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University of Tokyo 

ABSTRACT 

The local momentum theory was developed to calculate the dynamic 
airloading of a helicopter rotor, where the velocity perpendicular to 
the plane of rotation was assumed to be negligibly low in comparison 
with the rotating velocity. In the case of propellers or windmills, 
however, this assumption is no longer adequate, and the flow field 
seen in the rotor-fixed-coordinate system is noticeably twisted along 
the span. In order to permit calculation of the induced velocity 
distribution as well as the airloading of the blade in such a twisted 
flow field, we have carried out an extension of the local momentum 
theory. Since our method of calculation is based on the instantaneous 
circulation distribution rather than the instantaneous momentum balance, 
it may be called the "Local Circulation Method." The present method 
is also applicable to propellers and windmills in yawed flow. 
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NOMENCLATURE 

lift slope. 
number of blades. 
attenuation coefficient. 
drag coefficient. 
lift coefficient. 
power coefficient, 
thrust coefficient, 
intensity of bound vortex. 

(power)/prrR2 (RQ) 3
• 

(thrust)/prrR2 (RQ) 2 • 

intensity of bound vortex of k-th quasi-elliptic wing. 
wing chord. 
section drag. 
unit vector along a stream line. 
mean value of bound vortex in an interval. 
angle of rotational plane to the advancing velocity. 
lift. 
overall lift of a quasi-elliptic wing. 
section lift. 
section lift given by a quasi-elliptic wing. 
number of quasi-elliptic wings; normal component of airloading. 
torque. 
radial location. 
rotor radius. 
spanwise unit vector. 
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t tangential component of airloading. 
U inflow velocity. 
V advancing speed along the rotor shaft. 
~ induced velocity. 
vn , normal component of induced velocity to rotational plane. 
Vt , tangential component of induced velocity to rotational plane. 
v 0 , induced velocity on the rotational plane. 
v 1 , induced velocity above the rotational plane. 
vp , induced velocity component perpendicular to the local airflow. 
6vp, perpendicular component of the induced velocity to the local 

airflow caused by each imaginary wing. 
Vq , induced velocity component parallel to the local airflow. 
6vq, parallel component of induced velocity to the local airflow 

caused by each imaginary wing. 
a effective angle of attack. 
r circulation. 
6f circulation of a quasi-elliptic wing. 
A inflow ratio, A = (V sin i + v)/Rfl 
e pitch angle. 
p air density. _

1 
v 

¢ inflow angle to the rotational plane, ¢ = tan (rQ). 

~ flow inclination angle, ~ = tan- 1 {(V + vn)/(rQ- Vt)}. 
Q angular velocity. 

subscripts 

1 inner edge of quasi-elliptic wing. 
2 outer edge of quasi-elliptic wing. 
i quantity of i-th quasi-elliptic wing. 
k quantity of k-th section. 
m mid point of quasi-elliptic wing. 

1. INTRODUCTION 

A rotary wing presents complicated aerodynamic phenomena in the 
flow field around the rotor. The complexity sometimes makes analysis 
employing a physically sophisticated model impractical or enormously 
time-consuming. The local momentum theory (LMT) was proposed as a 
practically useful method for calculating helicopter rotor aerodynamics. 
There are, however, some difficulties in applying this theory to rotary 
wings under various operating conditions, specifically under conditions 
of high axial flow field as encountered in windmills and propellers. 
In this paper, the differences between the operating conditions of 
a helicopter rotor and those of other rotary wings are discussed first. 
Then the fundamental equations of the LMT will be modified to those of 
an advanced computational method we call the "Local Circulation Method" 
(LCM) by which the airloading on a rotor blade operating in highly 
twisted flow can be calculated without wasting computation time. 
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2. LOCAL CIRCULATION METHOD 

Shown in Fig. 1 is a rotor blade operating in axial flow, in which 
the inflow angle to the rotational plane, ~ = tan-1(~) varies appre

rQ , 
ciably along the span r/R for a high advance ratio V/RQ and maintains 
a small value for a low advance ratio as shown in Fig. 2. 

In the case of a helicopter rotor, the advance ratio V/RQ or the 
inflow ratio A is on the order of 10-2

, and the inflow angle~ changes 
greatly in the vicinity of the rotating axis but remains almost constant 
for any other station, i.e. r/R > 0.1. Since the rotor blade of a heli
copter usually has a cut-off at the root, this drastic change near the 
axis does not have a significant influence on the calculation of air
loading and thus the blade can be considered as operating in a uni-direc
tional or flat flow field. 

Unlike a helicopter rotor, a propeller or windmill works under large 
value of advance ratio V/RQ and, therefore, a considerable change in the 
inflow angle occurs at every point on the blade. Thus the consequent flow 
around the blade and the trailing vortex sheet are highly twisted. 

Fig. 3 illustrates the flow profile at an arbitrary section. Trail
ing vortex filaments do not lie on a flat plane. Induced velocities at 
the section caused by the respective vortex filaments consequently do not 
point in the same direction either. Thus the equation for local momentum 
balance adopted in the LMT can no longer be applied. 

In the present method, the Kutta-Joukowsky theorem is applied to 
calculate the lift distribution without clarifying the relation between 
the induced velocity and the airloading. That is to say, by assuming 
the induced velocity to be small in comparison with the inflow velocity 
or v << U, the airloading can be related to the circulation distribution 
r and to the elemental lift ~ based on the blade element theory as follows: 

(1) 

( 2) 

where U is the absolute value of inflow velocity which is nearly equal 
to the total inflow velocity or u ~ ITI + ~~. 

The bound vortex r and the perpendicular component with respect to 
the inflow velocity U of the induced velocity~' Vp are expressed in the 
form of summation given by those for n imaginary wings arranged one-sidedly 
in diminishing size as shown in Fig. 4, 

f(r) = 

v ( r) = 
p 

n 
l: D.f.(r) 

i=l 1. 

n 
l: D.v .(r). 

i=l p,l. 
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That is to say, each pair of 6fi(r) and 6vp,i(r) corresponds to those 
of the i-th imaginary wing located in the same flow field, and satisfies 
the integration of the Biot-Savart law given by 

+ + 

+ 
6v. 

1 

= _1_ J" ; X ~ ( r 1 
) d6 f i ( r 1 

) 

4TI r - r 1 dr 1 dr 1 (5) 

where s and e denote the spanwise and flowwise unit vectors respectively. 

As the imaginary wing, a wing having an elliptical bound vortex 
distribution may be chosen. This is different from an elliptic wing, 
which is usually considered to have a constant induced velocity distri
bution on the wing surface in a flat flow field. Thus, the present 
imaginary wing having circulation distribution and operating in a twisted 
flow will hereafter be called a "quasi-elliptic wing." 

Shown in Fig. 5 is a series of quasi-elliptic wings represented by 
the inflow velocity, and the circulation and induced velocity distribu
tions. If the induced velocity outside the imaginary wings is neglected, 
the induced velocity and the bound vortex of k-th section can be related 
to each other from the first k quasi-elliptic wings, 

(6) 

where 6vp,ik = 6vp,i(rk) and 6fik = 6fi(rk). 

The effect of neglecting the induced velocity outside the wing was 
discussed in Reference 1 for the case of flat flow field. The situation 
is unchanged in the present analysis. The calculation of the induced 
velocities caused by the respective quasi-elliptic wings is given in 
APPENDIX A. 

Equation (6) and (A-5) determine aerodynamic variables of the k-th 
imaginary wing as follows: 

and 
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1 -- E 6v . ) 

uk i=l p,1k 

( 7) 
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where 

1 
~(r) = 4 

n-k+2 
1 -- z 

21T i=l 

. '{<PCri') - <PCr)} 
s~n 2 

r - r' 
i 

(10) 

Equations (7) through (10) give the circulations (or lifts) and the 
perpendicular component o'f the induced velocities from the first section 
to the n-th section successively without iteration. Since, by assuming 
an inviscid fluid, the local lift is considered to be perpendicular to 
the total airflow which includes the induced velocity, the component of 
induced velocity parallel to the airflow can be directly calculated as 
follows: 

= 

l!.v .k(r) 
q,~ 

k 
l: l!.v .k(r) 

i=l q,~ 

- <P(r)} 

Cfi n-k+2 sin{"'(r 1·')- "'(r)} 
= - - l: _:::.::'-"-'-''~'t:..>..O..L... -'-.--'"''-'-"--''-'- ( H 

4 1T i=l r - ri' i+l 

(11) 

(12) 

These two components, vp and vq, are rewritten in other components 
for convenience; one in rotational plane, tangential induced velocity Vt, 
and the other normal to it, normal induced velocity Vn• 

v (r) v (r) 
vt(r) = vp(r)sin{<P(r) + J(r)}+vq(r)cos{<P(r) + J(r) )} 

v (r) v (r) 

vn(r) = vp(r)cos{<P(r) +-fcr-T}-vq(r)sin{<P(r) + J(r) }. 

) (B) 

Profile drag is calculated by employing experimental data and its 
direction is defined by including induced velocity. Then the forces 
working in the rotational plane, t, and normal to it, n, are finally 
given as follows: 

v 1 v 
t = pUfsin(<P +....E.) +-;;-pU 2 cC cos C<P +....E.) u 2 d u 

v 
n = pUfcos(<P +J}) } (14) 

The forces, t and n, and the induced velocity components, Vt and Vn, 
determine a complete section aerodynamic state except for the torsional 
moment, which can be calculated easily if needed. 

3. ATTENUATION COEFFICIENT 

In order to take the induced velocity due to preceding wings into 
account, an attenuation coefficient is introduced just as in the LMT. 1) 
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This coefficient represents the decay of induced velocity at any local 
station. Let us suppose a rotary wing which gives rise to an induced 
velocity or momentum change at the very moment it passes a space of 
interest. This induced velocity is taken as the effect of a preceding 
wing with respect to the succeeding wing and decreases in value as time 
ellapses by the attenuation coefficient C. Thus, the following wing is 
considered .to go through the induced velocity field Cv. 

The attenuation coefficient can be calculated by assuming a simple 
wake model. Shown in Fig. 6 are rigid wake models for a rotor in yawed 
flow. Only the tip vortices flowing with a constant speed are taken into 
account in these models. For the purpose of simplicity, the spiral wake 
model, (a), is split into a series of vortex ring~ and a series of axial 
vortex lines, (b), each laid on a wake cylinder. 2 J When blades are rotat
ing at low angular velocity or under high advance ratio, tip vortices 
make a thin spiral and airflow angles ~ and ~ become large. These cause 
the induced velocity component in the rotational plane, which is mainly 
caused by axial vortex lines, to make a considerable change in airflow 
angle. However, in the present analysis, by assuming the tip speed octhe 
rotary wing to be large enough, this effect of induced velocity in the 
rotational plane can be neglected. That is, the effect of the axial line 
model both on the normal component and on the in-plane component of in
duced velocity and the effect of the vortex ring model on the in-plane 
component are neglected. In physical terms, this means that the in-plane 
component of induced velocity vanishes immediately after the blade hits 
the space. The above simplification is not essential in the present 
analysis. It is, however, possible to introduce these effects into the 
calculation if required. 

For practical calculation, the wake model given in Ref. 2 is em
ployed and the attenuation coefficient is defined by the ratio of induced 
velocities v 1 /v 0 , where v 0 is evaluated at any station on the top of the 
cylinder and v 1 at the same station above the cylinder by the distance Z 
from the rotational plane which travels during the time of rotation 2TI/bQ 
at the speed of inflow on the rotational plane. 

Fig. 7 shows the calculated value of the attenuation coefficient. 
Since the wake model takes only the tip vortex into account, and the tip 
vortices are assumed to have an infinitesimal core, the singularity of 
v 0 on the edge of the rotational plane makes the coefficient zero at 
the tip. 

In the calculation of inflow ratio, the simple momentum consideration 
can be applied as follows: 

, = ~ . . + C 12 /(vcos i)z + ,z 
A RQ s l. n l. T II RQ A (15) 

where i is the angle made by wind speed and blade 
the case of axial flow or i = 90 degrees, equation 
equation and A is given by 

A = .!. { 5'_ + I (::IL) z } 2 RQ RQ + 2 CT • 
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4. RELATIONSHIP BETWEEN THE LCM AND THE LMT 

The LMT was developed to calculate the induced velocity and air
loading distributions on the rotor blade of a helicopter rotor operating 
in hovering and advancing flight. It is based on the instantaneous momen
tum balance in combination with the blade element theory and the momentum 
theory. The momentum thoery gives the overall value of lift for each 
imaginary wing operating in an untwisted or flat flow field. 

In highly twisted flow, however, only the circulation can simply be 
related to the elementary lift of the blade because, unlike the momen
tum vector, the circulation is a scalar, and the induced velocity on the 
lifting line cannot be related to the change in the momentum vector be
tween the far upstream and far downstream portions of the wake. In the 
present method, the blade element theory is directly combined with the 
vortex theory as seen in equation (6), so this method has been called 
the "Local Circulation Method" and falls within the concept of vortex 
theory rather than momentum theory. 

Fig. 8 shows the difference between the LMT and the LCM in the sum
mations of lifts and induced velocities at an arbitrary section. In the 
LMT, all induced velocities point in one direction and the lift corres
ponding to each imaginary wing, b~i. is directed in the direction oppo
site that of the induced velocity. Therefore the lifts can be summed up 
in one direction which is the same as that of the actual lift. In the 
LCM, on the other hand, the lifts corresponding to the respective quasi
elliptic wings do not necessarily point in the opposite direction to the 
corresponding induced velocities. Therefore, the lift is calculated in 
relation to the intensity of the bound vortex which can be summed up as 
a scalar. 

In order to show that the LMT can be derived from the LCM in the 
special case where the inflow ratio is small, it is sufficient to show 
that the local lift on any given quasi-elliptic wing can be predicted 
in terms of the momentum change on the lifting line and that the summa
tion of these lifts at any section is equal to the lift actually acting 
there. 

Assuming a small inflow ratio, the twist of flow field or the flow 
inclination angle ~ can be neglected and the inflow angle $ can, thus, 
be considered to be independent of the spanwise location. Since the 
effect of twist in the calculation for the respective quasi-elliptic 
wings in the APPENDIX A is reduced to zero, equation (8) can be expres
sed simply by equation (A-6) or 

bv 
p 

(17) 

where the direction of 6vp is, in flat flow field, independent of the 
spanwise location and is normal to the rotational plane. 

The air speed is given in a linear form, 

U(r) = u 
m 
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where and r 
m 

Then the lift distribution given by the Kutta-Joukowsky theorem is 

L'lR-(r) = pU(r)L'lf(r) 

l u2 - u 
= PCr{Um + 1 (r - rm)}/(r2 -r)(r- r 1) (19) 

r - rl 2 

j u2 - u 
= 4pl'lv {U + 1 (r- rm)}/(r

2 
- r)(r - r

1
). 

- r p m r2 1 

The last expression indicates that the local lift is related to the in
duced velocity or momentum change on the lifting line in the above simple 
case. 

Let us consider the overall lift of an elliptic wing. Integrating 
equation (19) along the span of such a wing, the lift of the wing is 
given by 

I'lL = ( r 2 fl.Q,( r) d r 
) rl 

r - rl)2 ul + u2}Av 
= - 2 { p 1T (--=2____,2--=- L> 

2 p 
(20) 

By eliminating v from equations (19) and (20), section lift becomes 
p 

(21) 

This equation is exactly the same as the expression for lift distribution 
given in the LMT except that it was originally given in non-dimensional 
form in Ref. 1. 

Since the local lift is given in vectorial form as 

7 + + 
Ji,(r) = pf(r)Uxs (22) 

where! denotes the spanwise unit vector, when the circulation f(r) is 
given in summation form, the lift can be expressed by 

"t(r) = 
n + + 
l: {pl'lf. (r)U(r) x s}. 

i=l l 

(23) 

Each term of the right hand side of equation (23) obviously corresponds 
to the lift by an elliptic wing. 

When the flow field is flat and the directions of all the terms of 
the summation in equation (23) are the same, equation (23) yields 
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Q,(r) = 
n 
l: 11 Q, • ( r ). 

i=l 1. 

(24) 

119v.(r) = pU(r)llf.(r). (25) 
1. 1. 

Since the respective lifts of equation (25) are written in terms of in
duced velocity Vp as shown in equation (19), the above relations demon
strate the previous statement and show the linearity of lift in the LMT 
and in the case of low inflow ratio in the LCM. 

The section drag is similarly given by 

d = 

5. STALL CONSIDERATION 

n 1 
l:- pU 2 (r)c(r)Cd(r). 

i=l 2 
(26) 

It is seen in Fig. 2 that the inflow angle varies along the span for 
a high advance ratio and that the rate of twist of flow field is dependent 
on the inflow ratio under which the rotary wing is operating. This vari
ation in the twist of the airflow with the value of the inflow ratio can 
not always be compensated for by wash-out in a propeller or wash-in a wind
mill. In addition, in the case of windmills, the wind speed and direction 
cannot be controlled and it is difficult to maintain operation under near 
optimal conditions. Thus, an analysis of a rotary wing operating under 
stall condition becomes indispensable. 

In the present analysis, the vort~x theory is assumed to be still 
applicable under stall condition. Therefore, the amendment required in 
the present method should be performed in its usage of the blade element 
theory. To include the stall effect, equation (6) and (9) should be modi
fied as 

and 

k 
= pUk l: /1f.k 

i= 1 1. 

(27) 

(28) 

where the circulation of the blade element has been represented by that 
given at mid point of that section instead of the mean value and where 
ak is the effective angle of attack, 

k-1 
1 

ak = ek - ~k - u- l: v .k 
k i=l p,l. 

(29) 

Equation (28) cannot be solved analytically now due to the complex
ity of lift coefficient CQ,(ak). Attention should also be paid to the 
numerical value of drag coefficient Cd in using equation (14), and (26). 
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Knowing the lift and the drag distribution, the section torque of 
a windmill is given by 

q = t sin ¢ - d cos ¢, (30) 

A typical example of the angle of attack, normal force and torque 
distributiQns of a windmill is seen in Fig. 9. This rather flat distri
bution is mainly caused by giving a taper distribution to the blade. 
A fair change in the lift inclination and a rather small change in air
speed along the span due to the large value of advance ratio also con
tribute to the flatness of this distribution. 

If, however, a stall once occurs at some point on the blade, this 
distribution changes appreciably. Usually, both the change of flow 
inclination angle corresponding to the change of advance ratio or inflow 
ratio at the blade root and the contribution of the blade root to over
all torque are so large in windmills that the stall effect is severe for 
such a flat torque distribution. It should be noted that when a blade 
is operating under stall condition and the value of the flow inclination 
angle ¢ is low there, both terms on the right hand side of equation (30) 
can be of the same order and the windmill rotates in a subtle balance of 
airloading. More precise estimation of the lift and drag coefficients 
will be necessary for the calculation of windmill airloading under such 
operation. 

6. NUMERICAL EXAMPLES 

In order to verify the validity of the present method, a calcula
tion of the propeller performance was carried out, and the results were 
compared with the theoretical results obtained by other methods and with 
experimental results. In this calculation, the attenuation coefficient 
was assumed to be independent of the location in the rotational plane, 
and equal to that of the calculated value at three-quarter-radius point. 
The performances of the propellers in Ref. 4 were predicted. 

Table 1 and Fig. 10 a) and b) give the specifications of the pro
pellers. The aerodynamic coefficients for a two-dimensional airfoil 
used in this calculation were estimated by referring to the experimental 
data for the wing of aspect ratio 6 given in Ref. 5. These estimated 
values are presented in Fig. 11. 

A comparison with the experimental data and with the results of 
other methods is shown in Fig. 12 to 15. The results by the present 
method are in generally good agreement with the experimental results. 
A small discrepancy appears when the geometric pitch angle is large 
and the advance ratio is small. This is no doubt caused by the rather 
low lift slope and the fact that the effect of the thickness ratio and 
the Reynolds number on the maximum lift coefficient were disregarded. 

The LCM, like the LMT, is characterized by its ability to permit 
rapid and approximate calculation of the distribution and the fluctua
tion of airloading and induced velocity in non-axial flow rather than 
by its ability to provide exact solutions. 
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The time variations of bending moment at the blade root, local and 
overall thrusts, and airloading and induced velocity distributions for 
the propeller in yawed flight are presented in Figs. 16 to 18. The blade 
is assumed to rotate clockwise as seen from downstream and the azimuth 
angle is measured from the downstream. The attenuation coefficient is 
assumed constant over the rotational plane and is evaluated at the radius 
of 0.7SR and the azimuth angle of 90 or 270 degrees. Since the trailing 
vortices flow at high advance ratio, the effect of crossing a tip vortex 
is not remarkable. 

The most prominent effect appears near the blade tip and at an 
azimuth angle of 120 degrees where the blade travels at so high speed 
that it comes across the vortex core before it flows away. In Fig. 18 
(a) and (b) the perspectives of airloading and induced velocity are 
given for the azimuth angles of 90 and 270 degrees. It is seen in these 
figures also that the clear effect of the preceding blade tip vortex 
appears near 80% span of advancing side blade as shown by arrow symbols 
and that the effect is not clear in the retreating side blade. 

CONCLUSION 

The local momentum theory was extended for highly twisted flow by 
relying on the vortex theory and was made applicable to rotors operating 
in high axial airspeed. This method of· calculation makes it possible 
to analyze the dynamic airloading and induced velocity distribution of 
propellers and windmills without requiring an enormous amount of compu
tation. The comparison of the results with those of experimental and 
other theoretical methods showed that the present method gave a good 
prediction and that it was useful for the analysis of rotary wings under 
any operating conditions. The present method is also applicable to the 
rotary wing in yawed flight. An example of the calculation for a pro
peller in yawed flight was also presented. 

APPENDIX A. CALCULATION OF INDUCED VELOCITY DUE TO AN ELLIPTIC WING 
IN TWISTED FLOW FIELD 

Calculation of the perpendicular component of induced velocity to 
the airflow at the section of interest, vp, is treated here. Let us 
consider a bound vortex distributed in section partitioned off by two 
spanwise stations [r 1 , r 2 ]. The trailing vortex is assumed to flow 
straight backward in the direction of airflow at the section, i.e. in 
the direction U. 

The perpendicular component of induced velocity at an arbitrary 
section r is given by 

/':,v (r) ; .l._(2 
cos{</>(r')- <jl(r)} 

p 4rrJ r - r' 
rl 

Equation (A-1) is modified as 
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l::.v (r) 
p 

1 --~1--. d!::.f(r') dr' !r2 

= 41! r - r' dr' 
rl 

- ..l_(2 
21!) 

rl 

. '{~(r')-~(r)} 
s~n 2 d!::.f(r') 

r - r' dr' dr'. (A-2) 

Thus the singularity can be attributed to the first integration only, 
provided that ~ = ~(r') is differentiable. The second integration is 
considered to be the effect of twist. A non-twisted flow, ~ = constant, 
makes it zero and does not affect the first integration. Furthermore, 
if the bound vortex t:.r is distributed elliptically in [r 1 , r 2 ] and the 
section of interest falls between r

1 
and r 2 , then the first integration 

results in a constant, 

(A-3) 

r 
cr 1 J 2 f::,v (r) = --- -

p 4 2rr 
rl 

• 2{!/!(r') - <jJ(r)} 
s~n 2 dt:.f(r') -----------==-.----- -""":-'7-L d r ' . 

r - r' dr' 
(A-4) 

If the integration is 
above equation yields 

replaced by summation as·shown in Fig. A-1, the 

l::.v (r) = 
p 

1 1 n+l 
{--- E 

~(r. ') - ~(r) 
sin2 { ~ 

2 
} 

(Hi+l - Hi)}Cr 
4 21T '-1 

~-
r - r ' 

i 
r2 - r 

r . ' = r . + ---"'-------=-
1 ( i 

~ ~ n 
- 1) 

i = 1 and i = n + 2 

2 < i < n + 1 

t;i 
2r ' - (r + r

2
) 

= i 1 

When a less time-consuming calculation is required, the second term of 
equation (A-4) can be neglected, reducing the equation to the following 
simple one. 

(A-5) 

/::.V 
p 

(A-6) 

It should be noted that this equation does not imply a uniform induced 
velocity field because its direction is defined normal to the airflow, 
the direction of which changes along the span. 
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Table 1. Dimensions of the rotor, common 
to propeller I and propeller II 

Items 

Rotor radius • R 1.52 m 

Number of blades . b 3 

Solidity • a 0.0898 

Aero foil section • Clark Y 

Chord length . c refer to Fig. 10 

Thickness ratio • t/c refer to Fig. 10 

Pitch distribution, e refer to Fig. 10 
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Figure 1. A rotating blade in axial flow. 
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