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Abstract

The  ability  to  compute  the  weight  and 
balance  of  a  helicopter  in  flight  under 
general  conditions  is  an  enabling 
technology  for  future  condition  based 
maintenance systems as well as advanced 
automatic flight control systems.  This paper 
creates  a  real-time  weight  and  balance 
estimation  algorithm  using  an  extended 
Kalman  filter  framework.   To  highlight 
estimation  characteristics,  the  algorithm  is 
exercised  on  the  OH-6A  helicopter  in  a 
variety of  flight  regimes.   The algorithm is 
shown  to  work  well  in  hover  and  forward 
flight as well as situations where loads are 
dropped and picked up in flight.   Typically 
the algorithm quickly estimates station line 
and butt  line  mass center  position  (1 sec) 
and  more  slowly  converges  on  helicopter 
weight  (10  sec).   To  estimate  helicopter 
waterline,  the  algorithm  requires 
maneuvering flight where non zero roll rate 
is present.  The algorithm is also shown to 
be reasonably robust to sensor and model 
errors.

NOMENCLATURE

zyx ,,  :  Components  of  helicopter  mass 
center position vector in an inertial frame.

, ,φ θ ψ : Euler roll, pitch and yaw angles of 
helicopter.

, ,u v w : Components of mass center velocity 
of  helicopter  in  the  helicopter  reference 
frame.

, ,p q r :  Components  of  angular  velocity  of 
helicopter in the helicopter reference frame.

,m W  : Mass and weight of helicopter.

HI :  Inertia  matrix  of  helicopter  about  its 
mass center.
BI : Flapping inertia of rotor blade.
, ,X Y Z  : Total force on the helicopter in the 

helicopter reference frame.
, ,L M N  :  Total  moment on the helicopter 

about  the  mass  center  in  the  helicopter 
reference frame.
HT  :  Transformation  matrix  from  inertial 

reference  frame  to  helicopter  reference 
frame.

0 1 1, , ,C Sβ β β β :  Flapping  angle,  collective, 
longitudinal, lateral flapping angles.
R : Rotor radius.

INTRODUCTION

It is well known that weight and mass center 
location  greatly  affect  static  and  dynamic 
characteristics  of  helicopters.   These 
quantities are often manipulated during the 
design  process  to  obtain  desired 
performance  from  the  aircraft.   Safe 
operation of helicopters is a function of not 
only the weight  of the aircraft  but also the 
location  of  the  mass  center.   Sufficiently 
accurate  in-flight  estimation  of  the  gross 
weight  and  mass  center  location  can 
substantially improve overall performance of 
the  air  vehicle  as  these  feedback  signals 
can be put  to good use within a condition 
based  maintenance  system,  a  health  and 
usage monitoring system, and the automatic 
flight  control  system.   Determining  the 
useful life of parts on helicopters relies on 
knowledge of  how long the aircraft  is  in  a 
given  flight  condition  so  that  damage  on 
components can be properly tallied.  Since 
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damage on components is a strong function 
of  gross weight  and mass center  location, 
accurate  and  relatively  frequent  in-flight 
estimation of gross weight and mass center 
location help markedly enhance safety and 
reduce the operating cost of helicopters by 
removing parts on the aircraft at the end of 
their useful life and avoid replacing parts too 
early  or  leaving  them  on  the  aircraft  too 
long.   Real-time  weight  and  balance 
information  can  also  be  used  for  flight 
control.  This is particularly true for heavy lift 
helicopters  where  it  may be  necessary  to 
schedule gains in the flight  control  system 
as a function of the gross weight and mass 
center location to ensure adequate handling 
qualities  over  the  operational  envelope  of 
the aircraft and to also insure integrity of the 
airframe  by  altering  control  inputs  to  limit 
flight loads on the structure.  

A  simple  way  to  estimate  the  weight  and 
mass center of a helicopter is to use weight 
on  wheels  information  before  take-off 
combined  with  fuel  burn  measurements. 
While  simple  and  straightforward,  this 
method  cannot  be  used  in  cases  where 
loads are dropped off or picked up in flight – 
a  common  operation  for  rotorcraft, 
particularly  heavy  lift  rotorcraft.   More 
sophisticated  methods  have  been 
developed, but all  suffer from considerable 
limitations  that  preclude  general  use. 
Moffatt  [1]  created  a  simple  algorithm  to 
predict  the  weight  of  a  helicopter  which 
requires  only  engine  torque,  hover  height, 
pressure altitude and ambient temperature. 
The algorithm is based on the UH-1H hover 
performance  chart  found  in  the  operator 
user  manual.   Morales  and  Haas  [2] 
created  a  neural  network  algorithm  to 
estimate the weight of a helicopter in hover. 
Although  this  work  only  addressed  the 
hover flight regime, it showed the ability of 
neural  networks  to  be  properly  trained  on 
noisy  flight  test  data  and  subsequently 
employed  for  in-flight  gross  weight 
estimation.   Idan,  Iosilevskii,  and  Nazarov 
[3]  also  created  a  neural  network  based 
method to estimate gross weight along with 
the mass center of an aircraft in-flight.  To 

speed  the  training  process  for  the  neural 
network,  basic  flight  mechanics  relations 
were incorporated into the algorithm.  While 
Moffatt [1] as well as Morales and Haas [2] 
focused  weight  estimation  for  helicopters, 
neither  algorithm  is  valid  in  forward  flight 
and neither addresses mass center location 
prediction.   Inversely,  the  work  of  Idan, 
Iosilevskii,  and Nazarov [3]  estimates both 
weight and mass center location, however, 
it  is  strickly applicable to commercial  fixed 
wing aircraft. 

The  work  reported  here  presents  a  new 
algorithm for real-time in-flight estimation of 
helicopter  gross  weight  and  mass  center 
location.   An  extended  Kalman  filter  is 
constructed with the rigid state of the aircraft 
as states  along with  the weight  and three 
components of the mass center.  A unique 
feature of the algorithm relative to existing 
methods  is  its  generally  applicability, 
including  scenarios  where  the  weight  and 
balance  changes  due  to  dropping  off  and 
picking up loads.  The developed algorithm 
is  exercised  on  the  OH6A  helicopter  and 
results  are  presented  as  a  function  of 
different  maneuvers and different  levels  of 
model and sensor error.

 HELICOPTER DYNAMIC MODEL

For  the  work  reported  below,  helicopter 
motion is simulated by modeling the aircraft 
as a rigid body with six degrees of freedom. 
The  state  vector  consists  of  twelve  state 
variables that describe position and velocity 
of the vehicle’s mass center and the attitude 
and angular rates of the vehicle with respect 
to inertial space.  
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In  the  above  equations  the  normal 
shorthand  notation  for  sine  and  cosine  is 
employed: sin( )sα α= , cos( )cα α= .

The  total  forces  and  moments  in  the 
helicopter  reference  frame  that  appear  in 
Equations 3 and 4 have contributions from 
helicopter  weight,  the  main  rotor,  the  tail 
rotor,  fuselage  aerodynamics,  and 
empenage  aerodynamics.   Forces  from 
each  component  are  first  found  in  that 
component’s reference frame and then are 
transformed into the vehicle’s  body frame. 
Moment contributions from each component 
come from two sources: pure moments and 
moments  due  to  the  offset  of  the 
component’s  forces  from  the  vehicle’s 
center of mass.  

The rotor  model  that  is  used for  both  the 
main rotor and tail rotor uses a quasi-state 
combined  blade-element/momentum-theory 
approach.  The model assumes rigid blades 
but  accounts  for  twist,  taper  and  nonzero 

flapping  hinge  offset.   First  harmonic 
flapping and uniform inflow is assumed.  

( ) ( )0 1 1cos sinC MR S MRβ β β ψ β ψ= + + (5)

The differential equation that governs rotor 
flapping dynamics is given below.
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At a given instant in time the quasi-steady 
rotor flapping angles, and subsequently the 
rotor  loads,  are  computed  by  a  harmonic 
balance  procedure.   Nonlinear  algebraic 
collective,  longitudinal,  and  lateral  rotor 
flapping  equations  are  formed  as  shown 
below. 

( )
2

2

0

0N F MRM d
π

β ω β ψ+ − =∫ && (9)

( )
2

2

0

c 0
MRN F MRM d

π

ψβ ω β ψ+ − =∫ && (10)

( )
2

2

0

s 0
MRN F MRM d

π

ψβ ω β ψ+ − =∫ && (11)

These  equations  are  satisfied  through 
selection  of  the  rotor  flapping  angles  β 0 ,
β 1 C  and β 1 S  and are numerically solved by 
a Newton-Rhapson iteration scheme.  It  is 
important to note that pilot controls enter the 
rotor  flapping  equations  through  the  right 
hand side forcing function.
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Force  and  moment  contributions  from  the 
fuselage and empenage are modeled with 
aerodynamic table lookups.

ESTIMATION ALGORITHM

The estimation algorithm seeks to compute 
the  mass  of  the  helicopter  along  with  the 
three  components  of  the  mass  center 
locations  using  rigid  body  aircraft  motion 
feedback  and  an  internal  model  of  the 
helicopter (Figure 1).  

Figure 1 – Estimation Algorithm Schematic

An  extended  Kalman filter  is  created  with 
rigid  aircraft  position  (x,  y,  z),  orientation 
(phi, theta, psi), translational velocity (u, v, 
w),  angular  velocity (p,  q,  r),  aircraft  mass 
(m), and aircraft mass center location (scg, 
bcg,  wcg)  as  states.   The  nonlinear 
helicopter  model  described  above  is  used 
for the internal aircraft  model.   The weight 
and balance of the helicopter is assumed to 
vary relatively slowly so the dynamics of the 
weight  and  balance  states  are  trivially 
assumed to be given below.

0m =& (12)

0CGx =& (13)

0CGy =& (14)

0CGz =& (15)

The  meta  model  of  helicopter  rigid  body 
motion and weight  and balance estimation 

states  is  cast  together  as  a  nonlinear 
dynamic system.

( , ) ( )f tζ ζ δ ε= +& (16)

The  vector  δ  contains  control  inputs 
consisting  of  collective,  longitudinal  cyclic, 
lateral  cyclic  and pedal.   The vector  ε  is 
process noise.  The meta state is split into 
the helicopter rigid body state and the mass 
and balance state, [ ] TH Eζ ζ ζ= .
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Measurements of  rigid  body motion of  the 
helicopter  used  as  input  to  the  estimation 
algorithm  contain  rigid  body  motion  and 
noise. 

( , ) ( )h tη ζ δ κ= + (18)

In  the  equation  above,  ( )tκ  represents  a 
vector of measurement noise.

Given  the  nonlinear  system model  above, 
an extended Kalman filter has 5 main steps 
associated with each estimation cycle: meta 
state  propagation,  meta  state  error 
covariance  propagation,  Kalman  gain 
calculation, meta state Kalman filter update, 
meta  state  error  covariance  Kalman  filter 
update.  This is depicted in Figure 2.
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Several  of  the  steps  in  the  Kalman  filter 
require a linear state space dynamic model 
and a linear measurement model.

( ) ( ) ( )t A t B tζ ζ δ= +& (19)

( ) ( )t C tη ζ= (20)

Figure 2 – Kalman Filter Schematic

Of course, the state dynamic equations are 
highly  nonlinear  and  a  numerical,  finite 
difference  approach  is  used  to  obtain  the 
needed  derivatives  for  the  linear  time 
invarient dynamic model.

, ,f f hA B C
ζ δ ζ

∂ ∂ ∂= = =
∂ ∂ ∂

(21)

The meta state of the system is propogated 
forward  in  time  by  numerically  integrating 
the equations of motion (Equation 16) with 
the  process  noise  set  to  zero.   The error 
covariance  differential  equation  (Equation 
22) is also numerically integrated in time to 
propagate itself forward.

1T TP AP PA Q PH R HP−= + + − (22)

Because the initial state is assumed known, 
the matrix  P  is initially zero.  In the above 
equation,  Q  and  R  are  the  covariance 
matrices  for  the  process  noise  and 
measurement  noise,  respectively.   The 

performance  of  this  filtering  technique 
depends  largely  upon  the  selected  values 
for  Q  and  R .   Because  the  parameter 
estimation process is cast in the guise of a 
state estimation process, the Q  matrix must 
be  weighted  heavily  toward  the  unknown 
parameter states. 

The  Kalman  gain  formula  is  given  as 
Equation  23.   Aside  from the linearization 
process of the helicopter plant, this step is 
the most  expensive in terms of  computing 
power.  If full state feedback is assumed, a 
12x12  matrix  must  be  inverted  at  each 
computation cycle.

1T TK PH HPH R
−

 = +  (23)

Using  the  Kalman  gain  matrix,  state  and 
error  covariance  can  be  computed  as 
shown below.

[ ]K Cζ ζ η ζ= + −% (24)

[ ] [ ] T TP I KH P I KH KRK= − − +% (25)

The tilde in Equations 24 and 25 refers to 
values  of  the  state  and  error  covariance 
after the Kalman update step. 

More details on the extended Kalman filter 
can be found in References [4] and [5].

RESULTS

To  explore  the  viability  of  the  above 
estimation  scheme  for  real  time,  in-flight 
helicopter  gross  weight  and  mass  center 
location  prediction,  a  set  of  simulation 
results have been generated for the OH-6A 
helicopter shown in Figure 3.  The OH-6A is 
a single-engine light helicopter with a four-
bladed  main  rotor  used  for  personnel 
transport,  escort  and attack missions,  and 
observation.   The  main  rotor  has  a  non-
dimensional twist of -0.14, a flapping hinge 
offset  of  0.46  ft,  a  radius  of  13.17  ft,  a 
rotational  speed of  50.58 rad/sec,  a blade 
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mass of  1.16  slugs,  a  flapping  inertia  of 
46.83 slugs*ft^2,  and an average chord of 
0.56 ft.  The main rotor is located at station 
line 100.0 in, butt line 0.0 in, and waterline 
of 100.0 in.  

 Figure 3 - OH-6A Helicopter

The tail rotor is a two bladed system with a 
non-dimensional twist of -0.14 and a radius 
of 1.13 ft,  and a rotational speed of 326.1 
rad/sec.  The tail rotor is located at station 
line 282.00 in,  butt  line  -11.6  in,  and 
water  line  71.3  in.   The  nominal  gross 
weight  of  the  vehicle  is  2550  lbf.   The 
nominal mass center location is station line 
100.0 in, butt line 0.0 in, and water line 49.6 
in.  Fuselage aerodynamic data are shown 
in  Figures  4  and  5  while  empenage 
aerodynamic coefficients are given in Figure 
6. 

Figure 4 – Fuselage Longitudinal 
Aerodynamic Data

Figure 5 – Fuselage Lateral Aerodynamic 
Data

Figure 6 – Empenage Aerodynamic 
Coefficients

Figures  7  through  23 show the OH-6A in 
forward flight at a reasonably steady speed 
(Figures 13-15) and at nearly constant pitch 
attitude  (Figure  11).   The  aircraft  is 
maneuvering in the lateral channel with roll 
angle  excursions  on  the  order  of  50  deg 
over a 20 sec period, ranging from +20 deg 
to -30 deg (Figure 10) with associated peak 
roll  rates  of  30  deg/sec  (Figure  16).   The 
aircraft  also  has  heading  oscillations  from 
+20 deg to -40 deg (Figure 12) with  peak 
yaw rates of 7 deg/sec (Figure 18).  During 
this  maneuver  condition,  the  aircraft 
maintains  constant  altitude  (Figure  9)  and 
swerves  modestly  (Figure  8).   Control 
activity is modest with main rotor collective 
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settling  around  12.5  deg  and  cyclic  pitch 
oscillations of under 2 deg in both channels 
(Figures 19-21).  For the maneuver shown 
above,  weight  and  balance  estimation 
results are shown in Figures 22 through 25. 
The estimator is turned on at t = 0 sec with 
initial  gross weight  in error by 250 lbf  and 
initial mass center station line, butt line, and 
water  line  in  error  by  2,  2,  and  1  in, 
respectively.   The  Kalman  filter  weighting 
matrices  are  set  to  0.02  for  the  rotorcraft 
model,  1000  for  the  weight  and  balance 
model with the exception of water line which 
is set to 2000, and 1.0 for the measurement 
noise.  Weight and mass center water line 
are effectively estimated in slightly less than 
10  sec  (Figures  22  and  25).   Converged 
estimates for  mass center  station line and 
butt line occur much more rapidly (Figures 
23  and  24).   Estimation  of  mass  center 
water  line  is  tricky  and  seems  to  require 
aircraft  roll  rate  to  render  the  water  line 
observable  with  the  filter.   Figure  26 
illustrates this point.  In Figure 26, a larger 
initial error of 2 inches in mass center water 
line and a lower Q matrix weighting of 1000 
is  shown.   By  viewing  aircraft  roll  rate 
(Figure 16)  alongside Figure  26 it  is  clear 
that  estimation  of  water  line  requires  roll 
rate  to  progress  toward  the  actual  value. 
The  results  shown  above  are  typical  for 
forward flight.  

Figures  27  through  30  present  estimation 
results for a hover case in which the weight 
and  mass  center  location  are  suddenly 
changed due to a 500 lbf load added below 
and to the right of the original mass center 
location.  For the first 2.5 sec of the hover, 
the vehicle is at baseline values of weight = 
2550 lbf, mass center station line = 100 in, 
mass  center  butt  line  =  0.0  in,  and  mass 
center water line =  49.6 in.  After the weight 
is  added,  weight  =  3050  lbf,  mass  center 
station line = 102 in, mass center butt line = 
2.0 in, and mass center water line = 46.4 in. 
At  t  =  5 sec,  the vehicle  begins  a benign 
maneuver  in  which  it  picks  up  a  small 
amount  of  flight  speed and banks a small 
amount.   The  Kalman  filter  weighting 
matrices  are  set  the same as the forward 

flight  case  above,  except  the  Q  matrix 
associated  with  the  weight  and  balance 
model equals 2000.  During the pure hover 
portion  of  the  maneuver,  the  more 
observable  parameters  (gross  weight, 
station  line,  and  butt  line)  perform 
reasonably well in adjusting to a new weight 
and balance condition.  The less observable 
parameter  (water  line)  does  a  poor  job. 
After slight maneuvering occurs at t = 5 sec, 
the parameter estimates immediately begin 
correcting  themselves  as  soon  as  some 
rates  are  present.   Just  like  the  forward 
flight  case,  the  water  line  estimate  moves 
fastest when a roll rate is present. 

In  order  to  explore  performance  of  the 
weight  and  balance  estimation  algorithm 
under  non  ideal  conditions,  the  algorithm 
was  exercised  with  a  Monte  Carlo 
simulation with sensor and model error.  A 
total of 200 sample runs were performed for 
a forward flight case with light maneuvering. 
Sensor  errors  were  included  in  the  Monte 
Carlo  simulation  by  adding  appropriate 
levels  of  bias  and  noise  to  each  sensor 
output.  The standard deviation of the bias 
and  noise  of  the  position,  velocity, 
orientation,  and  angular  velocity  sensors 
was 1 m/1 m, 0.3 m/s/0.3 m/s, 0.1 deg/0.1 
deg,  and  0.1  rad/sec/0.1  rad/sec, 
respectively.   Figures 31 through 34 show 
histograms  of  the  Monte  Carlo  results  for 
the sensor error case.  The mean estimation 
error and associated standard deviation for 
gross  weight  (2558.9  lbf  /  6.23 lbf),  mass 
center station line (100.005 in / 0.0261 in), 
and  mass  center  butt  line  (0.0025  in  / 
0.0285 in) are accurate and tightly bounded 
while the water line estimation is fairly poor 
and exhibits a standard deviation which is a 
notable percentage of the practical range of 
the water line (49.55 in / 0.482 in).  Model 
error  was  included  in  the  Monte  Carlo 
simulation  by  creating  a  model  mismatch 
between the actual helicopter model and the 
internal  helicopter  model  employed  by the 
estimator.   Figures  35 through 38 present 
histograms  of  Monte  Carlo  simulation 
results for the model error case.  While the 
results  for  all  the  parameters  shows  the 

8



same  trends  as  the  sensor  error  case, 
estimation  errors  are  generally  larger  and 
also tend to be more skewed.  

CONCLUSIONS

By casting  estimation  of  weight  and mass 
center  location  as  a  state  estimation 
problem, the machinery of extended Kalman 
filtering  can  be  employed  for  in-flight  and 
real time estimation of rotorcraft weight and 
balance.  The presented algorithm is shown 
to work well in both hover and forward flight, 
provided  sufficient  motion  is  present  to 
render  the  parameters  observable.   Also, 
the method works well in cases where loads 
are dropped or picked up in flight.  Typically 
the algorithm quickly estimates station line 
and butt line mass center position and more 
slowly converges on helicopter  weight  and 
water line.  The algorithm is also shown to 
be reasonably robust to sensor and model 
errors. 
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Figure 7 – Down Range Distance

 
Figure 8 – Cross Range Distance

Figure 9 – Altitude 

Figure 10 – Roll Angle

Figure 11 – Pitch Attitude

Figure 12 – Yaw Angle
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Figure 13 – Forward Body Velocity

Figure 14 – Side Body Velocity

Figure 15 – Vertical Body Velocity

Figure 16 – Roll Rate

Figure 17 – Pitch Rate

Figure 18 – Yaw Rate
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Figure 19 – Main Rotor Collective

Figure 20 – Main Rotor Longitudinal Cyclic

Figure 21 – Main Rotor Lateral Cyclic

Figure 22 – Gross Weight Estimation in 
Forward Flight

Figure 23 – Mass Center Station line 
Estimation in Forward Flight

Figure 24 – Mass Center Butt line 
Estimation in Forward Flight
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Figure 25 – Mass Center Water line 
Estimation in Forward Flight

Figure 26 – Mass Center Water line 
Estimation in Forward Flight (Poor Initial 

Guess)

Figure 27 – Gross Weight Estimation in 
Hover

Figure 28 – Mass Center Station line 
Estimation in Hover

Figure 29 – Mass Center Butt line 
Estimation in Hover

Figure 30 – Mass Center Water line 
Estimation in Hover
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Figure 31 – Histogram of Gross Weight 
Estimation with Sensor Noise

Figure 32 – Histogram of Mass Center 
Station line Estimation with Sensor Noise

Figure 33 - Histogram of Mass Center Butt 
line Estimation with Sensor Noise

Figure 34 - Histogram of Mass Center 
Water line Estimation with Sensor Noise

Figure 35 - Histogram of Gross Weight 
Estimation with Model Error

Figure 36 - Histogram of Mass Center 
Station line Estimation with Model Error
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Figure 37 - Histogram of Mass Center Butt 
line Estimation with Model Error

Figure 38 - Histogram of Mass Center 
Water line Estimation with Model Error
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