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Abstract

Cver the past several years the NASA
Langley Research Center and the Structures
Laboratory, USARTL, has undertaken a compre-
hensive program to reevaluate higher harmeonic
blade pitch control for helicopter vibration reduc-
tion. Hughes Helicopters under contract! has
been tasked with providing analyses and computer
programs to sense¢ and suppress vibratory excita-
tion in either the ¢pen or closed loop mode. Data
presented in the paper confirm the effectiveness
of higher harmonic blade pitch controt in sub-
stantially reducing rotor vibratory hub loads,

The data are the result of recent tests ona 2.7-m
(9-ft) diameter, four-bladed articulated rotor
model that were conducted in the Langley Research
Center's transonic dynamics wind tunnei. Several
predictive analyses deveioped in support of the
NASA program are shown capable of accurately
predicting both amplitude and phase of the higher
harmonic control input reguired to nullify a single
4/rev force or moment input. The paper also
discusses the more general analysis, that of
multiple blade feathering inputs to attenuate
multipie vibratory forces and moments, and ifs
application for design of a flightworthy higher
harmonic control system,

Notation

Definition of notation is expanded within the
text as the algorithms are developed. Given
below is the definition of symbols that are funda-
mental to the paper:

Fx Fore and aft vibratory hub force at
n{} frequency

Fy Lateral vibratory hub force at nQ
frequency

1

Work reported on in this paper is being per-
formed under NASA Contract No. NAS1-14552,
jointly funded by NASA and USARTL.
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Fz Vertical vibratory force at aQ} frequency

Mxx Vibratory hub roiling moment at nQ
frequency

Myy Vibratory hub pitching moment at nQ

frequency

Mzz Vibratery hub yawing moment at nQ2
freguency
Z Vertical displacement of the stationary

swashplate at n{? frequency

] Pitch angle {longitudinal) of the station-
) ary swashplate at n{i frequency

¢ Roll angie (lateral} of the stationary
swashplate at nG frequency

Subscripts

C Cosine component

S Sine co:ﬁponent

BL Baseline (ambient vibratory case, no

swashplate excitation)
1. Introduction

Vibration plays a major role in the design
and development of the modern-day helicopter.
Frequently the success or failure of a helicopter
has been governed by whether or not it met vibra-
tion requirements, Low vibration levels are
important both for ¢rew and pasgenger comfort,
asg well as to reduce fatigue of airframe and
dynamic ¢components., In trangmitting vibratory
forces from the rotor to the airframe, the rotor
systemn acts as a filter, This results in primary
excitation to the airframe occurring at the blade
passage frequency of n/rev where "'n" ig the
number of blades.

For a four-bladed rotor, higher harmonic
control {HHC) achieves reduction of airframe



4/rev vibration levels by superposition of pertur-~
bationg of 3, 4, and 5/rev blade feathering on the
bagic 1/rev cyclic pitch required for helicopter
trim, While the concept is not new, only recently
hasg it been shown feasible. In particular, results
of experimental efforts described in References i,
2, 3, 4, and 5 have shown that successful sup-
pression of vibration can be achieved by oscillating
the blades at relatively small angles, generally
less than 0.5 degree. These results are highly
encouraging because they indicate that successful
vibration reduction can be achieved with no sig-
nificant penalties in blade flap bending, push-rod
loads, or rotor performance.

Further, it would appear that technology
has advanced to the point where higher harmonic
control offers the next logical step for alleviating
helicopter vikbrations, Consider Figure 1, which
shows the trend of helicopter cockpit vibration
levels over the pasgt twenty-five years, Observe
that the helicopter industry has reached an asymp-
tote in the level of vibration reduction that can be
achieved by present methads. Desired? is a level
of 0.02g, one-fifth that attainabie with today’s
technology. The authors believe that such levels
can be realized only by a major breakthrough in
vibration reduction techniques. Higher harmonic
control offers one method that promises such a
breakthrough.
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Figure i. Trend of Helicopter Vibration
Levels Since 1955

While early attempts at higher harmonic
control had to rely on purely mechanical devices
{Reference %), there have heen two advances in
the past ten years that both eliminate the need
for such devices and simultaneously offer great
promige toward development of a practical,
flightworthy higher harmonic control system.

2
Recommended by NASA Research and Technology
Advisory Council Subpanel on Helicopter Tech-
nolegy, Washington, D.C., May 24, 1976,
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These are: (1) the advent of the high-speed,
lightweight microprocessor; and (2) development
of Fast Fourier Transform methods for spectral
analysis {References 7, 8 and 9). Both are
eggential to implement an active rotor vibration
control system. The system described has the
capability to:

¢ Sample vibratery hub leads.

» Convert these analog signals to digitized data
{Ato D converter}.

¢ Separate amplitude and phase of n/rev compo-
nents by Fast Fourier Transform methods
{microprocessor}.

& From several samplings use the appropriate
algorithm to determine amplitude and phase of
rotor higher harmonic feathering inputs to null
vibratory hub loads {microprocessor},

Convert resulting digitized input to an analog
signat (D to A converter).

e Amplify and feed resulting higher harmonic
signals into the helicopter's primary control
system servaes,

Over the past several years the NASA
Langley Research Center and the Structures
Laboratory, USARTL, has undertaken a compre-
hensive program to reevaluate higher harmonic
blade pitch control for helicopter vibration reducs
tion. Hughes Helicopters under contract to NASA
and Army has been tasked with providing analyses
and computer programs for supporting wind tunnel
data reduction. As an extension of this effort,
Hughes Helicopters is also working with NASA
and Army on the implementation of analyses to
sense and suppress vibratory excitation in either
the open or closed loop mode.

The NASA/Army/Hughes effort is
directed toward systematic development of a
flightworthy active vibration contrel system.
The purpose of initial phases of the project
has been to explore the effectiveness of various
solution techniques (algorithms) in determining
the control inputs required for reducing hub-
transmitted forces. This has been accomplished
by tests using a 2.7-m {9-ft) diameter, four-
bladed aerocelasticaliy-.scaled articulated rotor.
Tests have been conducted in the NASA/Langley
5-m {16-ft) transonic dynamics wind tunnel
(TDT) (see Figure 2). The TDT facility has
the unique capability of using either Freon-12
or air as the {luid medium. The advantages
of Freon-12 as a test medium for aeroelastic
teating of scale model rotors has been dis-
cussed in Reference 17,



NASA/Army Aeroelastic Rotor
Experimental Systern {ARES)

Figure 2.

For data reduction and analysis, the model
and its instrumentation are linked to a Xerox
Sigma 5 data acguisition system, especially
designed to support aeroelastic research.

An outline of the research now under way
is presented in Figure 3. This paper is a status
report of work to date. In addition the paper will
address such topics as:

Characteristics of alternative mathematical

-
algorithms especially developed to generate
required swashplate inputs from sampled
vibratory force data so as to minimize air-
frame vibration.

e Reduction of coupled rotor hub forces and

moments with multiple vibratory swashplate
input,

ACTIVE CONTROLS FGR REDUCTION OF
HELICOPTER AEROELASTIC RESPONSE
® ESTABLISH HIGHER HARMONIC CONTROL EFFECTIVENESS
— EXPERIMENTAL PROGRAM
~ FOUR-BLADED ARTICULATED ROTOR

~ SWASHPLATE EXCITATION
- QPEN {.GGP

— SINGLE INPUTS AT FIRST, THEN MULTIPLE INPUTS

OETERMINE CONTROL LAWS FOR ACTIVE SYSTEM LISING
- ANALYTICAL PROGRAM

ASSESS EFFECTIVENESS OF ACTIVE SYSTEM USING WiIND
TUNNEL MODEL TESTS

VALIDATE CONCEPT THROUGH FLIGHT TESTS

NASA/Army Active Higher Harmeonic
Control Program

Figure 3,
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Design application of higher harmaonic blade
feathering as an active feedback control system
in an OH-6A helicopter.

2, Background

For airframe vibrations that occur at
integral multiples of rotor speed, the principal
source is the rotor system. Here, harmonics of
aerodynamic loads on the blade give rise to vibra-
tory response of the blade, Since the blade is
restrained at the root, blade responses result in
root shears and moments, which feed from the
rotor hub to the airframe as vibratory shears and
moments,

As the forces go from the rotating to the
fixed fuselage system, the rotor system in steady-
state flight acts as a filter. For an n-bladed
rotor system, the troublesome freguencies which
filter through, are those at n and 2n/rev, respec-
tively. Since the lower harmonics of blade loading
are considerably preater than the higher, experi-
ence has shown that n/rev vibration of the air-
frame is the most critical, It can be shown that
n/rev fuselage vibrations in the fixed system are
a result of the n-1, n, and n¥l/rev vibratory
response of the blades in the rotating system.

Consider, as an example, a four-bladed
rotor. Three factors contribute to the vibratory
response: (1) the magnitude of 3, 4, and 5/rev
aerodynamic excitation of the blades; {2) the
resulting 3, 4, and 5/rev vibratory response of
the blades; and (3) the 4/rev coupled response of
the airframe or rotor support system.

For a four-bladed helicopter, higher har-
monic blade feathering for vibration reduction is
achieved by superimposing 4/rev swashplate
motion upon basgic collective and cyclic flight
control inputs. Perturbing the swashplate at
4/vev both vertically and in pitch 2nd roll results
in third, fourth, and fifth harmonic blade feather-
ing. Fourth harmonic blade feathering is achieved
by oscillating the swashplate vertically about its
collective position, while third and fifth harmonic
blade feathering results from 4/rev tilting of the
swashplate in pitch and roll about its cyclic tilt
position.

Since the introduction of the helicopter with
its primary means of achieving flight control
through first harmonic feathering, engineers
have speculated on whether additional advantages
could be achieved by higher orders of blade
feathering. ©One of the earliest applications was
the work of Drees and Wernicke (Reference 6)
who conducted an experimentzl investigation in
1963 of the effects of second harmonic feathering
on the dynamic and aerodynamic characteristics
of a modified UH-1A helicopter., The UH-1lA



aircraft, with a conventional two-bladed teetering
rotor, incorporated a mechanical device by which
amplitude and phage of second harmonic feather-
ing were adjustable in flight,

Although the flight test investigation failed
te fully achieve its predicted objectives, the pro-
ject did demonstrate that some reduction in
vertical vibration at the aircraft center of gravity
could be obtained through proper application of
second harmonic feathering. ¥Failure of this work
to achieve desired objectives can be attributed to
several factors. First, second harmonic feather-
ing strongly couples into both {irat and third har~
monic loads., The first harmonic loads are
directly related to these resulting from the basic
cyclic pitch required for flight contreol. Second,
it was difficult at best to attempt to introduce
higher harmenic control by a mechanical device,
open loop, without benefit of feedback.

Folloewing the work of Drees and Wernicke,
there have been a number of theoretical and
experimental studies directed at further exploring
higher harmonic control (References 10 through
14), Continued efforts in this area have been
particularly encouraged by the results of experi-
mental work reported by London, Watts, and
Sissingh in Appendix C of Reference 1 and sum-
marized by Sissingh and Donham in Reference 2,
by the work of Shaw and McHugh reported in
References 3 and 4, and most recently by the
work of Hammeond given in Reference 5, These
experimental data indicate in general that suc-
cessful suppressicn of vibration can be achieved
by oscillating the blade at relatively small ampii-
tudes (in most cases legg than 0.5 degree} and
that there is negligible effect on alternating biade
flapwise and edgewise bending moments. Some
increase in blade torsion and corresponding con-
trol loads wasg noted.

3. Wind Tunnel Tests

As already noted, wind tunnel tests of the
HHC concept are presently being conducted in
the 5-m (16-ft} NASA/ILangley TDT, The 2.7-m
(9-ft}) diameter aeroelastically-scaled model
rotor used for the tests is shown installed in the
wind tunnel in Figure 2, The sequence of research
is outlined in Figure 3, referred to previously.

Dynamic characteristics of the blades are
given by the blade frequency diagram presented
in Figure 4. The nominal rotor operating speed
of 630 rpm represents the rotational speed used
for operating the model in Freon-12 for the tests.
Observe that edgewise and flapwise modes for
the model rotor are representative of full-scale
articulated blade values, but in torsion, the model
blades are somewhat stiffer than current genera~
tion rotors, with the first torsion mode above
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9/rev, The blades are 1,3-m (52-in} long with a
10. 8-¢m (4. 24-in) chord, They are restrained by
a coincident articulated hinge with its axis offset
7.6-cm (3-in) from the center of rotation. For
the model blades, a standard NACA 0012 airfoil
wasg selected, and the blades were untwiated.
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Figure 4, Calculated Model Blade Natural

Frequency Characteristics

The first goal of the program was to relate
4/rev vibratory swashplate inputs {collective,
pitch, and roil) to 4/rev vibratory forces and
moments at the rotor hub. Initial tests were
conducted applying manual phase and amplitude
sweeps to explore the frequency response of the
8ix hub forces and moments. Fixed system loads
were measured by a six-component balance
mounted below the model base. Blade and pitch
link loads were measured during all tests so as
to monitor the influence of higher harmonic
¢ontrol on these parameters.

Figures 5 and & help provide a basic under-
standing of the early tests. Figure S illustrates
how the 4P hub normal force is affected by a 4P
collective input of 0.5 degree at the various
phases noted on the figure. The 4P hub normal
force response phase and magnitude are given by
the azimuthal and radial coordinates regpectively
of the data points shewn. The baseline data point
repregents the ambient hub 4P normal force
response which is to be compensated through the
use of higher harmeonic feathering. It may be
seen from the figure by observing the data point
at 27.0 degrees input phase that the (.5 degree
of 4P collective inputs is more than is required
to compensate for the baseline response.

Figure & is a different presentation of the
same data to {llustrate how varying the input
phase for a constant input amplitude can be used
to find the minimum 4P hub response. Once the
phase for minimum response is found, the input
amplitude can be modulated to ohtain the lowest
possible 4P hub response. The "optimum''
data point on the figure was obtained in this
manner.

T
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Wind tunnel results showing the effect of the
"optimized' 4F collective input (0.22 degree
amplitude, 30 degrees phase) of Figure & on blade
loads are presented in Figures 7 through 2. Fig-
ures T and 8 show that the flapwise and edgewise
alternating bending moments are relatively insen-
sitive to the 4P input, but Figure 9 indicates that
the alternating torsional moment is aggravated.
The harmonic decomposition of the root torsional
moment shown in Figure 10 indicates that the
fourth harmonic component is the primary con-
tributor to thig increase in the alternating tor-
sional moment. Figure 11 shows the increase in
the fourth harmonic component of torsional
moment as a function of radial blade station.

The source of the increase in blade tar-
sional moment ig shown vividly in Figure 12 where
a harmonic decomposition of the pitch link load is
presented. Here it may be noted that, as should
be expected, the 4P collective input introduced a
significant fourth harmonic response in the pitch
link load. As noted in Figure 4 however, the first
elastic torsion mode of the blade was above 9P at
the design operating speed. Thus, a more tor-
sionaily compliant rotor may not have undergane
as large amplification in pitch link loading. The
increase in 5P content of torsional moment and
pitch link load, as depicted in Figures 10 and 12,
can be attributed to inadvertent mixing of 4P col-
lective signals with swashplate pitching and rol-
ling motion, Appendix [ presents results of a
simplified analysis of pitch link leads as a func-
tion of 4P feathering. Results indicate that
highe r harmonic feathering will not induce prohib.
itive pitch link lcads on an OH-6A,
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In summary, the wind tunnel tests have
shown that by manually sweeping the phase and
ampiitude of a single 4P input parameter (collec-
tive pitch) it is possible to determine the input
4F amplitude and phase sufficient to null a given
component of vibratory force {normal force)., It
should be obvious that such a technique if imple-
mented in an active feedback control system
would be highly inefficient. That is, many
samplings would have to be made in order to find
the correct amplitude and phase of control input
to null one component of force,

In actuality, to null vertical fuselage or air-
frame vibrations it is necessary to minimize not
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one cormponent but three components of hub
response. Those that primarily contribute to
vertical fuselage response are vertical forces,
fore-aft forces, and pitching moments, A sucs
cesgsful active fecdback control system therefore
must incorporate solution methods (algorithms}
that minimize all three components and that are
highly reliable and require a minimum number of
samplings. To this end, a number of mathematical
methods have been developed, These methods
{algorithms) are described in the following section.
For illustrative purposes, each algorithm pre.
sented wil] be appiied to the wind tunnel test data
previously considered (see Figure 5). For refer-
ence, those data are given in tabular form inTablel,



TABLE [, SCHEDRULE OF 4P COLLECTIVE
INPUTS AND HUB RESPONSES
b=0.30, Cyp/o=0,075

Higher Harmonic Blade Feathering for
Helicopter Vibration Reduction

Phase/Amplitude Notation

Y

e A single swashplate degree of freedom is used
to control an aggregate of hub responses,

s Multiple swashplate degrees of freedom are
used to control a single hub response.

¢ Multiple swashplate degrees of freedom are
used to control multiple hub responses.

Solutien techniques have currently been
derived for the single-input/single-output and
multiple-input/multiple -output medes of harmonic
control, The algorithms are presented in the
sections that follow,

Single-Inpuat/Single-Output Solution Algorithms
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4. Harmonic Control Solution Algorithms

The effectiveness of higher harmonic control
having been established through wind tunnel test-
ing described in the previous section, algorithms
for solving for required feathering inputs are
developed next. The need to implement higher
harmonic control in an adaptive control system
places special requirements on solution techni-
ques. Algorithms to be employed must be numer~
ically efficient to permit a high sclution update
rate. It follows that the algorithm must require
a minimum of sampled data, both in quantity and
type to avoid burdensome data acquisition require-
ments. Finally, there exist several control
maodes that must be explored, such that an optimal
control input solution can be derived. These
control modes are:

s A single swashplate degree of freedom (pitch,
roll, collective) is used to control a single hub
response,
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Several sclution techniques have been
developed to calculate 4P phase and amplitude of
a single swashplate input necessary to suppress a
single transmitted hub response. . These techni~
ques were developed in suppert of a 1977 NASA/
Langley TDT test program and, consequently,
results have been generated from available test
data. The various techniques will be developed
and contrasted in the following section.

Three-Point Technigue

[n developing numerical algorithms to cal-
culate optimal swashplate inputs, advantage was
taken of the almost linear relationship between 4P
feathering inputs and 4P hub oscillatory forces
and moments. The first such approach developed
reguires advanced knowledge of baseline vibration
levels and two samples of oscillatory output in
response to known 4P feathering inputs. By using
4P collective swashplate inputs to minimize 4P
hub normal forces, the procedure can be outlined
as follows:

1. Define feathering inputs and response quantities
as phasors having magnitude and phase as:

Phasor representing
4F component of base-
line hub normal force,
with amplitude
IFZBLI and phase
relative to an index
biade ¢ 7y

Tt (iFZBLI' °ZBL)

Phasor representing
4P component of hub
normal force in
response to an
arbitrary 4P collec-
tive input

21 ¢ (Falr *2))



Faz * (EFZZE' q>'Z-2) Phasor representing
4¥ component of hub
normal force in
responsge {0 an
arbitrary 4P c¢ollec-
tive input different
from above

Phasor representing
the first arbitrary 47
collective perturba-~
tion with magnitude
leg;! and phase &¢q,

o1 = (%01l 2%)

>}

Phasor representing
a second arbitrary 4P
collective perturba-
tion

o = {182l %%0)

Transform phase and amplitude to sine and
cosine magnitudes:

cod $

Fiear © |EzsLi

% BL
= 17 s
Fzsar * |Fzacl ™0 9p
8oc - I3
v 7 [Bgy] cos agy
[ S -1 .
5 Eem 31w,y

Asgume there exists a plane, Figure 13, that
describes the relationship between 4P hub
normal force cosine magnitude and 4P swagh-
plate collective sine and cosine magnitudes.
Agsume a similar plane exists for the sine
magnitude of 4P hub normal force. In addition,
establish the following limitations:

a, The Fy- and Fgzg planes are not parallel
to each other

b, Neither of the two planes are parallel to
the plane of zéro responge (Fyg = Fgzg = 0}

¢. The locus of points representing the inter-
section of the planes is not paralliel to the
plane of zero response.

Write equations for the Fy~ and Fyzg planes
interms of two arbitrary coefficients and
baseline magnitudes.

A8 + Ba

ac ost Fap - F bz oo (1)

ZCBL

: - 2
Dhoe + B # (Fpy - Fruapy) 5 0 )
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By substituting two frequency response
samples, the coefficients in Equations {1} and
(2} may be determined.

5. Referring to Figure 13, Fze and Fygin
Equations (1} and (2), respectively, may now
be set to zero. This yields equations for two
lines in the zero-response plane, represented
by line segments AB and CD in Figure 13,
Simultanecus solution of the twao equations
yields point P, whose coordinates are the sine
and cesine magnitudes of the 4P collective
input needed to null the sine and cosine mag-
nitudes of hub response.

Fzc Fzs

[ v

Figure 13, Planar Relationships Between 4P
Collective Input and 4P Shaft

Axial Force Sin and Cos Components

A schedule of 4P colliective inputs and re-
sulting 4P hub normal force responses for a
particular wind funnei trim condition is presented
in Table I. The test was conducted such that 4P
collective amplitude was held constant while phase
was swept manually in near 45-degree increments,
Table Il presents results using data from Table I
with the three-point technique. Results were
calculated based on combinatorial permutations
of two of the eight available data points to check
solution consistency. A single solution was then
obtained by neglecting those solutions with phase
greater than one standard deviation away from
the mean phase. A new mean phase and amplitude
were then calculated from the reduced set of
solutions. Results generated from test data were
fairly consistent with three exceptions noted in
Table II, Close examination revealed that when
4P perturbations were made 180 degrees apart,
as were the three flagged cases of Table II, the



planes that resulted were vertical and coplanar,
thereby defining an infinite set of non-unique
solutions., Rather than impose a sampling
scheme to preclude 180-degree-apart sampling,
it was deemed more appropriate to develop a
technique that has no such constraints.

TABLE II. SOLUTION INPUTS BASED ON
THREE-POINT TECHNIQUE
(DATA FROM TABLE I)

Three-Poiat Higher Harmonic Solation

Data from 4P Input 4% Input
Cases Amplitude Phase
214 T 215 0.2115 28.1005
214 216 0,2109 28,1328
214 217 0.2100 28.2249
214 218 0.1974 26,1319
214 219 0.2113 28,3749
214 220 0.2109 28,2207
214 221 0.2109 28.0845
215 216 0.2519 26,2867
215 217 0.2510 25,2689
215 218 0.2511 32,3555
215 219 - 0.3616 91.0183
215 220 0.2413 23,0785
215 221 0.2236 28,4521
216 211 0.2505 24,5436
216 218 0.253i2 32.7101
216 219 0.2416 40,1010
216 220 ~ 00,2186 13,6416
216 221 0.2081 29.9136
217 218 0.2515 33,4378
217 219 0.2442 31.5965
217 220 0.2649 28,0025
217 22] - 0.1028 87. 1869
218 216 0.2504 33, 1809
218 220 0.2522 33,0933
218 221 0.2562 32,9755
219 220 0.2316 34,1967
219 221 ¢.2208 34,3967
220 221 0.2083 34,6520
Linear Higher Harmonic Seolution
4P Input Amplitude 4F Input Phase
0.2325 30,1404

Nonlinear (Six-Peint] Technique

The second numerical approach investigated

replaces the planes of the former approach with
second-order surfaces defined by Eguations {3}
and {4):

2 2
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The shape functions above are similar to
cublc polynemials used in finite element plate
analysis; the lower-order terms are retained to
improve the approximation while higher-order
terms are eliminated to reduce the number of
samples required to define coefficients A
through J.

In addition to a baseline candition, five
sample swashplate inputs and resulting hub
responses are required to uniguely define the two
shape functions. OCnce the ten coefficients are
defined, a Newton-Raphson iterative scheme is
used to solve the set of nonlinear algebraic
equations for the required swashplate inputs,

Table III presents results generated from
Table I data using the nonlinear approach. Good
agreement is seen between the linear and non-
linear algorithms, indicating hub forces are
more linear than nonlinear with control inputs of
small amplitude.

The paramount drawback to this type of
analysis lieg in its arduous data processing
requirements., The inversion of 5 by 3 matrices
coupled with an iterative sclution process could
erode control loop response, Thus, a third
predictive analysis was investigated which has
no inherent sampling constraints nor exhaustive
data processing requirements.

TABLE III. SOLUTION INPUT BASED ON
SIX-POINT NONLINEAR TECHNIQUE
{(DATA FROM TABLE I)

Nonlinear Higher Harmonic Solution
Using Newton-Raphson Iteration

Number of Iterations = 3

4P Input 4P Input
Data from Cases Amplitude Fhase
214, 215, 216,
217, 218 0,2230 29.5149
L.

Two-Point Technique

The third single-input/singlie-output
algorithm investigated requires a baseline and
only one sample swaghplate input and resulting
khub frequency response to provide a solution,
The technique is based on the following tacit
assumption: if higher harmonic partial response
is defined as that portion of hub oscillatory force
due seolely to 4F feathering inputs (i.e,, total
response minus baseline respanse), then 4P
sample input phase leads harmonic partial
response phase by a constant amount, The
validity of this assumption using Table [ data is



established in Table IV, Referring to Figure 14,
the algorithm can be summarized as follows:

1. Using phasor nolation, vectorially subtract
the bageline hub response of interest {rom the
perturbation hub response.

Foun = Fai - Tupe 2
2. Rotate the higher harmonic partial response

phasor until it opposes the baseline phasor,

If Fzpy bhas magnitude and phase |FZHH!

and 8y, respectively, this step requires

a rotation of magnitude SZHH - {®zpL - 18C)L

3. By virtue of the assumption that the difference
between control input phase and harmonic
control partial response phase ts constant for
a given flight condition, the required control
input phase may be written
a9, e, - (e/.m; " et Lm’) (6)

4. Allowing that harmonic control partial
résponse magnitude |§ZHH| is linear with
control input amplitude, the required control
input amplitude for nulling baseline response
is

{7)

TABLE [V, ASSUMPTION: SAMPLE INPUT
PHASE LEADS HIGHER HARMONIC
CONTROL PARTIAL RESPONSE
PHASE BY CONSTANT AMOUNT

4P Collective 4P HHC
Input Phase Partial Response
{deg) Phase A
27 222 196
73 273 202
114 310 197
166 358 193
209 39 190
256 30 194
310 147 197
351 186 194

Table V presents results generated by the
two-point approach using wind tunnel data from
Table I. The level of agreement between this
appreach and the previous technigues indicates
it is the most likely candidate for control appli-
cations, given its generality and simplicity.

180
AESPONSE MINUS BASELINE

ROTATE @

UNTILIT
OPPOSES BASELINE
@
SAMPLE
RESPONSE 10 A 40
270 90

2
T T T
RESPONSE AMPLITUDE. L8

T

0 RESPONSE PHASE

BASE

Figure 14, Two-Point Higher Harmonic
Solution Technique

TABLE V. SOLUTION INPUTS BASED ON
TWO-PCOINT TECHNIQUE
(CATA FROM TABLE 1I)

Two=Point Higher Harmonic Solution

Data from 4P Input 4P Input
Case Amplitude Phase
214 0.2108 28,1566
215 0.2219 21,6276
216 0.2066 27,3438
217 0.2365 31,3915
218 0.2496 33,5275
219 0, 2449 29,7635
220 0.2213 26,8919
221 0.2028 29.2229

Linear Higher Harmonic Solution
4P Input Amplitude 4P Input Phase

0.2205 28,7951

Thus, it has been established that by
virtue of the almost linear relationship between
feathering inputs and hub oscillatory forces,
several techniques exist for predicting 4P con-
troi input te minimize baseline vibrations on
the basis of sampled data. The potential of
these techniques, as well as others to be
applied in a multiple-input/multiple - output
mode, will be discussed in the next section.
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5. Multiple-Input/Multiple -Output
Harmonic Control

A primary consideration in approaching
higher harmonic ¢ontrel in & multiple-input/
multiple-output mode is that there exist only
three independent swashplate degrees of free-
dem to minimize six hub wvibratory responses.
One approach is to minimize just the three hub
responses that largely contribute to vertical
fuselage response; namely, 4/rev vertical
forces, 4/vev fore-aft forces and 4/rev pitching
moments at the hub. Alternatively, one could
address the responses contributing to lateral
fuselage response: 4/rev side forces and
+/rev relling and yawing moments, or some
combination of the two,

Techniques doveloped for caleulating «pti-
mal swashplate inputs for suppressing multiple
hub responses all assume the same general linear
relationship between 4P hub responses and 4F
feathering inputs. Consider the vertical vibration
problem, for example:

F, -, .,
aF. _'/ AR __;’ =L £ ie
& Z 28 gd
aM, LY A - R S {8)
Iy 26 i1
-
AF, NN . S Y- SR S 4
14 48 i

JF_\‘ _ JF . _ 3F _
afF.. oy 52 _‘ 58 . - &
N 37 <0 LS
SN _aNE, _ oM _ {9)
AN ix PV o XX .3 ¢
XX 17, 40 o
— Moo My M,
A, — A o 0 5%
“z 77 48 s
J
In matrix notation,
.r_;F re—? aF SZ
| /. i ¥
!
ATT . . § 16)
aM, [Hx] B> aMy [Ha] 48 {
— 3 o _
.AF‘X Al 27 S

It is seen that the transfer matrices relating 4P
swashplate inputs to 4P hub oscillatory responses
are fully coupled. Preliminary test data have
shown that cptimal swashplate inputs for the
maultiple-input case are not simply a linear com-
bination of optimal inputs for the respective single-
input cases. Thus, interharmonic coupling must
be adequately represented in the analytical model,

Using measured normal force, axial force
and pitching moment hub frequency response data
{of which Table I is a subset), the transfer matrix
[ H;] was calculated and inverted. Solution of the
coupled equations yielded the following swashplate
multiple inputs to null vibration:

Collective: 0.15-degree amplitude
302 -degree phase

Lateral

Cyclic: 0.69-degree amplitude
12G-degree phase

Longitudinal

Cyclic: 0.60-degree amplitude

9% -degree phase

It is interesting to note that not only are the
optimal pitch angles of reasonable magnitude, but
the collective input reguired has decreased from
that of the single-input case (0,22 degrees).

In developing a technique for generating the
necessary transfer matrices, it is desirable to
again minimize sampling and data processing
requisements. Thus, to simply extend the six-
point nonlinear technique to three inputs and
three outputs, would require fifteen input pertur-
bations, and forty-eight Fast Fourier Transform
(FFT) spectral analyses to derive elements of
the transfer matrix, thereby proving too burden-
some for adaptive control systems. Similarly,
the three-point technique would require six input
perturbations and 2} FFTs in a three-input,
three-output mode. Ewven extending the two-point
technique to such a mode would require three
perturbations and twelve FFTs per solution
update. A rmultiple linear regression technigue,
outlined in Reference 15, requires oniy three
perturbations and six FFTs, thereby representing
an attractive approach to multiple-input/multiple-
output higher harmoni¢ control.

Multiple Regression Sclution Technigue

The analysis of a linear system with p
inputs and a single output shall be considered
first. The assumption of linearity dictates that
a single hub response (e.g., normal force) can
bhe written in terms of individual component
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responses to the p inputs, (swashplate pitch,
rell, cellective) as follows:

Fzm = FZ {t} + Fz () + Fz {t) + FZ 1) {11)
1 z 3 P

where F2, represents baseline normal force
response. Writing DuHamel's integral for the
individual inputs, then taking Fourier transforms
and summing yields the frequency domain counter-
part of Equation {11)

”“:: 0% U+ F {12)
&

Fon o=
z

f[\/]'o

Acknowledging the existence of additive
random noige, the p transfer coefficiénts Hypp {f}
are calculated (References 15 and 16) by writing
the probability density function for noise in terms
of these coefficients and maximizing the prob-
ability estimate.

HIF iF,. %]
z
2} (F_, X,
2 z 2
Fz = D-l “-3)
H (F . %)
P £ p
LS ]
where
LK IR X X, X))
(X XN IX), K)o X, KD
[ S A S} 2
D - P {14)
X, XI(%,X) ... (X, X
{ L p) Xz p) (P pl

and the inner products are defined by

N -
x.x) = N X X
S-S (15)

where in this case ( )* denotes complex conjugate.
In addition,

le = Complex Fourier transform of swash-
plate collective inputs at frequency f,

X5, = Complex Fourier transform of swash-
plate lateral cyclic inputs at frequency

fy

Xqy = Complex Fourier transform of swash-
plate longitudinal cyclic inputs at
frequency £,

If the above analysis is performed two more
times, one each for hub pitching moment and
axial force, we abtain

F . x Bo.X F
(Fo %) (M X (Foxy)

{3 x 3} (3x3} 3x3}

Thus, Equation (12} can be extended to
include three hub outputs as foliows:

rzfﬂ - an(ﬂ chf)

M‘_.m - M)Ou‘j {HF . “.\1 . ”F } Kz(f; (17)
< ¥ X

F\.m SR X0

’ R

The higher harmoni¢ solution input is
obtained by setting ¥,, M and F, to zero,
inverting the complex transfer function matrix

and multiplying:

X () -F )

1 z0

- (18)
X, i : {np. My o He } 'Mvom
2 ¥ ES
X, 6 CFo)
3 xo
where * now denotes an optimal solution.

It is seen that the transfer function gener-
ated in this estimation technigue can be used to
relate 3, 4, and 5/rev harmonic blade pitching to
similar harmonics of blade flapwise and edgewise
root shears. Writing third, fourth, and fifth
harmounic blade pitching in terms of fourth har-
monic swashplate pitching, rolling and collective
motion in addition to solving for similar harmonics
of blade root shears in terms of fourth harmonic
hub forces and moments permits the direct appli-
cation of Equation (18). Once an objective function
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is written in terms of swashplate displacements
and hub forces and moments, optimal swashplate
inputs required to null certain hub vibratory
forces can be derived, as in Equation {18).
Reference 1b presents details for the construction
of a confidence region for the estimate of the fre-
quency response function at a given [requency.

In addition, special smoothing and {iltering tech-
niques may be necessary to improve the statis-
tical nature of the sampled data. Reference 9
lists several frequency domain techniques for
smoothing raw spectra,

6., Freatures of a Flightworthy
Active Control Syvstem

The final step in the current higher har-
monic control program {s the demonstration of 2
flightworthy active control system. Elements of
a typical active vibration suppression system are
illustrated in Figures 15 and 16. For the OH-6A
shown, vibratory forces and moments are sensed
by a strain-gauge array mounted on the helicopter's
static {nonrotating) mast, Hughes Helicopters'
designs incorporate a nonrotating mast which
houses the main rotor drive shaft. Thus, all
rotor loads {except torsion) are transmitted to
the fuselage through the mast, thereby facilitating
the task of obtaining rotor feedback., Strain-gauge
data are then fed to a microprocessor located in
the cabin,

1 STRAIN-GAUGED STATIC
MAST

Cnce obtained, the strain-gauge data is
digitized and an eptimal solution determined by
means of an onboard, general purpose digital
microprocessor. Digital-to-analog conversisn
yields voltages proportional to optimal 4P phasge
and amplitude for each of three actuators. These
are input to an oscillator that generates correc-
tive 4P sinusecidal signals which drive the high-
frequency electrohydraulic actuators. During
initizl flight testing, blade and pitch link loads
will be monitored to ensure that such loads re-
main within allowsable fatigue limits. The sequence
of control flow is illustrated in Figure 17.

Once initial input parameters have been
loaded either on the ground or in flight from an
external storage device, baseline hub vibratory
respanse levels are obtained. The 4P spectral
content is calculated and stored for each hub
force degree of freedom. Following a 4P pertur-
bation of the swashplate, hub 4F response is
again determined and stored. Phase and ampii-
tude of the 4P inputs is obtained from a servo
ram linear variable differential transformer
(ILVDT) and input to a hub response analystis,
Calculated hub response is compared with actual
response data and optimal 4P phases and ampli-
tudes calculated from the error and baseline
response data. Although the active control sys-
tem under consideration features three channels

O

MINICOMPUTER SUBSYSTEM
HRIGH FREQUENCY HACS
ACTUATORS (3}
MINICOMPUTER

A-D CONVERTER

D-A CONVERTER

SiGNAL CONDITICNER
HYDRAULIC PUMP
COLLECTIVE PITCH
CONTROL STiCK

FLIGHT CONTROL SYSTEM

(S0 N ]

© W oo

mix\

{CYCLIC CONTROL)
11 MAIN GEARBOX

Figure 15.

OH-6A Installation of Active Higher Harmonic Control System
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of hub vibratory response and inputs, Figure 17
illustrates a single channel case.

Active system design criteria should be
addressed as early as possible in the design
cycle so as to take advantage of the opportunity
to integrate the system with existing control
concepts, Thus if more than one control concept
is implemented, such as a stability augmentation
system, (SAS), there may be benefits in utilizing
common system components, Also, close atten-
tion should be paid to fail operational character-
istics of the system. Reliability criteria include
the following: ‘

e With an in-flight failure, the HHC system
reverts to the primary control system.

¢ The HHC systerm must incorporate a stable
contrel loop sequence.

e A manual pilot override should be provided to
be used for a failure in the microprocessor.

e The HHC system should be designed to monitor
pitch link locads with an automatic cutout,
should these exceed limit load.

With reliability and safety of flight require-
ments established, design criteria for hydraulic,
electrical, and cooling subsystems can bDe deter=-
mined, That is, once frequency and amplitude
limits for higher harmonic feathering are estab-
lished, this defines hydraulic flow rates and
corresponding hydraulic system power and cooling
requirements.

Figure 16,

OH-6A Higher Harmonic Control
System Actuator Installation
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Figure 17, Active Vibration Suppression Syste
Control Flow

7. Conclusions

Data obtained from a recent wind tunnel
investigation of single-input/single-output higher
harmonic control have led to the fellowing con-
clusionsg;

¢ By varying phase and amplitude of higher har-
monic blade feathering, the 4P spectral com-
ponents of hub oscillatory responses can be
minimized for a given trim condition.

& For the model rotor tested, 4P collective
inputs needed to minimize 4P hub nermal
forces induced higher peak-to-peak torsional
mormnents and, hence, higher pitch link loads
on an articulated rotor.

s Flapwise and chordwise bending moments were
fairly ingensitive to "optimal' 4P cellective
inputs, on the rotor tested.

An investigation of several technigques for
predicting 4P swasghplate inputs needed to mini-
mize 4P hub vibratory responses using wind
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tunnel test data has generated the following
conclusions:

e There exists an almost linear relationship
between 4P hub responses and 4P feathering
inputs.

e Optimal gingle inputs can be generated {rom
vibratory response data., Such inputs can be
calculated from a completely general six-
point nonlinear algorithm. However, by
taking advantage of several key assumptions,
a computationally more efficient technique
can be derived requiring only tweo sample
response data points.

e Techniques exist for treating the multiple~-
input/multiple -cutput mode of higher harmonic
control. The uifectiveness of these algorithms
will be assessed in an upcoming wind tunnel
program,
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APPENDIX I

CONTROL LOADS

As noted previously, 4P response of the
model pitch link loads during harmonic feathering
was notably degraded. Although tennis racket-
type torsional leading as induced by high fre-
quency blade feathering tends to aggrevate control
loads, it is apparent that such loads may fall
within present design criteria in most applications,
Consider the rigid blade, rigid pitch link approxi-
mation to a feathering rotor in Figure I.1. The
feathering eguation of motion for such a rigid
system in a vacuum can be written as,

RN R IR '..'20 @)y (1 -0 ) o= R¥w (I.1)

&t yy 2 ¥Y
where I, and I are biade cross section chord-
wise and flapwise mass moments of inertia, and
R is the pitch-link/feathering.axis offset,

Since

(.2)

where Ixx is the blade feathering inertia,

By imposing simple harmonic motion as follows,

St} = A sia (350 + 8 (1. 3)

B() = P s (42 4 8) (1. 4)
and substituting equations (1. 2), {I.3), and (L 4)
into {I. 1), the following relation for 4P control
toad amplitude in terms of 4P feathering ampli-
tude c¢an be derived:

(1. 5).

Table I. 1 presents pertinent configuration data
for the nine-foot wind tunnel model rotor as well
as OH-6A blade data, Calculated 4P pitch link
load amplitude under the influence of 0.22 -degree
4P feathering is presented for both blades.

The ability of equation (I. 1) to predict 4P
control loads is substantiated in Figure I. 1. The
corresponding 10. 1-lbs penalty associated with
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4P pitching of an OH-6A blade is not prohibitive
and easily falls within current design criteria for
standard pitch links, Since the control load
penalty is a function of the aquare of feathering
frequency, critical attention should be given to
contrel loads in higher frequency applications of
harmonic feathering.

Figure I, 1. Rigid Blade, Rigid Pitch-Link

Configuration
TABLEI. 1. MODEL ROTOR AND OH.AA
BLADE DATA
Parameter 9-ft Model OH-6A
Iex N-m.sec®/rad 0.0011 0.0508
(in-lbf-seCZ/rad) (0,01) {0.45)
Q  {rpm} 630 465
2 (rad/sec) 65,97 48,69
R com 3.6 15. 4
(inches) (1.40) (6. 08)
P, N 8.0 44,9
(1bg) {(1.8) (10. 1)




