
 1

iMission - Leonardo Helicopters integrated performance simulation:

consolidating decades of lessons learnt and keeping the door open

to the lessons to be learnt

Riccardo Bianco Mengotti

Head of Flight Mechanics
Valentina Giuliani

Performance & Sizing Technical Lead

Fabio Nannoni

Head of Design Organization

Leonardo Helicopters

Cascina Costa (VA), Italy

Giuliano Prando

Technical Manager
Lorenzo Frigerio

Senior Specialist

Line Up Aviation Srl

Somma Lombardo (VA), Italy

ABSTRACT

The capability to predict of the performance of a product is the key for a number of evaluations, ranging

from marketability, to requirement satisfaction, from competitive advantage to operational planning.

For this reason, from an historical perspective, the first analytical tools developed in the industry have in

most cases been the performance codes. And for the very same reason performance tools are the first used in a

development project or, better say, before the launch of a project.

In Leonardo Helicopters, performance software have been developed since the 70s~80s in the both former

companies, Agusta and Westland, creating a solid base which incorporated over time all the experience gained

during the development of products like the Lynx, the A109, the EH101, the A129 or the AB139.

In the recent years, the eco-sustainability questions posed by the CleanSky European research program

and the momentum of the Company towards tiltrotors created the need for an upgrade of the performance

tools. It has thus been decided to develop a common code, iMission, able to replicate the helicopter the well-

established methods, allowing new configurations to be included as well as improving usability and graphing

functions and including the suite for emission-related calculations.

 2

INTRODUCTION

The possibility to assess the performance

capability of rotorcraft against defined

specification goals is fundamental for the

preliminary optimization of the configuration

during the design phase but also is required to

evaluate technology improvements by translating

the benefit into operating capability, to assess the

bid requirement satisfaction of an existing

helicopter and compare products with competitor

to determine the relative strengths and

weaknesses.

This principle, valid for all sorts of products,

has always been clear for means of transportation

and in particular for air vehicles, where a lack in

this field can imply design, project, schedule or -

even worse- safety risks. It is also true that the

evaluation of the performance and mission profile

of a product is in many situations possible with a

limited knowledge of the details of the product

itself: information on overall power required and

available, fuel consumption, and weights are

sufficient for a good part of the cases to be

considered.

Therefore performance evaluation shall be

regarded as a simple but critical aspect of

optimization loops in the design process.

A performance code needs to allow easy and

quick evaluations in particular during the initial

design phases, when data availability is limited,

but clear results are needed to support design

decisions; moreover a performance tool shall be

flexible enough to adapt to different

configurations and design solutions; finally a

performance tool shall allow increasing

complexity levels in order to include better data

definitions as the design is progressing, from

initial assumptions to experimental data.

THE EVOLUTION OF PERFORMANCE

EVALUATION IN AGUSTA AND

WESTLAND. A BACKGROUND

PERSPECTIVE

To better understand the significance of the

iMission development, it is important to frame it

in an historical perspective, looking at the origins

of the analytical performance calculation at

Leonardo Helicopters.

In particular, this section will focus on the

Italian side, namely on the Agusta Preliminary

Design department, where most of the core of the

iMission software was born at the beginning of

the 80s.

In that period Agusta had just completed the

development and the certification of the A109

light twin helicopter and was busy with the A129

Mangusta military machine. Other machines were

in the Company plans, but the 109 and the 129,

not so distant in size and configuration,

represented essentially a full dataset from

development experience. This included of course

the evaluation of the performance, which were

extensively tested in hover and forward flight,

resulting in adimensionalized power maps, used

for all the necessary evaluations.

This approach, deductive rather than

predictive, was of course limited in case new

machines, new conditions or new type of

performance had to be calculated. So in order to

be prepared for such requests, in parallel with the

experimental data, predictive models were

developed, starting from first principles and

known theories, essentially developing the

helicopter momentum theory for all the conditions

to be evaluated, with a code named Polar3, used

until a few years ago and replicated today in

iMission. This proved to be essential once the

Company was addressing the needs of new

markets with hot and high conditions, well

beyond the limited validity of the

adimensionalized data used previously.

Another important evolution that took place

during the '80s was the adoption of the PC

hardware and the FORTRAN code in place of

minicomputers and mainframes, made possible

because of the increasing power of the PCs. This

step implied an easier development of the

methodologies, ensuring also a portability of the

source codes that in several cases has been used

almost as is in today's iMission.

At the end of the '80s and at the beginning of

the '90s, the development of new analytical

capabilities was again anticipating the incoming

needs related to the new development of the

EH101 and of the NH90, creating in fact the full

set of tools for the performance prediction of

conventional helicopters (named PERFORM,

NFCONS, NFCONH).

This set of tools was not limited to the

performance evaluation and evolved also to trim

routines that make use of algebraic rotor

 3

(NFTRIM), maximum thrust determination

(MAXCTIG), blade element models to evaluate

rigid rotor dynamics and control loads

(NFLOAD), transient simulations to calculate

helicopter response in the time domain and

inverse simulation to address prescribed

trajectories (NFPATH), for example in the

flyaway or Cat A take-off manoeuvers.

These analytical tools added to the ones

developed at Westland in United Kingdom

represent a unique engineering value, so one of

the initial cornerstones of the new performance

tool was to preserve the value and the experience

of the existing performance evaluation methods,

including from a coding standpoint, the same

calculation routines and, from a testing

standpoint, ensuring the one to one consistency

with the old methods and previous performance

evaluations.

In this framework, in the last years, some

concepts and prototypes of new or unified

performance codes had been developed: in the UK

a full code, named eMission, with high focus on

the GUI aspects while in Italy a performance pre

and post-processor, intended to provide one single

environment to launch legacy executables. All

these developments provided useful experience

for the creation of the new iMission code.

THE OPPORTUNITY FOR A NEW

PERFORMANCE EVALUATION CODE

In a scenario characterized by the availability

of several proven Company codes but a growing

request for stronger integration of tools and design

process, the request for estimation of the

environmental impact related to the CleanSky

program and the Company interest into tiltrotors,

created the need and opportunity for an upgrade

of the performance tools. Of course the

straightforward approach could have been to

create new dedicated programs to calculate

emissions and to replicate the tools for the

tiltrotors, but this would have implied a

proliferation of codes and routines to do

essentially the same evaluations just on different

rotorcraft categories, requiring to repeat the same

effort every time a new configuration was to be

considered.

It was the right time to restructure, with the

help of Leonardo specialists and Line-Up external

consultants, the performance codes preserving for

the helicopter the well-established methods and

allowing new configurations and new evaluation

to be included. The approach of one integrated but

modular code brought immediately advantages,

from the unification of the input and output

models/files to the separation of the calculation

functions from the interface, which in this way

was easily moved in a graphical format.

Main top level requirements established for

the development of iMission were:

- leverage on well-known and proven existing

Company methods, by including/porting as much

as possible the well trusted core calculation

routines, and by planning extensive regression

testing to ensure consistency of results and

approach;

- unification of a number of executable and

formats, by means of a single code fulfilling all

the calculation needs and as a consequence

adopting on single input format;

- code modularity, isolating trim and power

calculation routines, integrating with generic

performance evaluation functions, allowing

addition of new configuration by simply defining

new trim and power definition modules;

- open/expandable input file formats, allowing

easy reading and introduction of additional

parameters as needed

- traceability of configurations and

modifications, allowing local modifications

preserving baseline models, with clear

documentation of the changes;

- eco-compatibility aspects, introducing in the

code the evaluation of pollutant information;

- mission optimization, with the aim of

minimizing the fuel consumption and pollutant

emission or increase the mission capability acting

on the mission profiles;

- full input and output awareness, by means of

advanced user interface and essential built-in

plotting capability;

- data exportability, by means of known and

accessible formats as well as possibility to select

the amount of results to be produced.

IMPLEMENTATION ASPECTS

iMission framework development began in

2010 and is currently in use at Leonardo

helicopter as standard performance tool.

 4

It has been developed with the aim to give the

User an instrument for:

• Visualize and manage vehicle model and

configuration data (File FMR);

• Prepare or modify launch parameters;

• Launch performance and mission

calculations;

• Perform optimization on mission;

• Visualize results of calculations;

• Prepare Plots;

• Compare results of different calculations;

iMission is a GUI (Graphical User Interface)

developed in vb.net language that uses:

 the external library AW_IMI.dll to compute

aircraft performances,

 the AW_FMR.dll library to manage a

common data structure representing and

handling rotorcraft models for numerical

calculation.

Since May 2013 the OPT library provides

coupling with the in-House genetic program

DESPOTAX 6.0 that allows the User to

automatically optimize mission profiles.

AW_FMR LIBRARY

First user requirement for iMission

framework was defining a common model

representing helicopter characteristics,

harmonizing both Italian and United Kingdom

parameters nomenclature and reference used in

several software codes, not only performance

calculation related.

The harmonization procedure led to Agusta

Westland Flight Mechanics Rotorcraft model file

format (AW_FMR file).

Rather than prepare an input files pre-

processor for each code, as well as a

postprocessor for outputs, Leonardo Helicopters

Flight Mechanics decided to undertake a deeper

review of all input models used.

So even for future Flight mechanics

application specialists have at their disposal

developing methodologies with a reliable,

powerful and documented module, easing the

software development work, allowing to focus on

higher added value development tasks, ensuring at

the same time that new programs will

automatically comply with a common format.

The format complies with the following

guidelines:

1. Multi-code data repository, i.e. include

parameters used by various tools.

 5

2. Separation: model file only includes aircraft

data not condition of analysis;

3. Hierarchically organized;

4. Expandable: allowing addition of new

parameters;

5. Flexible: supporting encryption, crc-based

protection, etc.

The model parameters are clustered

hierarchically (one hierarchical level). Each

parameter is identified by group (also called

Namelist) and parameter’s name (i.e. radius of

first rotor is identified by ROTOR1 RADIUS). In

this way it is possible to duplicate a group

ensuring flexibility (for example in the current

version 4 rotor groups with the same variables are

provided and it is possible to add a new group i.e.

ROTOR5 with minimal changes to the

framework). Each parameter has associated

metadata: unit of measure, description, list of

possible values it can take, level of visibility.

Each parameter can be numeric, textual or the

path to an external file; in order to ensure

compatibility with legacy codes all the previous

external file formats were inherited. These files

have typically data in tabular form.

The first FMR file format was issued on July

2010, in that version (release 0.9) 1300

parameters divided into 52 groups were planned,

in current version (release 61.0) over 2300

parameters divided into 54 groups are embedded.

This list of parameters allows characterizing any

vehicle configuration. The Namelists embedded in

the file format describe: AFCS, airframe, controls,

engine, environment, landing gear, horizontal tail,

aircraft inertia and mass, optional kit, nacelle,

rotors, sensors, slung load, transmission, vertical

tail, wings and general information related to the

model.

iMission framework use about 140 parameters

over the 2300 available in the AW_FMR to

calculate the performance of an aircraft. The large

number of parameters embedded in the FMR

format indicates what has been the initial effort to

create a general input file for any possible

application.

FMR library deploys a function to verify the

model data integrity. Each model parameter has a

level of visibility related to four authentication

levels. AW_FMR library calculates an hash code

for the parameters that have the same visibility

level (4 hash codes) and store results in a model

parameter. Only level 1 users are allowed to seal a

model saving in the model a proper hash code. An

iMission user can check integrity of a FMR model

file comparing this parameter with hashcodes

calculated on the fly. FMR model may be also

encrypted in order to protect the data from

disclosure and modification.

iMission user’s levels

1 system administrator

2 specialist

3 advanced user

4 basic user

The AW_FMR.dll library aims to read data of

a model and make them available to any model

data consumer, hence this library has no

dependencies from other libraries or executables,

but others iMission framework modules are tight

coupled with this library.

The library interface exposes several

functions. Here are listed the key features

guaranteed by the interface:

 read a complete aircraft model file (also

crypt file) and load it into memory for

further use;

 change single parameter, accessing with a

unique identifier (namelist/group and

parameter names);

 classify each model parameter;

 save a model in ASCII file (AgustaWestland

Flight Mechanics Rotorcraft format);

 Grant files integrity.

AW_FMR library is written in FORTRAN90,

first releases compiled with COMPAQ Fortran 6.6

, latest with INTEL Fortran Composer and tested

on windows 32/64 bit.

 6

To grant simulations repeatability, inside

library a set of commonly used constants are

defined: e.g. gravity acceleration and sea level

temperature) the library is also able to

automatically update a group of special

parameters defined as “derived” (e.g. rotor tip

speed is calculated from RPM and rotor radius, if

one of these parameters changes also tip speed is

updated accordingly, derived type parameter

access is read only)

Internally all parameters are stored in array

accessed via unique index. This index is

associated to the group name and parameter name.

Parameters related to external files require

special handling. A typical external file (e.g. C81

file) consists of a table with the variation of a

parameter as a function of other control

parameters (actual library version can read 16

different table-file types including a generic table-

file format, it handles at most three control

parameters for C81file-table control parameters

are angle of incidence and Mach number).

AW_FMR library is able to parse a table-file and

store its content in a special three-dimensional

matrix. In this matrix are saved also control

parameter conditions (e.g. for a C81 file type,

aerodynamic coefficient are saved as well as

related angles of attack and Mach numbers).

Library grants with a simple interface to:

 access to single cell value;

 access to the values of control parameters

(e.g. angle of attack for a C81 file);

 interpolate table in a control point given by

user (for a C81 file user will specify angle

of attack and Mach number);

 extrapolate table, it is possible to extrapolate

linearly with the data available, or use the

latest available data.

AW_FMR library exposes simple interface

functions for the principal programming

languages. Simple testing programs in .NET

framework, C, C++, Delphi, VBA (Excel), and

FORTRAN were issued during the validation

phase of the library. After the validation of

AW_FMR library a long-term phase to adjust old

performance codes to the new file format has

risen.

AW_IMI LIBRARY

Before the development phase of the iMission

code, a prototype has been written in Visual Basic

(VB), uncovering some computing issues related

to coding language itself. VB was not originally

designed as a calculation language, but, instead,

for ease of use in user-interaction and controlling

processes. Subsequently it has been decided to

have a clear separation between data view

management and business logic. Business Logic

subroutines are written in FORTRAN, packed and

saved as library (Fortran language is particularly

suitable for realizing algorithms). During library

development several visualization prototypes

written in different languages (C, Fortran, VBA,

Delphi) were deployed for debugging and testing

purpose.

IMI library initial development activity was:

 identify the most suitable calculation

algorithms for a particular vehicle

configuration;

 identify the necessary inputs to these

algorithms, dividing them between model

parameters (updating AW_FMR format file,

if needed) and launch parameters (added to

the list of IMI launch parameters). Data

from input files of several analytical tools

have been hence collected into a unique data

structure (IMI Launch Parameters). First

release of IMI format did not provide

parameters hierarchical organization,

however soon the number of algorithms and

related parameters pushed to adopt the same

hierarchical structure used in the FMR file

format.

IMI Launch Parameters are then

hierarchically organized in two levels:

 7

 first level is a uniquely named namelist that

group parameters of the same kind;

 second level is the list of parameter data

associated to each namelist. Each parameter

is characterized by:

- Namelist, (first level);

- Name, (uniquely parameter

identification inside Namelist);

- Value, (numerical or alphanumeric

parameter value);

- Type, (to specify if the parameter is a

number, a string or an array);

- Class (a further clustering criterion);

- A set of auxiliary information such as

parameter’s description and unit of

measure.

AW_IMI library is written in FORTRAN90,

first releases compiled with COMPAQ Fortran 6.6

, latest with INTEL Fortran Composer and tested

on windows 32/64 bit.

Internally all parameters defined in IMI file

format are stored in array or matrix accessed via

unique index. This index is associated to the

group name and parameter name as for FMR

library.

Other internal data (scalar, array and matrix

values), shared by all performances routines, are

saved in a COMMON BLOCK data. These

COMMON BLOCK variables are internal to the

library and not directly accessible for the user by a

call to the library. No metadata (as description,

unit of measure, …) are provided for these data,

however to ensure code’s maintainability variable

names are meaningful and unit of measure is SI.

To batch update these variables from library

caller, a unique input synchronization interface

function is provided. Input Synchronization

function copy MODEL DATA and LAUNCH

PARAMETERS variables in the COMMON

BLOCK variables, using hard-coded link rules.

To retrieve calculation results a unique interface

output synchronization function is provided as

well. Output synchronization interface copy

COMMON BLOCK variables back to LAUNCH

PARAMETERS and MODEL DATA, using hard-

coded link rules.

The IMI library calculates general

performance and mission performance where

 general performance can be either spot-point

performance (for a given flight condition:

power required, maximum speed, max hover

mass, …) or plots of spot-point performance

to create performance charts (maximum mass

to hover, chart, maximum speed, …);

 mission performance can be single

calculations of maximum range or radius of

action with a given payload, or payload-range

charts.

The limiting performance of an aircraft can

generally be determined by matching the power

required to achieve a desired flight condition with

the power available from the engines and

transmission.

Power required and available calculation

algorithm varies with the configuration and

resolution method chosen by user, while the

algorithms to evaluate a single performance type

(e.g. speed of best range) starting from Power

surplus are fixed.

Currently four methods to define the power

required are implemented two for the

conventional helicopter configuration and two for

the tiltrotors:

 ENERGY Method for Helicopter. This

simple, preliminary theoretical method is

based on the combined Momentum Theory

(also known as Disk Actuator Theory) and

simplified blade element theory. It allows

obtaining, quickly and with a good

approximation, a first evaluation of the

power required for an helicopter. The basic

energetic method is not able to take into

account the phenomena related to the rotor

stall and the fluid compressibility, but in the

HEL - ENRG formulation there are some

empirical corrections for the evaluation of

 8

the average blade drag coefficient that

permit more accurate calculations.

 POWER CARPET Method for Helicopter.

The Power Carpet method utilizes the

experimental results given by flight tests.

These are generally a table of power data for

given speeds and weights, normalized with

respect to σ (air density ratio) and to n (the

rotor speed ratio wrt the nominal).

 TILTROTOR SIMPLIFIED Method for

Tiltrotor. The Tiltrotor simplified method is

a preliminary theoretical approach that

allows to obtain, quickly and with a good

approximation, a first evaluation of the

power required for a tiltrotor only in

helicopter or aircraft mode (nacelle angle

=90 or 0deg).

 TILTROTOR BLADE ELEMENT Method

for Tiltrotor. Tilt Rotor Blade Element

methods is able to obtain the performance

and the required power estimation for a

tiltrotor at every nacelle angle because is

based on a more extensive computational

analysis that includes the aircraft

longitudinal trim and the proprotor power

definition based the blade element theory

and uniform inflow model.

All the four methods determine the power

required of the aircraft having in input a dedicate

aircraft model (FMR model define the

characteristic of the vehicle) and the flight

condition to be analyzed.

Power Available is obtained from the

comparison of the engine data and transmission

limits.

In general it is defined a set of power ratings

represented by the maximum power in output, the

maximum duration and the condition (All Engine

Operative or One Engine Inoperative)

The engine data are collected into a linked file

which describes the max engine power for the

relevant ratings and atmospheric conditions in

tabular form (engine look up table) or with a

mathematical formulation (so called “rubber

engine”).

The development of IMI computing library

took a long time, during this time several

visualization prototypes written in different

languages (C, Fortran, VBA, Delphi, .Net,

Matlab) and different capabilities (basic GUI,

advanced GUI, console program, Excel Macro)

were developed for debugging and testing

purpose.

GRAPHICAL USER INTERFACE

The iMission program (or in principle a

Graphical User Interface or a Console program),

allows to run different types of calculations using

the new file format for air vehicle configuration

and launch parameters. Caller will use the

AW_FMR library interface to access to helicopter

configuration and the AW_IMI library interface to

perform the calculations.

iMission replaces the codes accessing to the

same functionalities of the old codes via AW_IMI

library interface, adopting a loose coupling with

data model and so far ensuring a better code

maintainability.

In this manner both business logic (algorithm

details for calculating performance rating) and

data access layer (routines and format details of

files describing model configuration) do not

reside in GUI, which acts as a simple viewer.

Total separation of model structure

(AW_FMR model) from its visualization

(Graphical Interface) is not possible. Data model

replication inside GUI is tolerated to assure a

clearer interface (i.e. to group input data, display

meaningful names for labels, etc.).

The comprehensive GUI designed to manage

IMI and FMR libraries is iMission.

MISSION OPTIMIZATION LIBRARY:

AW_IMI_OPT.DLL

The iMission performance optimization

capability, introduced in order to allow reduction

of pollutants and fuel consumptions, was added to

the baseline code using an external library

providing state of the art optimization

functionality.

 9

In fact AW_IMI library is coupled with the

genetic optimizer in-house program DESPOTAX.

A specific interface library between DESPOTAX

and AW_IMI library it has been developed:

AW_IMI_OPT.library. This library allows

initializing the interface, to pass data from

Despotax to AW_IMI library and to perform

mission calculation with AW_IMI library and

pass back to Despotax the results.

For a given mission profile is possible to

evaluate the best optimized values for this step

variables:

 Altitude variation;

 Distance;

 Horizontal speed;

 Nacelle Angle;

 RPM;

 Step Duration.

iMission user can specify constrains for

genetic algorithm. Input which do not grant

constrains will be discharged automatically by the

genetic program. User can define mission

constrain (mission duration, mission distance,

total fuel consumed) or single mission step

constrain (step speed, step fuel consumption, …).

iMission user can select, as optimization

target, one or more among these variables:

 total distance;

 total time;

 total fuel consumed;

 Pollutant emission (CO2, CO, H2O,

SO4 , NOX, PM, UHC)

AW_IMI_OPT library is written in

FORTRAN90, compiled with COMPAQ

FORTRAN 6.6 and INTEL Fortran Composer,

and tested on windows 32/64 bits environments. It

is possible with minor source modifications, to

compile library also on LINUX system.

Mission optimizer will rewrite some steps

input to assure overall distance and altitudes

consistency between optimized step and

surrounding fixed steps. The program will apply

default input corrections on fixed step input

parameters. User will be able to overrides default

correction setting a set of constraints. Available

constraints will depend on variables optimized

and type of current step.

Optimization example

iMission framework with optimization library

was adopted as Technology Evaluator (TE) in

Clean Sky (CS) project.

In the following there is the test result for a

Passenger Transport / Corporate mission reported

in a final Clean Sky deliverable.

Passenger Transport / Corporate Mission

The figure below shows the free variables of

optimization process and their change domain.

The parameter involved in optimization

process are step speed, step altitude, step distance.

The total mission distance is constant and equal to

reference mission, while the total time could

change.

The iMission outputs, target of optimization

process, are pollutant and fuel consumption.

Next figures show the altitude and horizontal

speed of the optimized trajectory compared with

baseline mission.

 10

The following figures and table highlight the

reduction of fuel consumption and pollutant

obtained by mission optimization.

Passenger Transport / Corporate baseline mission - Fuel Consumption

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

Distance [nm]

F
u

e
l

[a
d

im
]

Optimised

Baseline

Passenger Transport / Corporate baseline mission - CO2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

Distance [nm]

C
O

2
 [

a
d

im
]

Optimised

Baseline

 FC CO2 CO SO4 NOX

Difference wrt

baseline

mission

-15% -15% -11% -15% -17%

THE IMISSION CODE AT WORK

iMission has quickly been introduced at

Leonardo Helicopters in the day by day jobs for a

limited number of cases, to check both results

accuracy and user experience: once validated and

proven effective, all products have been migrated

to the code, which is now the standard for all

Flight Mechanics performance activities.

In the turn of almost five years, more than 80

qualified and documented models have been

produced. The code has been used for more than

400 design or calculation tasks by a pool of 20

specialists, providing in the initial 2~3 years

validation experience and valuable improvement

requests, addressed by the consultants of Line-Up.

The most effective characteristics of the code

considered by the users are the flexibility of the

possible evaluations, the modularity allowing

continuous introduction of improvements or even

possibility of full new configurations, as well as

the steep learning curve allowed by the advanced

GUI and the completeness of the documentation.

An improvement area has been also identified in

the possibility to allow some kind of automation

or scheduling of routine calculations for standard

assessments.

One of the most complete examples of this

successful development has been the optimization

of a full set of missions for pollutants and fuel

consumption reduction performed in the

framework of CleanSky1 GRC research project.

Finally another success case has been the

implementation of a full tiltrotor modelling, used

for current and future company products of this

class.

ACKNOWLEDGMENTS

The Authors want to thank the Company and

the Clean Sky Project for the recognition of the

innovative value of this work, as well as all the

Colleagues and who contributed to this

achievement.

Altitude Baseline (red) vs Optimised (blue)

Speed Baseline (red) vs Optimised (blue)

Fuel consumption Baseline (red) vs Optimised (blue)

CO2 emissions Baseline (red) vs Optimised (blue)

