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OPTIMUM PERFORMANCE AND WAKE GEOMETRY OF CO-AXIAL ROTOR IN HOVER 

ABSTRACT 

Tomoari Nagashima and Kenji Nakanishi 
Department of Aeronautical Engineering, 

The National Defense Academy 
Yokosuka, Japan 

Numerical studies to clear out the rotor-wake interference effects on 
the optimum performance and wake geometry of a co-axial rotor in hover are 
performed using the generalized momentum theory and the simplified free 
wake analysis. For applying the momentum concept to the performance pre­
dictions of the co-axial rotor system, each wake of rotors and flow fields 
around them are modeled so as to properly incorporate wake contractions, 
rotational velocities and nonlinear mutual interference effects. In case 
of the free wake analysis, it is approximated by a finite number of discrete 
circular vortices whose numbers and core radii are deduced from the sensi­
tivity analysis. The numerical results clearly show that the performances 
and its wake geometries are largely dependent on the axial spacings and the 
pitch differences between rotors and there are unique combinations of them 
which could produce the optimum performance~ It is also understood that 
the upwash effect of the contracted upper rotor wake on the lower rotor 
play a fundamental role to improve the hover performance with co-axial 
rotor arrangement. 

1. INTRODUCTION 

Although there are vast amount of experimental and analytical researches 
for an isolated single rotor, little have been conducted for a co-axial one 
and current knowledge about its aerodynamic characteristics are extremely 
limited. The key factors for the performance prediction of a co-axial rotor 
are the aerodynamic interferences and their precise estimation will become 
important for an advanced rotorcraft design. 

It is well recognized, however, that even for a single rotor, the 
blade-wake interactions bring substantial effects on its performances and 
developments of suitable methods to be consistent with wake deformations 
are urgently desired. Most straight forward procedures for these seem to be 
computer orientated numerical procedures which can be. succeeded to clarify 
the detail relationship between wake geometry and hover performance in some 
degrees1). 

As for performances of a co-axial rotor in hover, w. Z~ Stepniewski and 
W. Johnson have given brief descriptions in ref. 2 and ref4 3. Several 
theoretical developments for a co-axial rotor in U.S.S.R. were found in 
ref. 4. The concept of the variable geometry rotor (V.G.R.) was proposed 
by A. J. Landgrabe et a1 5 > recently and possibilities to improve the hover 
performance were pointed out by reorientation of tip vortices trajectories 
with the proper co-axial rotor arrangement. This is just a experimental 
study but to the best of the author's knowledge, it is a first attempt for 
a performance optimization with a dual rotor system. A comparative study 
on the accuracies of several prediction methods with experimental results 
was made by M. J. Andrew -for the hover performance of the remotely piloted 
co-axial rotor6>. 
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Apart from these, experimental studies on the hover performance of a 
co-axial, contra-rotating rotor with variable axial spacing have been 
executed at our laboratory and the basic data governing its optimum per­
formance were successively grapsed within experimental accuracies?). Flow 
visualizations were also conducted to clarify the flow fields around a co­
axial rotor under various operating conditionsB). 

The purpose of this paper is to develop analytical methods for the 
performance prediction of a co-axial rotor in hover and establish its opti­
mum performance in relation to the wake geometry. Based on the flow visu­
alization results on the model co-axial rotor, the flow fields in near and 
far wakes of each rotor are modeled to properly incorporate mutual inter­
actions. The generalized momentum theory which take into account of wake 
contraction and rotational velocity effects is applied to the mathematical 
model and the thrust, the induced torque and the power of a co-axial rotor 
are expressed as the functionals of the far wake axial velocities. The 
optimum performance is formulated as a calculus of variation problem to 
determine the specific thrust sharing ratio which could minimize the total 
induced power for the given thrust with the axial spacing as a parameter. 
It is understood that the optimal conditions are always consistent with the 
torque balance at any axial spacing whereas the thrust sharing ratio for 
optimum performance is largely dependent on the axial spacing and it is 
almost equal to the contraction ratio of the upper rotor wake at the lower 
rotor disc. These fundamental features to be explored by the momentum 
analysis are closely related to the flow field structures of the outer part 
of the lower rotor where the contributions of the upwash effects of the 
contracted upper rotor wake are predominated. 

For more rigorous treatments of these rotor-wake interactions on the 
hover performance of a co-axial rotor, the simplified free wake analysis is 
also carried out. In this case, for simplicity of numerical procedures, 
each wake of b-bladed rotor is approximated by a finite number of discrete 
circular vortices whose numbers to be involved and their vortex core radii 
are deduced from the sensitivity analysis. As already mentioned in the 
application of the free wake analysis to a single rotor, the convergence 
of the wake geometry is not always ensured, the iterations are truncated 
when the spacial arrangements of the first four circular vortices of each 
rotor change by less than the convergent criteria between two successive 
ite~ations. It is shown that the wake geometries of a co-axial rotor in 
hover are remarkably varied with the combinations of the thrust sharing 
ratios and the axial spacings between rotors and the most important cues 
to define the optimum performance are found in behaviours of the near wake 
geometry of the lower rotor. These unique properties to govern the optimum 
hover performance of a co-axial rotor in hover are well consistent with 
the results of model rotor tests and the usefulness and accuracies of the 
proposed wake models and numerical approaches are ascertained. 

2. FORMULATION OF OPTIMUM HOVER PERFORMANCE BY GENERALIZED MOMENTUM THEORY 

2.1 MATHEMATICAL MODEL AND BASIC RELATIONS 

Let us consider a co-axial, contra-rotating rotor hovering in incom­
pressive and inviscid fluid. The flow is assumed to be steady and axisym­
metric. Each rotor of them which are separated with the axial spacing, D 
is replaced by an actuator disc and flow fields around them are modeled so 
as to properly incorporate wake-rotor interactions. Wake contractions and 
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rotational velocities in each rotor wake are also taken into account. The 
mathematical model to be used is shown in Fig. 1. Significant features of 
this model are that the slipstream of each rotor is clearly defined and the 
flow fields around the lower rotor are divided into two distinct regions, 
one is the inner region where the air mass will be affected by the downwash 
velocity of the upper rotor and the other is the outer one where it will be 
subjected to the upwash velocity. 

Let r, dS, Wand wr be the radius of any annular element, its 
elemental area, axial and rotational velocities of fluid, respectively and 
distinguish these quantities at different locations by number in the sub­
script as defined in Fig. l. Then the basic relations to be used in this 
analysis are read as follows, 

(a) Continuities of mass flow: 

(l) 

(2) 

(b) Conservations of angular momentum: 

w'r2 2 = Krl' w'r2 = Kr2 I I wzrz 2 2 
( 3) 

2 (w2 - w') r 2 = Kq - Kr2 = Kr3 w3r3 2 2 

2 
w3or30 ' 2 w20r20 = Kr2o (4) 

(c) Bernoulli's equations: 

l 2 l l 
= 2 pW3 +.2 p(w2- wiJKq + 2p[w3- (w2- w:2l1Kq (5) 

l 2 l 
(P:2o - Pzol + (Po - P3l = 2 pW3o + 2p(w3o - w2ol Kr2o (6) 

where Kr1 (i = 1, 2, 3) and Krzo are the circulations of fluid in each 
region and P, p are the pressure and density of fluid, respectively. 
Quantities with prime indicate to take their values at the lower side of 
each rotor. 

As there is no flow entering at far ahead of rotors and no contraction 
of slipstream at far wake of each rotor, the axial momentum crossing the 
control surface which is selected as a plane surface perpendlcular to the 
rotor axis at the far wake of each rotor give the following force relations, 

(7) 

(8) 
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or in differential forms, 

( 7) ' 

(8) ' 

where dTu is the elemental thrust generated by an annular element at the 
upper rotor and dTin, dT~ut are those generated by annular elements at 
the inner and outer portions of the lower rotor, respectively. Then the 
total thrust of the co-axial rotor becomes 

T 

(9) 

Alternate equations for (7) ', (8) • are given by expressing these thrusts 
with the pressure jump at each rotor, 

(10) 

(ll) 

where the pressure jumps can be obtained by applying Bernoulli's equation to 
the flows relative to each rotor blades. As each rotor is rotating in 
opposite directions with the same revolutional speed, Q and there is no dis­
continuity in axial and radial velocities, the pressure jumps are given by 

( 12) 

(13) 

(14) 

According to eqs. (12), (13) and (14), we can express the total thrust given 
in eq. (9) in terms of the circulations by 

' + f p[Q- (wz- wz)lKr2ds 2 s 2 2 

' f W2Q 
+ P(n- -2-->Krzod5 zo szo (15) 

and define the thrust sharing ratio between the upper and lower rotor as 

T = 

(16) 
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Besides from eqs. (5) and (6), the pressure difference in the far wakes are 
also written as 

Po- P3 = .!:_ pW2 - p(ll- wz)I<: - p[ll- (w2 )]I< 2 3 2 rt 2 - wz rz 

1 
+ 2 p[w3- (wz- w~)]I<r 3 (17) 

l 2 l 
Po - P3o = 2 pW3o - pW- 2 w3ol~<r 20 (18) 

Substituting eqs. (17) and (18) into eqs. (10), (11) with applying eqs. 
(l) and (2), yield 

l ' - 2 W] 

WJ 

l l ' - w3 -(wz - wz) 
+ [-2 - - ::.2_--;;:---] I<r 3 

w3 w3 

n l , 1 

- wz) l ' n - '2 wz 
+ [----;;----­

Wz 

W3Q 
-2- = 

- 2 wzo 
r--=--­

Wzo 

n - 2 w3o 

W lKrzo 
30 

(19) 

(20) 

Eqs. (19) and (20) constitute the general equations which describe the rela­
tions between the far wake axial velocities and rotational velocities for 
co-axial rotor in hover. It is easily shown that these equations are 
reduced to the H. Glauert's result9l for a single propeller if we put 
Kr2 = Kr 3 = Kr20 = 0 into eqs. (19) and (20). 

The torque and induced power equations are also obtained in similar way 
by considering the angular momentum change and work done at each rotor in 
unit time and they are summarized as follows. 

l ' dPu = W]dTU + 2w1dQU 

dPin = W2dTin + (.!:. w~ - wz)dQ~n 
t t 2 ' 

-out 
dP t 
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(23) 

(24) 

( 25) 

(26) 

(27) 



( 28) 

where Q, P are the total torque and the induced power, dQu, dPu are the. 
el~ental torque and the elemental induced power of the upper rotor, dQ~n, 
ctPin are those at the inner part of the lower rotor and dQ~ut dp~ut are 
those at the outer part of the lower rotor, respectively. The power sharing 
ratio between rotors, v is defined as 

v = 

-in -out 
p~ + p£ 

in 
fszWzdT£ 

2.2 OPTIMAL CONDITIONS AND OPTIMUM PERFORMANCE 

(29) 

Owing to the rotational motions of fluids at the far wakes, the radial 
pressure gradients in these regions must be balanced with the centrifugal 
forces, namely 

(30) 

The pressure gradients can be derived by differentiating eqs. (17) and (18) 
with r3 and r3o, respectively. Combining these results with eq. (30) and 
assuming that the axial velocities at the far wakes are constant across 
their regions, that is, dW3/dr3 = 0, dW3o/dr3o = 0, then we obtain 

1 d 2 (51 ~ 
"'2 d 

[51 - <"'2 - d 
--(W3) 2)dq (Krll + wz) l dq (Kr 2 l 2 dr3 2 

l 
(wz - ' d 1 dw2 dwz 

-[w3 - Wz) ]dq (Kq) 2[Kqdq - Krzdr3] 2 

l d _ K dw3] 
- 2[dq(w3Kr3l r3dr3 

0 (31) 

1 d 2 
(51 -

d 
- --<w3ol "'3ol dqo (Kr3ol 0 
2 dq 0 

(32) 

By inspecting eqs. (31) and (32), the optimal conditions with which the 
ideal distributions of the circulations and the angular velocities at the 
wakes should be satisfied are led to 

0 

(33) 
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At the same time from eqs. (l), (2) and (3), (4), yield 

W2 
--. = 
Wj 

W3o = 
W2o 

(34) 

where R iS the radius of each rotor, R2 is the radius of cross section of 
the contracted upper rotor wake at the lower rotor and R30 is the radius of 
cross section of the contracted lower rotor at the far wake, respectively. 

Under the optimal conditions given in eqs. (33), (34), P3 becomes equal 
to Po, then KJ is given by KJ = W~/4Q and further eqs. (19) and (20) are 
reduced to more simple relations, 

4 l l 
w3 

-+ 
Wl w2 

( 35) 

W30 l l 
-2- = (-- -)QK2 

W2o W3o 
(36) 

It is interesting to note that under the optimal conditions, the axial 
velocities at the inner wake region can be determined independent of the 
rotational ones and this is originated from the contra-rotation effect of 
co-axial rotor. 

Applying the optimal conditions to eqs. (15), (28) and other related 
equations and nondimensionalizing them with 2p(QR) 2~R2 and 2p(QR) 3 ~R2 , 
respectively, we obtain, after lengthly but simple calculations, the follow­
ing equations for the total thrust and the total induced power of a co-axial 
rotor in hover at the optimal conditions. 

(37) 

(38) 

where CT, Cp are the nondimensional thrust and the power coefficients, a is 
the contraction ratio of the upper rotor wake at the lower rotor and A1, \3, 
A2o are the axial inflow ratio at each region of wakes which are respectively, 
defined by 

CT = T 
Cp 

p 

2p~R2 (QR) 2 = 2pnR2 (QR) 3 

2 
(39) 

~R2 
AJ 

Wl 
A3 

W3 
A2 0 

W20 (]. = 7rR2 nR QR QR 

EJ and E 2 in eqs. (37) and (38) indicate the thrust and the power losses 
due to the rotational motions of fluids at the outer part of the lower rotor 
wake and are higher than 3rd order term in A3. In this analysis, these are 
reasonably neglected being small quantities compared with the first terms 
in their equations. 

Now, we intend to introduce the mutual interference effects into the 
nondimensional axial velocities at each wake region as follows. 
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(40) 

A - k"A 
~ u 

(41) 

A -J~ ~ - 1+T T (42) 

and interaction factors k, k', k" are given as the functions of the axial 
spacing, D, by 

k 1 + D/R 
k' = 2 - k k" 1 

7k ( 43) 

Though in eqs. (40) and (41), the mutual interactions between rotors are 
assumed to be linear 1 but for moderate axial spacing, upwash effect at the 
outer part of the lower rotor is reasonably accounted for. Substituting 
eqs. (40), (41) into eqs. (37), (38) with using eqs. (35), (36), the total 
thrust and the power of a co-axial rotor can be expressed as functionals of 
the thrust sharing ratio, T and irs optimum performances are established to 
determine the specific thrust sharing ratio which could minimize the total 
induced power for the given thrust with the axial spacing as a parameter. 

Typical computed results for the optimum performance of a co-axial 
rotor are shown in Fig. 2 where experimental results with the model co­
axial rotor test are also plotted for comparisons. 8u and ei in Fig. 2 
indicate the collective pitch angles of the upper and lower rotor blades 
of the model co-axial rotor, respectively. The coincidence between the 
computed and experimental results is quite well for any axial spacing in 
practical uses. The essential features of the optimum performance and its 
wake geometry to be explored by the generalized momentum analysis are 
summarized as follows. 

(l) The optimal conditions are always consistent with the torque balance 
between rotors at any axial spacing whereas the thrust sharing ratio 
for the optimum performance is largely dependent on the axial spacing. 

(2) The optimum thrust sharing ratio for the given axial spacing is almost 
equal to the contraction ratio of the upper rotor wake at the lower 
rotor. 

(3) The optimum performance could be realized if and only if the axial 
velocities become zero or the ideal auto-rotation state can be built 
up at the outer part of the lower rotor. 

3. THE OPTIMUM WAKE GEOMETRY OF CO-AXIAL ROTOR IN HOVER BY SIMPLIFIED FREE 
WAKE ANALYSIS 

3.1 SIMPLIFIED FREE WAKE ANALYSIS 

As already mentioned in the generalized momentum analysis, the optimum 
·performance of a co-axial rotor in hover could be realized only at the 

41-8 



specified thrust sharing ratio betwe~n rotors at which the optimum wake 
geometry would be formulated for each rotor. In this section, for more 
rigorous treatments of the mutual interaction effects for the hover per­
formances of the co-axial rotor, the nonlinear vortex theory using the free 
wake analysis is developed. 

For simplicity of numerical procedures, the following assumptions are 
made. 

(1) Each rotor being separated vertically with the axial spacing, D, has 
a same geometrical properties and counter rotate with the same rota­
tional speed, n. 

(2) Each rotor blade is represented by a lifting line with the uniform 
circulation distribution. 

(3) Each wake of rotors is consist of a finite number of discrete circular 
vortices, N and the strength of the vorticity along any circular vortex 
is equal to that of the bound circulation. 

(4) The fluid is to be incompressive, inviscid and the viscous diffusion 
effects of the vortex is neglected. 

(5) Each circular vortex have a finite vortex core radius and its self 
induced velocity is determined by the Lamb's formula. 

According to these assumptions, the initial wake geometry of each rotor 
will be arranged with a finite number of equi-radius circular vortices at 
regular intervals 

d~ (44) 

where du, dt are the elemental axial spacings between two successive vortices 
of the upper and the lower rotor wakes, B is the blade number of each rotor 
and W1, W2o are the axial induced velocities at the upper and the lower rotor 
defined in the proceeding momentum analysis, respectively. Hence the co­
ordinates of the jth circular vortex of each rotor are given by 

u 
rj R z':' 

J jdu 

(45) 

~ 
R z~ = D jd~ (j 1, 2, N) rj = + = ... , 

J 

in the cylindrical coordinate (r, e, Z) with the origin at the center of the 
upper rotor and the Z axis coinciding with the rotor axis and pointing down­
ward. 

Although the initial wake geometries are very simple ones, they are in 
general not always satisfy the force equilibrium conditions and vortices 
will change their positions subject to the mutual interaction effects between .. 
them. Then let Si(t) be the position vector of a particle on the ith cir-
cular vortex filament at time, t, the new position vector of the particle 
6t~ later is given by 
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-+ -+ -+ 
Si(t + 6t~) = Si(t) + Ui(t)6t~ (i 1 1 2 1 ••• 1 2N) (46) 

where 6tw is a time required the blade to rotate a incremental azimuth angle, 
6t[J and ui (t) is the total velocity of the particle which is considered to 
remain constant during a small time interval, 6tt[J- The total velocity ui, 
can be given by 

2N . 
+1nd 

E vk . 
k=l,li , l 

+self 
+ vi (i 1, 2 I ••• , 2N) (47) 

where ~~n~ is the mutual induced velocity at the ith circular vortex filament 
' . ~~- . 1 due to the kth c1rcular vortex, Vi lS the total induced veloc1ty due to a l 

~utht the ith circular vortices and ~~elf is the self induced velocity of the 
... circular vortex. 

. . . -l-ind +ind 
The mutual 1nduced veloc1t1es, vk i' Vi , are obtained by applying the 

Biot-Savart's law to the vortex system' shown in Fig. 3. Because of axisym­
metric nature of the vortex sx9tem, it is obvious that there is no circum­
ferential flow component and vind can be expressed in the closed form as 

with 

rik 

0Ik = 

K(o) = 

Ri 

2N Yk z.k 2 
E (-) (-'-) [ 

k=l,Fi 4n cikri 1 

+ rk 

r·k/r· - 2 
[ ' ' 

1 - a< >k 

rfk + Zh 

~ 
!2 da 
o;l - a2sin 2a 

E (a) 

~ 
r2 /~l-----o"2_s_i_n"2-a da 

0 

(i = 1, 2, ••• , 2N) 

(48) 

(49) 

(50) 

where rvind, zV~nd are the radial and the axial components of the induced 
velocity at the ith circular vortex, Yk is the vorticity of the kth circular 
vortex, (ri, Zi) and (rk, Zk) are the radial and the axial coordinates of 
the ith and the kth circular vortices, respectively. E(cr) and K(a) are the 
complete elliptic integrals of the 1st and the 2nd kinds. 

h .l -+self h d . W ~ e vi , t e secon term ~n eq. 
forrnula 10) for the self induced velocity 
finite core radius, s and each component 

0 

Yi Sri 
--[log(-) 
4nr i E 

41-10 

(47), is represented by the Lamb's 
of the circular vortex with the 
of them are given by 

(51) 

( i = 1, 2, .•• , 2N) 



self 
where rVi 

self self 
evi and zvi are the radial, the tangential and the axial 

components of the self induced velocity of the ith circular vortex. 

From assumption ( 3) ' the vorticity of the ith circular vortex, Yi, is 
easily given by 

2cTu 2CT£ 
(i l, 2, 2N) (52) yi = -- llR1rR or -

8
- llRrrR = ... , 

B 

depending on the situation whether the ith circular vortex to be considered 
will attribute to one of the upper or the lower rotor wake. CTu and CT£ in 
(52) are nondirnensional thrust coefficient of the upper and the lower rotor, 
defined as CTu = Tu/PrrR2 (llRJ 2 and CT£ = T£/prrR2 (llR) 2 , respectively. 

When the time elapsed will become equal to that of one revolution of 
the blade after n times iterations, that is, n~tW = fit2w, then the new 
circular vortex is fed into each rotor wake and the oldest Nth vortex is 
removed from each wake simultaneously, conserving the total number of 
vortices to be involved in the wakes as 2N. During the iterations, if the 
spacial coordinate of the kth vortex come close to that of the ith one, 
singulalities may be encountered in numerical evaluation of ~fn~. To avoid 
these difficulties, when the relative distance between the ith'and the kth 
circular vortices filaments become less than their vortex core radii, s, 

-+ind each component of the mutual induced velocity vi,k is simply replaced by 
those of the self induced velocity, ~~elf 

From mathematical point of view, it is desired that the numerical pro­
cedures are successively repeated until a converged wake geometry for each 
rotor could be resulted. However, as already indicated in several researches 
for a single rotorll) ,1 2), the convergence of the wake geometries of each 
rotor in the far wake regions are not always ensured and the necessity to 
take account of the viscous diffusions of the vortices would be desired. 
In this analysis, the iterations are truncated when the spacial arrangement 
of the first four circular vortices of each rotor changes by less than the 
convergent criteria between two successive iterations. 

3.2 INDUCED VELOCITY AND AERODYNAMIC FORCES ACTING ON EACH ROTCR 

In previous discussion, the wake deformations of a co-axial rotor in 
hover are determined with the assumption that the aerodynamic forces or the 
bound circulation of each rotor blades will be given in advance. Then the 
final step to complete the iteration procedures is to define the induced 
velocity distribution and the aerodynamic forces acting on each rotor which 
should be consistent with the each deformed wake geometry. 

The induced velocity distributions along each rotor blade are also 
obtained by applying the same procedures as those of the determination of 
the mutual induced velocities between circular vortices and the axial com­
ponent of them can be expressed in the closed form by 

W £ (r) 

2N 
E 

i=l 

Y · 1 r /r · - 2 
(....!:.)-[ u 1 

4rr ou l - <JU 
(53) 
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where Wu(r), Wt(r) are the axial induced v.elocities at any radial position, 
r on the upper and the lower rotor blade, ri and Zi are the radial and the 
axial coordinates of the ith circular vortex, respectively. E(cr) and K(cr) 

are, of course, the complete elliptic integrals of the 1st and 2nd kinds 
defined in (50) and ru, r 2 , Ou, 02 , au, a2 are defined as follows, 

ru r + ri r~ = r + ri 

02 rfi. + (Zi - rSu)2, 02 = r2 + (Zi - D + rS ) 2 (54) u £ ~ £ 

2 4rri 
a2 

4rri 
au 7 = 7 £ 

u £ 

where Bu, B2 are the coning angles of the upper and the lower rotor blades. 

With the assistance of eq. (53), the steady aerodynamic forces acting 
on each rotor blades can be determined by various methods. In practice, the 
performance calculations are made by the simple blade element theory using 
constant lift curve slop, a, and profile drag coefficient, Oo, which yields 
the thrust and torque relations for each rotor as follows, 

(55) 

B pacn2JR[e -
w~ (r) 

T£ ---Jr2dr 
2 0 £ nr 

~ po 0cn2R4 B R Wu(r) 
Qu + 2 pacn2Jo[eu - ---]r3dr nr 

(56) 

~ p<Socn2R4 B 2 R w£ (r) 
Q£ + 2 pacn J0 [e£ - ---]r3dr 

nr 

where Wu(r), W£(r) are the axial induced velocities defined in eq. (53), 
c is the blade chord length, 8u and 8£ are the pitch angles of the upper 
and lower rotor blades, respectively. 

3.3 NUMERICAL RESULTS AND DISCUSSIONS 

Processing to the systematic applications of the above described numer­
ical procedures for computations of the wake geometries of the co-axial rotor 
in hover, the sensitivity analysis for the azimuth increment, ~~, the number 
of the circular vortices to be involved in the wakes, N and the vortex core 
radius, s, are conducted. The prediction accuracies of this method are con­
sidered in general to be improved by decreasing the azimuth increment, ~~, -
increasing the number of the vortex, N and proper selection of the vortex 
core size, s, however, the results of the sensitivity analysis show that the 
prediction accuracies can be guaranteed with adaptation of llW = 20°, N = 8 
for each rotor and £ = 0.05R for practical uses. 

Sample performance calculations are also made using eqs. (55), (56) 
with a~ 5.73 and Oo = 0.015 for the model co-axial rotor which has two uni­
form blades for each rotor with a radius of l.Orn, a chord length of 0.08m and 
a airfoil cross section of NACA 0012. The blades are hinged at each rotor 
hub with a hinge-offset of 20% radius and each rotor is counter rotated with 
a revolutional speed of 500 R.P.M. 
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The typical computed results of· the wake geometries at various operat­
ing conditions are shown in Fig. 4 - Fig. 6. These wake geometries are the 
nondimensional cross sectional trajectories of the circular vortices of 
each rotor wake at three different axial spacings, D/R = 0.1, 0.2, 0.3, 
under the condition that each of them could produce the same total thrust. 
TAU and PL/PU in these figures represent T and v, the thrust and the power 
sharing ratio between rotors. 

It should be noticed that each of these figures is corresponded with 
the typical wake geometries for v < 1, v ~ 1, v > 1, respectively. From an 
analogy with the conclusions of the generalized momentum analysis, the 
performances and wake geometries depicted in Fig. 5 are understood to be 
those of near optimum condition whereas the other two cases are not under 
optimum conditions. It is clearly shown in these figures that the wake 
geometries of a co-axial rotor in hover are varied remarkably with the 
combinations of the thrust sharing ratios and the axial spacings and the 
most important cues to define the optimum performance can be detected by 
the behaviours of vortices in near wake region of the lower rotor. It is 
also interesting to note that in Fig. 5, as no axial velocity can be found 
near the outer part of the lower rotor disc, which is resulted from non­
linear interactions between vortices, the behaviours of vortices in the 
lower rotor wake are characterized by more predominant radial movements 
rather than axial ones and the wake boundary of the lower rotor can be 
formulated in close vicinity of the contracted upper rotor wake. The 
thrust sharing ratio for this case become almost equal to the contraction 
ratio at t·he lower rotor. 

Those unique features of the wake geometries which govern the optimum 
performance of a co-axial rotor in hover are well consistent with the 
conclusions deduced from the generalized momentum theory and the important 
role of the rotor-wake interference effect for the performance optimization 
of a co-axial rotor in hover is explored. 

4. CONCLUSIONS 

Basic researches for the performance optimization of a co-axial rotor 
in hover are carried out using the generalized momentum theory and the 
simplified free Wake analysis. Dealing with a co-axial rotor as one of the 
variable geometry rotor, the effects of the axial spacings and the thrust 
sharing ratio between rotors on the hover performances are clarified and 
the optimum hover performance is established in relation to its wake 
geometries. It is clearly understood that the mutual interference effects 
of the contracted upper rotor wake on the outer part of the lower rotor 
disc could play a important role for the performance optimization of a co~ 
axial rotor in hover. The inclusion of viscous diffusion effects of vortices 
will be anticipated for more rigorous and precise estimation of the hover 
performances and the wake geometries of a co-axial rotor. 
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