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Abstract 
A space-centered implicit finite-volume Euler method is described and applied to the 

simulation of steady flow around mulribladed helicopter rotors in hovering-flight in the 
framework of a pure capture of the wake. The method is then adapted to the computation of 
unsteady flows and applied to the simulation of the flow around an isolated blade submitted 
to an arbitrary solid body motion. A multibladed forward-flight flow simulation is achieved 
by the introduction of a wake correction. 

I. · INTRODUCTION 
Following pioneering works in U.S.A [1-10], and more recently in Europe [11,15], 

ONERA is developing, with the support of French Ministry of Defense (DRET), a research 
program for the introduction of Euler CFD tools in helicopter rotor flow simulation. Solving 
the Euler equations was identified as an important step for a numerical approach of the 
hovering-flight problem due to the possibility of theoretically taking into account the 
representation of the vertical wake system without particular treatment. This feature of the 
Euler equations is of great interest due to the importance of the mutual influence of the 
blades on the performance of a hovering rotor. 

In a previous work [ 16], the application of a new implicit space-centered Euler solver 
without artificial viscosity due to Lerat, was described and illustrated for the simulation of the 
steady flow around the classical two-bladed model rotor of US-Army in hovering-flight in the 
framework of a calculation with pure capture of the wake. This new contribution is devoted 
to present the improvements carried on the steady hover method and to develop its extension 
for the calculation of unsteady transonic flows around rotors in forward-flight. 

In a first chapter, the different formulations of the Euler equations in a rotating frame, used 
for the various steady and unsteady applications considered, are described in details. In a 
second chapter, the numerical method is presented with emphasis on its finite-volume 
formulation deduced from a direct approximation of the Euler equations in integral 
conservation-Jaw form. The last chapter is devoted to the description of the applications. 

2.- GOVERNING EQUATIONS 

2.1 - General formulation of the Euler equations in integral conservation-law form 
We consider the problem of an inviscid flow over a helicopter rotor in forward flight with 

a velocity V0. The blades are rotating with velocity Q and are submitted to pitching and 
flapping motions with respect to an absolute cartesian frame Ra (0, x, y, Z). In the absolute 
frame R., the flow is governed by the system of three-dimensional compressible unsteady 
Euler equations written below in integral conservation-law form applied on a computational 
domain Q(t) with moving boundary l(t) of outward normal rr(t) and driven velocity s'\t) : 



(la) .5!_ J p dQ + f [V -sl:t)J. n'(t) pdf= o, dt Q(l) r(t) 

(lb) .5!_ J pv dn + f [ rv- Sltll . n'(tl pv + p n'(tl) dr =a, dt Q(l) r(t) 

(lc) .5!_ s pE dQ + s [ [V -Sit)] . n'(t) pE + p V.n'(t)J df = 0 . 
dt Q(l) f(l) 

In this system, the conservative unknowns, depending of the instantaneous spacial position 
rl:t) of the points M of Q(t), are : the density p, the momentum pV, where V is the absolute 
flow velocity, and the energy E. 

The pressure p is deduced from the thermodynamic law state : p = (y-1 )pe, where e is the 
specific internal energy defined bye== E- IVI 2/2 . 

For the unsteady forward-flight application, it is suitable to use a "fully absolute" 
formulation of the system (1 ). More precisely, the momentum equations are formulated in the 
absolute frame R., and, in system (1 ), d/dt expresses the time derivative with respect to this 
absolute frame. We define [u, v, w] as the scalar components of the absolute velocity V 
projected in the absolute frame and we introduce the five-components vector of conservative 
unknowns: 

(2) W = [p, pu, pv, pw, pE]T. 

Then the system (I) can be written in the following condensed form : 

(3a) .5!_ f W dQ + f H[W, Sit), n'(t)] df = 0 , 
dt Q(l) r(t) 

(3b) H[W, Sit), n'(t)] = [V -Sit)] . n'(t) W + p [ n'(~ l· 
V . n'(t) 

This general formulation has to be completed by initial data and boundary conditions. By 
example on a solid body surface the slip condition is : 

(4) V. n'(t) =Sit) . n'(t), 

and on the body surface, the Euler flux depends only on the pressure, on the driven velocity 
Sit) of the boundary and on the metric n'(t) : 

(5) H[ p;s\t), n'(t)] = p [ n'~t) l 
:sl:t) . n'(t) 

2.2 - Formulation for an isolated rotor blade in forward flight with cyclic pitching and 
flapping motions 

2.2.1 - Description of the motions (figure 1) 

We consider an isolated helicopter blade in rotating, pitching and flapping motions with 
respect to the absolute frame Ra = (0, x, y, Z); the uniform translating advancing velocity 
motion V0 is taken into account in the far-field boundary conditions. 

We define the relative frame R,.(O, e'1, e'2, Z) driven by an uniform rotating velocity Q = roz' 
around axis OZ with respect to the absolute frame Ra (see figure Ia). The instantaneous angle 
'Vm(t) between the axis ili and oel is connected to the azimuthal angle 'Jf(t) by the relation : 

(6) 'Jim(t) = 'Jf(t) - n/2, with 'Jf(t) = rot. 

In addition, the blade is in flapping motion around axis oe'1 with angle ~(t) which defines 
the relative frame Rf{O, e'1, a'2, a'3) (see figure I b) with the law: 
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(7) P(t) = Po + P1ccos\jl(t) + P~ssin\jl(t), where Po is the conicity angle of the rotor. 

Finally, the solid body motion is completed by cyclic pitching around axis oa'z, with angle 
S(t) defining the relative frame RP(O, x'1, a'2, z1) (see figure !c). The instantaneous pitching 
angle is : 

(8) S(t) = So+ slcCOS\jl(t) + sl,sin\jl(t), where So is the collective pitch of the blade. 

The rotating velocity of relative frame RP with respect to the absolute frame Ra is then: 

(9) Q(Rp/R3 ) = o/m(t) z + ~(t) e'1 + B(t) a'z, 

where the dot expresses the time-derivative and we have : 

~ cosS(t).- w cosP(t) sinS(t) l 
(10) Q(~/Ral = S(t) + w sinP(t) in the relative frame ~· 

P sinS(t) + w cosP(t) cosS(t) 

We introduce the transformation matrix S(t), between the two frames Ra and RP, which is 
a product of the three rotation matrices of angles 'l'm(t), PCt), S(t) : 

[ 

cosS COS'I'm - sinS sinp sin'l'm - cosP sin'l'm 

(11) S(t) = cosS sin'l'm +sinS sinp cos\jlm cosp cos\jlm 

- sinS cosp sinP 

sinS cos\jlm + cosS sinP sin'l'm l 
sinS sin'l'm - cosS sinP COS'I'm . 

cosS cosP 

2.2.2 · Formulation in the case of a mesh-grid attached to the blade 
The formulation developed below was first introduced in [17] for the solution of the two­

dimensional unsteady Euler equations and application to transonic flow calculations around 
oscillating airfoils. 

We define a mesh-grid Q attached to the blade which does not vary in time in the relative 
frame RP and the conservative variables of system (I) are now expressed with the coordinates 
[x', y', z'] of the relative frame ~ leading to an Eulerian description of the flow in this 
frame. In addition, in order to simplify the formulation, the scalar products are evaluated in 
the relative frame RP. Each point M of the attached grid is fixed in the relative frame RP and 
its driven velocity with respect to the absolute frame R3 is given by : 

(12) s'(t) = V(M/Ral = _! r\:t) 1 = _! r\:t) 1 + Q(Rp/Ra) X r\:t) = Q(Rp/Ra) X r\:t) 
dt R, dt RP 

We need to use the components of the vectors of the problem both in the absolute frame 
Ra and in the relative frame RP. For notation commodity, and specially to allow later an 
easier description of the formulation used for the hovering-flight problem, we define : 

(13) r\:t) = [x,y,zl\, = S(t).[x',y',z'l\, = [x',y',z']TI", =r''(not time-depending) 

(14) V = [u, v, w]TI = S(t).[u', v', w'J\ = [u', v', w']TI• = V' 
Ra 1 p 

(15) n(t) = fnx.ny,nzlTIR = S(t).[n'x·n'y·n'zlTIR = [n'x,n'y·n'zlTIR = n '(not time-depending) 
• • p 

It is worth noticing that V and V' (resp. r' and r' ', n and n ') are two different 
representations of the same vector previously noted V (resp.?, 11). 

We introduce in a similar way : 

(16a) s'(t) = Q(RpiRal xr\:t) = Q '(RpiRal xr'' ="li'(t) 

with 

(16b) Q '(RpiRal = Q (~/Ral IR, given by (10) 

CIO- 3 



Using these notations, the conservation equations (1) can be rewritten as follows : 

(17a) ~ f p dQ + f rv '- S' '(t)] . rr' p dr = 0 ' 
dt n r 

(17b) ~t fn pV dQ + fr [ [V '-S''(t)J. rr' pV + p S(t)rr'] dr =a, 
(17c) ~t fn pE dQ + fr [ [V '-S''(t)J. rr' pE + p v '. rr'l] dr = o, 

or also in the condensed form : 

(18a) ~J WdO+f H[W,S''(t),rr',t]dr=O, 
dt n r 

(18b) H[W, s> 'Ctl, -rr ', tJ = rv '- s> 'Ct)J.rr' w + p [ sctl ~ -rr '1 
v '. -rr' 

It is worth pointing out that : 
the unknowns of the problem for the flow velocity, which are the components of the 

absolute velocity projected in the absolute frame, do not depend on the metric, that is suitable 
for an accurate treatment of the numerical finite-volume fluxes. 
- the computational grid attached to the blade is fixed, and the unsteady fluxes depend 

explicitly, versus the time, only on the transformation matrix S(t) and the driven velocity S'' 
expressed with (16a,16b), allowing an easy and economical coding, 
- the unsteady formulation is formally identical, and so no more complicated, than the one 

used for a steady wing flow problem. 

2.2.3 - Formulation in the particular case of an isolated rotor blade without cyclic 
pitching and flapping motions 

For this problem the unsteady formulation (17-18) is slighter simplified. We have now 
~(t) = 8(t) = 0 and all the relative frames R" Rr and RP introduced in paragraph 2.2.1 are 
coinciding. Subsequently, we can introduce only the relative frame R, attached to the blade in 
its rotating motion and we have from (9) or (1 0) : 

(19) Q(l~,./Ral = ro z = Q '(R/Ral· 

The driven velocity of the points of the boundary r does not depend on time when it is 
expressed in the relative frameR,. Using (16),(13) and (19) we obtain : 

(20) S'' = ro [-y', x', O]T, 

and the transformation matrix S(t), between the absolute and relative frames, degenerates 
in the simple rotation matrix R(t) of axis OZ and angle 'Vm(t) : 

[ 

COS\jlm(t) - sin\jlm(t) 0 l 
(21) R(t) = sin\jlm(t) COS\jlm(t) 0 . 

0 0 1 

2.3 - Formulation for the multibladed rotor in hovering-flight 
We consider the flow around a multibladed helicopter rotor in hovering-flight. In this 

problem the advancing velocity V0 is equal to zero and the rotor is submitted to an uniform 
rotating motion of velocity Q(R,/Ral given by expression (19). In the relative frame R,. 
attached to the rotor, the flow is steady and periodic with period 27t/Nb in the azimuthal 
direction, where Nb is the number of blades. The computational domain Q, fixed in the 
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relative frame, can be restricted to a zone, around only one blade, covering a 2rr/Nb pan of 
the rotor; the influence of the other blades is taken into account exactly with the application 
of a periodicity boundary condition. The formulation developed previously for the simplified 
unsteady forward flight problem (2.23) could be used. However, in order to benefit of the 
steady character of the flow in the relative frame R" the momentum equations will be now 
formulated in this relative frame. 

We introduce the time-derivative formula on a moving frame : 

(22) j_ f pV dQ = ~ f pV dQ + Q(R/R.) X f pV dQ, 
dt n dt n n 

where d/dt' expresses the time-derivative with respect to the relative frame R,. The time­
derivative d/dt with respect to the absolute frame Ra can be eliminated by combining the 
expression (17b) with the driven velocity (20) and the formula (22) with the rotating velocity 
(19): 

(23) ~' In pV dQ + Ir [ [V '-s'']. rr' pV + p R(t) rr '] d1 =-In Q(R/R.) X pV dQ. 

We first note the addition of a source term with respect to the previous formulation. 
Morever, the conservative fluxes still depend of the time. In order to simplify the formulation 
(without mixing of the scalar components of the absolute flow velocity projected in the 
absolute and relative frames), we will describe now the vectorial equation (23) in the relative 
frame R, using the relations (14 ), (15) and (19): 

(24) d~' In pV 'dQ + Ir [ [V '-s''J. rr' pV' + prr'] d1 =-Inn '(R/R.) x pV' dQ, 

the formulation (17a, I 7c) for the mass and energy scalar equations being unmodified. 
The unknowns of the problem for the flow velocity are now the scalar components of the 

absolute velocity projected in the relative frame and we define : 

(25) W' = [p, pu', pv', pw', pElT 

Finally, the complete formulation can be written using a compact form analogous to the 
one introduced previously (18) : 

(26a) ~ f W' dQ + f H[W' , s' ', rr '] d1 = I T(W') dQ, 
dt n r n 

(26b) H[W',s'', rr'] = [V '-s''].rr' W' + p [ ;, l·, 
v '. -rr' 

where the source term has the simple expression : 

(27) T(W') = w [0, pv', -pu',O, O]T. 

In this formulation the conservative fluxes do not depend explicity on the time and the 
source term only depends linearly on the conservative unknowns. 

3. - NUMERICA' METHOD 

3.1 - Finite-volun approximation 

We consider the system of Euler equations on a general conservation-law form including 
all the particular cases studied in the previous chapter : 

(28) j_ f W dQ + f H[W, 5\_t), rr, t] d1 = f T(W) dQ, 
dt n r n 
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where W is the vector of conservative unknowns and H is the conservative Euler flux which 
can depend explictly on the time. We suppose that the source term T(W) depends only on the 
conservative unknowns. In addition the source term is supposed to be equal to zero in the 
case of the unsteady forward-flight formulation (18). 
:for a numerical approximation of system (28) on fixed domain Q, we consider a curvilinear 

structured computational grid built of elementary cells ni,j,k• which volume and boundary are 
Y;,j,k and !i.j,k = u !u.K• where !u.K represents any side of the cell ni,j,k· 

I.J.K 
The numerical method is in "conservation form", if it can be written as follows (see [18]) : 

(29) 

L H"+'h 
,', W . k I,J.K 

l,J. + .::I..::J•::.K-,----__ = Tn+'h 
At v ,,j,k ' '-' .. k l,J, 

with the introduction of the time-difference operator : I'>W = wn+I - W", where l'>t is the 
time step and wcj.k is an approximation of the mean value of w in the cell ni,j,k at time 
tn = nl'>t : 

-n 1 I I (30) wi,j.k = -- w dQ t=t'· v k Qijk l,J, ' 

The numerical flux HCJ.~ is a consistent approximation of the mean value, during the time 
interval ( tn,tn+I), of the conservative flux H across ! 1,1,K : 

t"'' 

3 -n+'h 1 I [I J ( 1) Hu.K = ~ ,, r,, .• H[W ;sl:t), rr, tl d! dt, 

and the term Ttt~h is an approximation of the mean value, during the time interval ( tn,tn+I), 
of the contribution of the source terme in ni,j,k : 

tn+l 

-n+Y, 1 I 1 I (32) Ti,j,k = l>t [ -y· n.. T(W) dQ] dt. 
tn i,j,k lJ,k 

The choice of a numerical scheme will allow to precize the approximation for the Euler flux 
and source term. 

3.2 - Recall on the numerical method 

In this work, the method used to solve the Euler equations for helicopter applications is 
based on a space-centered implicit solveur introduced by Lerat [18-20] and previously 
developed at ONERA, in the curvilinear finite-volume formulation, for the solution of steady 
transonic flows around airfoils [21,22]. We recall that this original space-centered solver 
works without artificial viscosity for steady transonic flow calculations. For application to the 
hovering-flight problem, the method is slightly modified due to the presence of a source term 
(see [20]). For the treatment of time-accurate problems the basic method is also slightly 
modified and very similar to the one previously developed for two-dimensional unsteady 
transonic applications [23-25]. 
3.3 - Description of the numerical method 

3.3.1 - Explicit stage of the basic method for the rotor in hovering-flight 

When system (28) is used for the description of the flow around a helicopter rotor in 
hovering-flight, we have previously shown that the conservative Euler flux depends only on 
time through the conservative unknowns (26), and also that the driven velocity does not 
depend on time (20). The boundary conditions being steady, the flow is also steady in the 
relative frame. So we have used the explicit stage of the basic method which corresponds to 
an original multidimensional extension of the Lax-Wendroff approximation, and can be easily 
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extended to the situation where the conservation equations contain an additional source term. 
This explicit stage introduces, because of the coupling between the Lax-Wendroff time­
approximadon and the original spacial discretization of the second order term, one predictor 
in each space direction and a corrector. 

The expression of the explicit predictor 6W1•1.K will depend on each side rl.l.K of the grid­
cell .ni,j,k and is calculated, using a discrete approximation of system (28), in a staggered cell 
ill,J,K of boundary CJQ!,l,K following the lines of the curvilinear grid : 

(33) 6Wll K = 2Y~.:.K [ fan,,,,KH(Wn, S, IT) df- fniJ_.T(W") dQ]. 

A predictor calculation involves globally ten cells in the vicinity of the current cell nl,J,K at 
time tn (see figure 2). 

Finally, an explicit numerical flux for the corrector is calculated accross each side of the 
current grid-cell from the value of the predictor and with the introduction of the jacobian 
matrix of the conservative flux : 

(34) 
ClH 

A(W, s. IT) = aw cw, s. IT). 

The numerical flux expressed on the side rl.l.K is : 

(35) 

The fully discretization in space in the finite-volume formulation leads to a consistent 
approximation of (31). 

Although expression (33) could be interpreted as a predictor step, the discretization 
introduced here comes from the second-order time-discretization of the Lax-Wendroff scheme 
and not from that of a kind of classical predictor-corrector scheme. 

In the case of the approximation of a steady problem, where the consistency in time is not 
necessary, it is possible to simplify the time-discretization of the source term as it was done 
previously in [20]: 

Tn+'h = _I_ f T(W") dQ. 
l,J,k v Jn 

i,j,k ij,k 

(36) 

The final explicit approximation is written under the conservation form (29) and give the 
explicit corrector : 

6 w.cxp = - L'lt [ ai Htt~ - p+'hl 
!,j,k v !,j,k ' 

i,j,k 
(37) 

leading to the use of globally twenty seven cells at time tn. 
The global contribution of the driven velocity to the numerical flux fr W "?. 1f df can be 

calculated with accuracy due to its particular expression s = ro z x Y,';tn the case of the 
hovering-flight problem [II]. This calculation is described in [4] 

f W "ft. Tf df = W1 1 K f s. Tf df, 
r1.1.K • • ru.K 

where WI.J,K represents a mean value of W, on the side ri.J.K• consistent with a finite­
volume approximation, and which is calculated by using the current-cell scheme. The 
analytical calculation of the scalar product fr "?. 1f dr, needs only the knownlegde of the 
vertices defining ri.J.K· This calculation is don'~·"only one and stocked in the same way as the 
normal is. 
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3.3.2 - Explicit stage of the modified method for the blade in forward-flight 

For the unsteady problem of the isolated blade submitted to an arbitrary rigid body motion, 
the numerical method is not fundamentally modified, due to the fact, in particular, that the 
system (28) does not contain any additional source term. However, the explicit time­
dependency of the conservative flux (18), through the driven velocity and the transformation 
matrix between the two absolute and relative frames (11), introduces additional terms in the 
Lax-Wendroff time-discretization with jacobian matrices [26]. In order to simplify this 
discretization we have chosen to use a "Sif'' explicit stage without matrices [18]. This explicit 
stage involves : 

- an explicit predictor, which is identical to the one of the basic Lax-wendroff scheme with 
matrices, and can be written now : 

(38) Llt fa H[W'', sl:t), rt, tl I,=,, dr, 
2YI,J.K flt),K 

- an explicit "Sf" numerical flux for the corrector : 

(39) Hft.~ = fr HfW"+Ll w, sl:t), rt ,t]l,=,"·~ dr, 
l,J,K 

and finally we get the full explicit approximation : 

"" H n+lh 
£... I,J,K 

fl wcxk == - flt -'I.J-'-.K __ _ 
l,j, v 

i,j,k 
(40) 

This scheme does not work without artificial viscosity, but stays second-order time accurate 
without additional terms. 

We have used a simple explicit quasi-TVD correction analogous to the one introduced in 
[27] and developed for application to the "Sr schemes in the work [28]. This second order 
correction, in conservation form, is needed in order to smooth the oscillations in the 
numerical shock structure, and added to the explicit stage (40) under the form : 

~ Hn+l/2 
£... I,J,K 

(41) flW.c~p ==- Llt I.J,K .._, TVD" 
l.J,k y + .t... I,l,K 

i,j,k I,J,K 

3.3.3 - Implicit stage for both steady and unsteady problems 
The basic implicit stage of the method authorizes the use of high values of the CFL 

number, and in the context of the solution of steady problems, this allow to increase the 
intrinsic dissipation of the scheme which depends on the time step. We can obtain steady 
numerical shock structure without oscillations and without adding dissipation correction. 
Morever, the speed of convergence to the steady state increases with the CFL number. For 
unsteady applications, the use of high values of CFL number is still more important for 
reducing the computational cost. 
The implicit stage is a second-order correction in the time-discretization of the Lax­

Wendroff scheme introduced in (33): 

( 42) Lit J H(W"+ 1, s, n') dr. 
2VI.J.K anux 

A linearly implicit approximation can be obtained from a time expansion: 

(43) H(W"+l, 't, n') = H(W", s, n') +A(W", s, n') LiW. 

We introduce the correction (42,43) in the expression of the explicit corrector (33), 
corresponding to the linearly implicit part of the numerical flux (35) (see reference [29]) : 
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0 

(44) Himp C\V", t.W)u.K = f A(W", S, IT) t.W d1, 
ru.K 

0 

where, similarly to the case of the explicit predictor, the expression t. W will depend on 
I.J.K 

each side of the grid-cell ni,j,k• and is evaluated in a staggered cell nl.l.K with : 

0 t.t 
(45) t. W =- fa A(W", S, IT] d1. 

I.J.K 2V I J K n,;,K 

The correction A(W", S', IT) t. W introduced in the second-order term is of order t.t. Then, 
this correction is of the order of the global truncation error of the method and does not 
reduce its global accuracy in time. 
The implementation of the method will be done following two successive stages at each time 

step: 
- an explicit stage leading to the calculation of the explicit corrector (37) 
- an implicit stage needing the algebraic solution of the linear problem : 

(46a) t.Wi,j,k + Vt.t I; Himp(W", t.W)r,J,K = t.Wi~D: 
i,j.k I.J.K 

(46b) w.n:tkl = wn. k + t.W· · k l,J, l,J, l,j, 

The direct solution of the fully implicit operator (44),(45),(46) is a difficult problem for 
which fundamental research is in progress [30]. In order to simplify the problem, the implicit 
stage (46a) is factorized in each space direction using the "AD!" method. This leads to the 
solution of triadiagonal linear systems with blocs of size (5x5). An additional simplication 
consists in replacing the bloc jacobian matrices by their spectral radii leading to, the well 
known "residual smoothing technique" introduced initially in the work [23]. This simplication 
allows to reduce notably the number of algebraic operations and the main memory of the 
computer. In all the cases, the tridiagonal linear systems are solved efficiently using the LU 
factorization. However, it is well known and proved [ 19] that the "spectral radius" technique 
reduces the convergence speed to the steady-state but is compatible with the S~ explicit 
stage. 

3.3.4 · Intrinsic dissipation of the method versus the time-step 
We have used, for the steady flow applications, the local time-step technique t.t = t.ti,j,k in 

order to maintain a constant value of the CFL number and accordingly a uniform dissipation 
in the whole computational domain. The intrinsic dissipation of the method is usually 
sufficient to avoid an additional dissipation correction. 

For unsteady flow applications, the time step has to be taken uniform in order to preserve 
the time consistency and accuracy : t.t = Mikn t.ti,j,k· Then the value of the CFL number 

l,J, 

varies in the computational domain. Even in the case of the basic method (Lax-Wendroff 
explicit stage with matrices), there is not enough intrinsic dissipation to reduce the spurious 
oscillations in unsteady numerical shock structure. In all the cases, a dissipation correction is 
necessary to handle unsteady situation. 

3.4 · Conservative treatement of the slip condition 
We describe in this section a particular boundary condition when the conservative unknowns 
are evaluated at the solid body surface, submitted to a slip condition ( V - S') . IT= 0. An 
accurate calculation of the pressure at the wall is possible within a consistent finite volume 
approximation of the steady momentum conservation equation of (28) written in each cell Q 
of the computational domain: 
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(47) J H(W, s. IT) d! = r T(W) dn. an Jn 
where H (resp. T ) is the contribution of the Euler flux (resp. the source term) in the 
momentum equation of (28) and since the Euler flux has, at a common side 1 w to the wall, 
the simple expression (5) : 

(48) Ir. H(W, s. IT) d! = fr. p rt d! . 

Consider now the staggered cell ni.j,3,2 of boundary (figure 3): 

( 49) CJQ 3t2 = f". · 1 U lr 1 K I,J. !,), I J K .. 1 • • , 
' • #: l,j, 

such that li,j,1 is the common side to the solid wall. We describe the momentum conservation 
(47) in this panicular cell and we introduce first the Euler flux contribution at time t" 
corresponding to the boundary ani,j,3/2 in (49): 

C50l fa H(W", ~. m d! = J flcwn, s. m dr + }: fr Hewn, s. m d! . 
n,j,312 r ij,l I 1 K ~ .. 1 l.J.K • • ..,... l,J, 

In the framework of the finite-volume formulation we have the following approximation of 
the flux at the wall ( 48) : 

(51) f H(W", S', IT) d! =I p" rr d! = Ptj.1 rri,j,1 where rri,j,1 = J rr d!. 
cJ.l rjj,~ riJ,l 

the expressions (50), (51) leading to the discrete formulation of ( 47) : 

PiJ.1 rri.j.1 =I 1\wn) dn- }: J H(W", s. m dr . 
.nij,31Z I J K .. 1 ru.K 

• ' #: l,J. 

(52) 

The right-hand-side of equation (52) is evaluated in the predictor stage (33) of the current 
staggered cell ni,j,312 and we introduce the implicit equation for the pressure : 

(53) PiJ~l rri,j,1 =In T(W") dQ- L fr H(W", s. IT) d!, 
ij,312 I.J.K -,;:. i,j,l l),K 

which is now first order time-accurate within a strictly conservative treatement of the steady 
momentum equation and without any extrapolation for the pressure. 

An extention of this treatment is possible when considering a time discretization and a 
consistent finite-volume approximation of the unsteady Euler equations (28) in the staggered 
cell with a common side to the solid wall previously describe. With additional help of the 
mass conservation, we write in a similar way a first order time accurate expression for the 
pressure at the solid body surface. 

4 •• NUMERICAL APPLICATIONS 

4.1. • Steady flow around multibladed model rotors in hovering-flight 

4.1.1 • Introduction 
The "absolute" formulation of the Euler equations in the relative frame, described in 

paragraph 2.3, is used for the application of the method to the hovering-flight problem. It has 
been chosen instead of the "relative" pseudo-unsteady formulation used in a previous work 
[16], which is formally exact but leads to a numerical treatment of the finite-volume fluxes 
less accurate by the fact that the unknowns of the problem depend on the metric through the 
relative velocity. The treatment of the boundary conditions in the far-field is also improved, 
with respect to the previous work, by taking into account the information given by the theory 
of characteristics. The slip boundary condition on the blade surface is applied from the pure 
conservative treatment, developed in paragraph 3.4, and already used in [16]. 

4.1.2 • Two-bladed model rotor of US-Army in transonic regime 
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The implicit Euler method is first applied to the calculation of the steady flow around the 
two-bladed model of US-Army [31] in hovering flight, for a flow configuration with transonic 
regime at the blade tip. This classical hovering-flight test-case was calculated in the 
framework of the Brite/Euram DACRO program [32]. 

The model rotor has two rectangular, untwisted and untapered blades with constant 
NACAOOI2 sections. The aspect ratio A of the blades is equal to 6 and the collectif pitch ec 
is equal to 8°. The flow conditions are determinated by the Mach number at the tip of the 
blade, which value is M, = 0.794. 

The construction of the grid is given in details in [16]. We recall that the "C-H" rectangular 
grid topology needs to model the blade near the hub in order to apply the periodicity 
boundary condition. 

A converged steady Euler solution is obtained with a CFL number equal to 12. Making use 
of the periodic feature of the flow, the solution on the whole rotor disk surface is represented 
on figure 4. The comparison with the experiment of US-Army for the pressure distribution 
around blade sections is rather good (figure 5). However, probably due to the fact that no 
viscous effects are taken into account in the Euler model, the position of shock waves is 
slightly pushed farther downstream than in the experiment. No artificial viscosity is added to 
the method and it is worth pointing out that the numerical shock structure does not exhibit 
ocillations. 

4.1.3. - Fourth-bladed model rotor of IMF of Marseille in hovering-flight 
In this case, the method is applied, to the simulation of the steady flow around the fourth­

bladed model rotor of IMF of Marseille [33] in hovering-flight. The blades, of aspect ratio 
A = 15, are rectangular with OA209 airfoil sections, and linearly twisted with a negative 
slope equal to -8.3. The collective pitch angle ec and the conicity angle ~ of the rotor are 
respectively equal to 10° and 3° (see figure 6). 

In this problem, the computational domain can be restricted to a quarter of a cylinder 
around one blade by the application of a periodicity boundary condition. 

An algebraic grid-generator has been developed in order to also use a "C-H" grid topology 
in the case of a rotor with more than two blades. The grid is built by projecting two­
dimensional "C" grids on cylinders. In order to apply the periodicity boundary condition, 
these "C" grids are limited by rectangular contours. The complete grid, the construction of 
wh~~h is illustrated on figure 7, is constitued of 140 x 61 x 36 = 307 440 cells. The use of 
this kind of topology does not need to model the blade near the hub, as it was done in the 
previous application, but introduces the problem of defining a boundary condition on the 
arbitrary cylindrical mesh-surface near the center of rotation. A kind of entry or exit subsonic 
flow condition is applied, at the present time, by testing the orientation of the flow velocity in 
a direction normal to this surface. 

A flow configuration has been calculated in the case of a peripherical rotating velocity 
corresponding to a Mach number at the tip of the blade of M, = 0.315. A fully subsonic flow 
is generated around the rotor in these conditions. A converged steady Euler solution, for a 
mean value of the residual on the density less than 3. w-5, is obtained with a CFL number 
equal to I 0, after 2725 iterations and 2 hours 43 mn on a CRA Y YMP computer. 
The iso-Mach lines on the blade surface are represented on figure 8. A maximum for the 

Mach number of the relative flow velocity is reached at the tip of the upper surface of the 
blade (M = 0.54). A comparison is proposed on figure 9, between the present Euler solution 
and the experiment of IMFM [33], for the circulation and for the lift coefficient around the 
blade. It is observed that the position and the intensity of the circulation peak at the tip of 
the blade are in good agreement with the experiment. This result is very important and shows 
clearly the interest of an Euler "capture" approach for the hovering-flight problem. The 
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agreement with the experiment is not so good towards the hub and further investigations have 
to be achieved to complete the assessment of this Euler hover code. 

4.2. - Unsteady flow around rotor blades in forward-flight 
4.2.1 - Isolated blade in non-lifting case 
As a first unsteady application, the simulation of the flow around an isolated blade in 

forward flight without pitching and flapping motions is considered. The blade, of aspect ratio 
A= 7, is rectangular, untwisted and untapered with NACA0012 airfoil sections. A non-lifting 
flow configuration is derived by equalling the incidence of the blade to zero. The rotating 
velocity ro is defined by the value of the Mach number at the tip of the blade noted 
MwR = roRJa0 = 0.80, where R is the blade radius and ao is the speed of sound in the 
unperturbed flow. The advance ratio )..l = 0.20 corresponds to a Mach number in the 
unperturbed flow equal to Mo = )..l.MwR = 0.16. 

This problem was previously introduced in the work [34] for the validation of a new 
unsteady Euler method. Experimental results are also available [36]. The formulation 
described in paragraph 2.2.3, and the numerical method developed for unsteady time-accurate 
applications (see paragraph 3.3.2), are used to solve this problem. 

The computational grid has a topology similar than the one previously used for the problem 
of the two-bladed NACA0012 model rotor in hovering-flight. It is composed of 140 x 27 x 
41 = 154980 cells with 25 C-grids distributed along the blade. 

The unsteady Euler calculation is initiated, as it is done in the work [34], from a quasi­
steady solution obtained for a fixed value of the azimuthal angle. For stability constraints, a 
maximum value of the local CFL number, reached in the smaller cell near the leading edge 
of the blade, was chosen equal to 10. A cycle of the unsteady evolution is described with 
3600 time-steps for this value of the CFL number. The periodic regime is obtained after 
about two unsteady cycles leading to a global CPU cost (taking into account the preliminar 
quasi-steady calculation) of 2 hours and 24 minutes on a CRA Y YMP computer. The 
unsteady Euler code consumes 7.7 microseconds of CPU time per time-step and per grid-cell. 

The periodic solution is described on figures 10 and II. The variation of the local pressure 
coefficient around a section located at the tip of the advancing blade (r!R = 0.90), is plotted 
for several values of the azimuthal angle on figure I 0. Due to the addition of a quasi-TVD 
correction, the numerical moving shock structure is not oscillating. A good agreement of the 
calculated pressure distributions with the experiment [35] can be observed. Finally, the iso­
Mach lines for the relative Mach number, represented on figure II, show that the numerical 
solution is regular, on the blade surface, near the hub and in the far-field. 

4.2.2 • Three-bladed ONERA model rotor in forward-flight with cyclic pitching 
and flapping motions 

The method is then applied to the simulation of the unsteady flow around the ONERA 
three-bladed model rotor in forward flight with cyclic pitching and flapping motions. The 
blades have a rectangular shape with "PFI" parabolic tip. The rotor shaft angle is equal to 
-12.4° and the advance and motion conditions are the following : 

MwR = 0.613 
)..l = 0.40 
9(t)0 = 14.16 + 0.43 COS\jf(t)- 5.14 sin\jf(t) 
~(t)0 = 01.25- 5.12 cos\jf(t) + 0.32 sin\jf(t) 

For the solution of this more realistic problem, an isolated blade Euler calculation is made 
by the formulation described in paragraph (2.2). The exact solid body motion of the blade is 
taken into account in this approach. 

The influence of the other blades is simulated, in an approximate way, by introducing, 
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during the unsteady process, a wake correction supplied by the lifting-line incompressible 
code METAR [36]. This kind of wake correction is a classical one, and was previously 
introduced at ONERA in the framework of the development of potential codes [37]. The 
METAR code gives the velocities induced by the wake. We can deduce, from these 
velocities, some induced incidences ai [r, \j/(t)], depending on the blade radial position r and 
on the azimuthal angle \j/(t). The wake correction consists in adding a local pitching motion 
to the blade surface with an angle ai. This is simply realized by rotating, with an angle ai, 
the local normal n to the blade, while applying the slip boundary condition on the blade 
surface. 

A partial view of the grid, composed of !3Sx25x40= 138 ()()() cells, is shown on figure 12. 
The extension of the grid is about one blade radius length in all the directions. 

The maximum of the local CFL number used in the calculation is equal to I 0, and the 
computing time needed for describing one cycle of the unsteady evolution is equal to about 
one hour on a CRA Y YMP computer. 

The variation of the induced incidences versus the azimuthal angle and for some blade 
sections near the blade tip, is shown on figure 13. It is observed that the wake influence is all 
the more important as one is near the blade tip in the advancing blade, with a maximum for 
the azimuth \jl = 30°. 

The variation of the lift coefficient around the section r/R = 0.90 is plotted on figure 14 for 
an isolated-blade Euler simulation, an Euler multibladed simulation with wake correction, and 
for the ONERA experiment. It is observed, as noticed before, that the wake correction 
operates mainly in the advancing blade. The discrepency between the Euler calculations and 
the experiment, at azimuth \jl = 0, is probably due to the presence of the shaft rotor which is 
not taken into account in the calculations. However, a rather good agreement between the two 
calculations and the experiment is obtained. The good agreement, between the Euler 
multibladed simulation and the experiment, is confirmed for the distribution of the pressure 
coefficient around the blade section considered (see figure 15). The iso-Mach lines for the 
relative Mach number at four azimuthal blade positions are described on figure 16. One can 
observed the evolution of the transonic pocket near the leading edge at the tip of the blade. 
As in the previous application, the flow solution is smooth in the whole computational 
domain. 

5. - CONCLUSION 
An original implicit-space centered Euler method has been developed for the numerical 

simulation of steady and unsteady flows around multibladed helicopter rotors. It has been 
possible to calculate the flow around rotors in hovering-flight without adding any dissipation 
correction, even in the transonic regime, because of the sufficient intrinsic dissipation of this 
method, when applied to the solution of a steady problem. For the application to transonic 
unsteady forward-flight problems, the dissipative properties of the method have been 
strengthened by the addition of a simple quasi-TVD correction which maintains the second­
order time-accuracy. 

The use of a formulation for the absolute velocity in the relative frame has improved the 
results previously obtained for the simulation of the flow around the two-bladed model rotor 
of US-Army. 

An algebraic grid-generator, well-suited for the construction of cylindrical grids with "C-H" 
topology, has been developed for the application to a rotor with more than two blades. 

The application of the method to the fourth-bladed model rotor of IMFM, in the framework 
of a pure capture of the wake, has shown the ability of an Euler approach to represent some 
of the major features of the hovering-flight problem. 

The method has been extended to the unsteady situation in order to calculate the flow 
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around an isolated blade in forward-flight with arbitrary solid body motion. 
The introduction of a wake correction, for taking into account of the mutual influence of 

blades, has allowed a promising comparison with the experiment in the case of the ONERA 
three-bladed model rotor with cyclic pitching and flapping motions. 

Further work will be achieved for a capture of the unsteady wake system in the framework 
of a multidomain Euler calculation for the whole rotor. 
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Figure 4 - !so-Mach lines for relative Mach number (aM, = 0.05) 

on the upper surface of the rotor disk 

r/R = 0.89 r/R = 0.96 
r/R = 0.80 
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Figure 10 - Variation of unsteady pressure coefficient at the tip of advancing blade (r/R = 0.89) 

( o o present Euler method, + + experiment [35] ) 
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Figure 11 - !so-Mach lines for relative Mach number (AM, = 0.05) 
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Figure 12 - Partial view of the grid 
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Figure 14 - Lift coefficient 
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Figure 16 - lsomach-lines on the blade upper-surface 
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