane. 
One end in the span-wise direction has been 
constrained against longitudinal translation; the other is 
loaded by applying a uniform displacement. 
 
Two different analyses are performed on each 
configuration undergoing the optimisation process: 

 eigenvalue: eigenvalue FE analyses are 
performed to obtain the first bucking load of the 
structure. Eigenvalue analyses require an average 
CPU time of about 3 minutes; 

 non-linear implicit: displacement controlled 
implicit FE  analyses have been performed to 
obtain the load vs. shortening curve as well as 
structure strength via the Tsai-Wu failure criteria or 
global instabilities leading to the premature 
collapse of the structure. Non-linear analyses 
require an average CPU time of about 30 minutes. 

 
It may be argued why performing an eigenvalue 
analysis followed by a non-linear one, being the latter 
capable to predict first buckling load as well. The reason 
is mainly related to the need of performing optimisation 
searches. In this respect, the difficulties of estimating 
the first buckling load through the non-linear analysis 
are overcome simply looking at the obtained 
eigenvalues.  
Figure 3 shows a typical force vs. displacement curve 
up to the geometrical collapse with the corresponding 
first buckling load as obtained by the eigenvalue 
analysis. Tsai-Wu strength criteria is reported as well.  
Fig. 4 and Fig.5 show related local and global buckling 
patterns. 
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Fig. 3: typical force vs. shortening curve with first 

buckling load from related eigenvalue 
analysis marked as A). 

 
 

 
Fig. 4: first buckling load corresponding to point A) 

in Fig 3 above. 
 
 

 
Fig. 5: structural collapse due to global geometrical 

instability corresponding to point B) in Fig 3 
above. 

Mesh Morphing: 

This section presents how the proposed MLS morphing 
technology can be used to control the shape of the 
stringers.  
Two different examples are presented: the first aims at 
having constant stringer sections span-wise with 
straight flanges; the second one is an extension of the 
previous and attempts to alter the foot flange width in a 
continuous way along the ribs. The first example will be 
used as morphing scheme in the optimisation searches 
whilst the second should be considered an example of 
the advanced morphing capabilities made available by 
the proposed MLS approach. 
 
Constant span-wise cross section: within this 
scenario, the shape of a stringer should be changed so 
to have constant cross section. More in particular foot 
and head flanges should be inflated and deflated. This 
is achieved by defining 14 handles per stringer: 7 at 
each end as shown in Fig. 6 below. The handles are 
moved in the stringer cross-section plane, the handles 
on the rear section follow the movement of the front 
ones so to assure the stringer section to remain 
constant span-wise.  
 
 

 
 
Fig. 6: stringer morphing: constant span-wise cross 

sections. 
 
 
As shown in Fix. 6, each stringer can be morphed 
independently from the others. However the same 
stringer cross-section will be enforced during the 
optimisation process.  
 
Variable span-wise cross section: this second 
example should be considered as an extension of the 
previous one. The idea is to free-up the stringer shape 
to have a non-constant and smooth (i.e. non-linear) 
cross section span-wise. This is achieved by adding 
more controlling handles. 
Figure 7shows an example of how the stringer foot can 
be "inflated” in the rib-bay assuring a constant and given 
width on the rib-landing areas. The stringer top flange is 
morphed in a similar way in Fig. 8. 
 
 
 

A 

B 
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Fig. 7: stringer morphing: smooth span-wise cross 

sections - a first configuration. 
 
 
 
 

 
Fig. 8: stringer morphing: smooth span-wise cross 

sections - a second configuration. 
 
 
It is worth noticing that in both cases a smooth 
morphing has been achieved preserving the quality of 
the mesh. The relatively large number of handle used to 
achieve the morphing may be seen as a drawback, 
however it is recalled that - at least within Shaper -
hierarchies of handles can be defined so to possibly 
reduce the number of parameters to be controlled by 
during an optimisation process. 
 
 

STRUCTURAL OPTIMISATION: 

The goal of the proposed optimisation is to reduce the 
overall panel weight finding the best layup(thickness 
and percentages) forskin and stringers as well as the 
optimal shape for the stringers via MLS morphing 
considering stability and strength constraints. In this 
respect, the optimisation process acts both on the 
shape of the stringers via the proposed MLS approach 
and on the thickness and the lay-ups of the stringers 
and the panel skin.  
Despite this kind of optimisation problems is not new in 
literature [1-8] and it is often considered in the day-to-
day industrial design, no works have been found at the 
best knowledge of the authors using MLS methods 
coupled with an optimisation engine in the attempt to 
simultaneously optimise size and shape together with 
laminate layups. Optimisations have been performed 
using Nexus [18] 
 

OptimisationProblem: 

The optimisation problem has been formulated to 
minimise the panel weight assuring the panel not to 
buckle before the limit load is reached and not to fail 

(Tsai-Wu criteria or global instability) before the ultimate 
load. 
From a mathematical standpoint the optimisation 
problem follows below: 
 

  

 

 

















UltimateTsaiWu

LimitCR

Dx

FxF

FxF

xWmin








1

 (3) 

 

 
Even if it is recognized that the proposed approach is a 
simplified one, it is also believed to represent typical 
aerospace design conditions. 
 
Design variables: design variables can be grouped in 
two main sets: variables that control the shape of the 
stringers, i.e. the position of the handle in the morphing 
process, and variables that control the thicknesses and 
the lay-up of panel skin and stringers. 
As far as the stringer shape in concerned, Tab. 2 
reports the range of variation of the flanges and of the 
stringer height being the shape controlled via 3 
displacements of the controlling handles: one to 
stretch/shrink the upper flanges, one to stretch/shrink 
the foot flanges and the last one to stretch/shrink the 
height of the web.  
 
 

Description Min Max 

Stringer height [mm] 23.5 82.5 
Stringer half-foot width [mm] 12.5 62.5 
Stringer half-head width 12.5 62.5 

 
Tab. 2: optimisation variables: stringer cross-section 

domain of interest. 
 
The optimisation of the composite laminates forming the 
panel skin and the stringer sections has been performed 
considering overall equivalent thicknesses orientation-
by-orientation. Symmetric and balanced laminates are 
ensured. 
Table 3 reports the considered variables and their 
domains of interest.  
 
 
 

Description Min Max 

Stringer 0 ply thickness [mm] 0.75 5.00 
Stringer 90 ply thickness [mm] 0.75 5.00 
Stringer +/-45 ply thickness[mm] 0.75 5.00 

Skin 0 ply thickness [mm] 0.50 5.00 
Skin 90 ply thickness [mm] 0.50 5.00 

Skin +/- ply thickness[mm] 0.50 5.00 

Skin  ply orientation [degrees] 20.0 80.0 

 
Tab. 3: optimisation variables: composite laminates. 
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It is stressed that an additional degree of freedom is 
introduced in the design of the skin laminate: layers at 

an arbitrary orientation of  can be introduced in 

laminate. When  is set to 45 degrees classical [0/+45/-
45/90] staking sequences are obtained. 
 
Geometrical constraints: few geometrical constraints 
have been added among the design variables to restrict 
the feasibility region of the optimisation domain to more 
realistic solutions: 

 the width of the head flanges should be less than 
the foot flange; 

 the overall panel thickness should range between 
3.0mm and 7.0mm.  

 the overall thickness of the stringer flanges should 
range between 2.5mm and 6.5mm, leading to a 
total web thickness ranging between 5 and 13mm. 

 
Strength requirements: as aforementioned the panel 
should be designed to assure minimum bucking load 
and minimum failure one.  
This is achieved within the optimisation procedure by 
adding three additional constraints: 

 the first buckling load (obtained via an eigenvalue 
analysis) should be greater than a threshold value 
representing the limit load; 

 the load that makes Tsai-Wu criteria to be 1.0 
either in the stringers or in the skin should not be 
less than the ultimate load; 

 collapse due to non-linear instabilities should not 
be less that the ultimate load. 

 
 

Optimisation Results: 

The optimisation process described in the previous 
section is continuous and therefore solvable via 
gradient-based optimisation algorithms, however the 
need of using a finite-difference scheme to evaluate 
derivatives of objective and constraint functions with 
respect of the 10 design variables and the possibility to 
remain trapped in local minima make the use of 
gradient-based algorithm less appealing.  
On the other side, the optimisation problem as 
formulated above appears to be continuous and smooth 
at least with respect of the design variables even if the 
response of the structure may turn out to be non-linear 
and non-smooth due to instabilities and relevant stress 
concentrations.  
Overall, the previous considerations (relatively small 
number of continuous design variables but accurate 
derivatives and possibly non-smooth constraint 
responses) make the Nelder-Mead method an attractive 
alternative to tackle this optimisation problem. The main 
drawback of the Nelder-Mead [9] method is that in its 
original formulation it is unable to deal with constraints. 
However the modified version of the method available in 
Nexus [18] overcomes this limitation.  
 

Modified Nelder-Mead Method: the Nelder-Mead 
method attempts to minimize a nonlinear function of n 
real variables using only function values, without any 
derivative information. The Nelder-Mead method thus 
falls in the general class of direct search methods. The 
method works maintaining at each iteration a (possibly) 
non degenerate simplex, i.e. a geometric figure in n 
dimensions of nonzero volume that is the convex hull of 
n + 1 vertices. 
In the original formulation, each iteration of the method 
begins with a simplex and its associated objective 
function values. One or more test points are computed, 
along with their function values, in the attempt to 
improve the simplex with respect of the objective 
function.  
In the original implementation, a direct comparison 
between objective values is used to sort and modify the 
points forming the simplex.  
The implementation herein proposed compares the 
points forming the simplex using a rank based 
approach: feasible solutions are always preferred to 
unfeasible ones; among unfeasible solutions, the less 
violated are preferred; among feasible solutions, the 
ones with minimum objective are preferred. The 
proposed approach directly allows to consider non-
linear constraints and intrinsically favors the algorithm in 
the search of feasible solutions over performing more 
classical approaches based on penalty. 
 
Results: A first optimisation run has been performed 
searching for the minimum weight panel with a buckling 
load per unit length above 450N/mm and a failure load 
per unit length above 675N/mm (being this the minimum 
between Tsai-Wu and global instability loads). 
The rationale is to design a panel working under the 
buckling load in limit conditions and capable to sustain 
ultimate loads without failures. Despite first-ply-failure 
approach is recognized to be conservative in many 
practical applications, this is believed to represent a 
good benchmark for the proposed optimisation 
procedure. It can be easily extended to account for 
more realistic and possibly less conservative strength 
criteria (including as an example damage tolerance and 
reparability criteria). 
Limiting to this test case, the optimisation was started 
with an initial random simplex of 11 points and required 
192 iterations, corresponding to a total number of 280 
function evaluations to converge to the final solution. 
Figure 9 reports the convergence history of the 
algorithm. It is worth noticing that despite the relative 
high number of iterations, the number of function 
evaluations has been contained.  
A classical gradient based optimisation would have 
required at least 11 evaluations per iteration (as 
derivatives would have computed via finite differences 
at each iteration) leading to an equivalent number of 
iterations of about 25 - which seems a realistic forecast 
considering the number of variables. In this respect, it 
seems that the Simplex method turned out to be as 
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effective as a gradient based algorithm in terms of 
number of evaluations. 
 
 

 
Fig. 9: optimisation history: objective function vs. 

iterations. 
 
 
The characteristics of the identified design, in terms of 
design variables and requirements, are briefly reported 
in Tab. 4.  
 

Description Value 

Stringer height  [mm] 23.71 
Stringer half-foot width  [mm] 29.89 
Stringer half-head width [mm] 15.40 

Stringer 0 ply thickness [mm] 2.74 
Stringer 90 ply thickness [mm] 1.95 
Stringer +/-45 ply thickness [mm] 0.75 

Skin 0 ply thickness [mm] 0.50 
Skin 90 ply thickness mm] 1.35 

Skin +/- ply thickness [mm] 1.01 

Skin  ply orientation  [degs.] 44.75 

Overall Weight  [Kg] 35.67 
First Buckling Load [N/mm] 451.05 
Failure load (Tsai-Wu=1)  [N/mm] 697.12 
Collapse Load  [N/mm] 723.22 

 
Tab. 4: optimisation results: design variables, 

objective and constraints values. 
 
 
The obtained results show that the value of the first 
buckling load is at the imposed constraint value of 450 
N/mm, being the driving constraint. A residual margin of 
around 7% has been achieved on the Tsai-Wu failure 
load which results to happen slightly before the 
structural collapse due to global instability. 
The values of the geometrical variables describing the 
stringer geometry are far enough from the imposed 
geometrical limitations and no further margins seem to 
exist for further weigh reductions. 
Considering the strength requirements it can be seen 
that the Tsai-Wu criterion has been exceeded just 

before the global instability of the structure near the foot 
of the stringers due to high global bending. 
 

 
Fig. 10: force vs. shortening curve of the optimised 

panel configuration: A) first buckling load; B) 
Tsai-Wu at 1; C) collapse. 

 

 
Fig. 11: structural collapse corresponding to point C) 

in Fig 10 above. 
 
 

 
 
Fig. 12: contour of Tsai-Wu failure criteria 

corresponding to point B) in Fig 10 above. 

A 
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CONCLUSIVE REMARKS: 

The paper focuses on the use of mesh free morphing 
applied to structural optimisation problems. A practical 
example considering a composite stiffened panel 
working in post-buckling has been presented.  
The proposed morphing procedure seems an appealing 
alternative to more classical (linear) approaches and 
allows- in this specific application - to modify size and 
shape of the stringers.  
The resulting optimisation process uses 10 design 
variables to control both shape variables (that define the 
geometry of the stringers) and lay-up variables 
controlling the thicknesses of each orientation of the 
composite laminates.  
A modified version of the Nelder-Mead Simplex method 
is used in the search of the minimum weight panel 
subjected to first buckling and strength constraints. The 
method has the advantage of not requiring derivative 
information. Limiting to this application, the optimisation 
procedure seems to over-perform Genetic Algorithm 
and to rank almost equally to other well established 
gradient based methods with respect of the number of 
overall function evaluations being the final solution 
bounded by the constraints – suggesting no further 
improvements in the overall weight are possible.  
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