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Abstract 

Over the past several years the ~ASA 
Langley Research Center and the Structures 
Laborat0ry, USARTL, has undertaken a compre~ 
hensive program to reevaluate higher harmonic 
blade pitch control for helicopter vibration reduc~ 
tion. Hughes Helicopters under contract! has 
been tasked with providing analyses and computer 
programs to sense and suppress vibratory excita­
tion in either the open or closed loop mode. Data 
presented in the paper confirm the effectiveness 
of higher harmonic blade pitch control in sub~ 
stantially reducing rotor vibratory hub loads. 
The data are the result of recent tests on a 2.7~m 
(9-ft) diameter, four-bladed articulated rotor 
model that were conducted in the Langley Research 
Center 1 s transonic dynamics wind tunnel. Several 
predictive analyses developed in support of the 
NASA program are shown capable of accurately 
predicting both amplitude and phase of the higher 
harmonic control input requi.red to nullify a single 
4/rev force or moment input. The paper also 
discusses the mol"e general analysis, that of 
multiple blade feathering i.nputs to attenuate 
multiple vibl"atory fot"ces and moments, and its 
application for design of a flightworthy higher 
hat'mOnic control system. 

Notation 

Definition of notation is expanded within the 
text as the algol"ithms are developed. Given 
below is the definition of symbols that are funda· 
mental to the paper: 

Fx 

Fy 

Fore and aft vi.bratory hub force at 
nn frequency 

Lateral vibratory hub force at nD; 
frequency 

1
work reponed on in this paper is being per­
formed under NASA Contt'act No. NASl-14552, 
jointly funded by NASA and USARTL. 
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Fz Vertical vibratory fot'ce at nD frequency 

Mxx Vibratory hub rolling moment at nD 
frequency 

Myy Vibratol"y hub pitchi.n:g moment at nD 
frequency 

Mzz Vibratory hub yawing moment at nD 
frequency 

Z Vertical displacement of the stationary 
swashplate at nD: frequency 

9 Pitch angle {longitudinal) of the stati.on­
al"y swashplate at nD frequency 

¢ Roll angle {latet'al) of the stationary 
swashplate at nD: frequency 

Subscripts 

C Cosine component 

S Sine component 

BL Baseli.ne (ambient vibratory case, no 
swashplate excitation) 

l. Introduction 

Vibration plays a major role in the design 
and development of the model"n-day helicopter. 
Frequently the success Ol" failut'e of a helicopter 
has been governed by whether or not it met vibra­
tion l"equi.rements. Low vibration levels are 
important both for crew and passenger comfort, 
as well as to reduce fatigue of airframe and 
dynamic components. In transmitting vibratory 
forces from the rotor to the airframe, the rotol" 
system acts as a filtel". This results in pl"imal"y 
excitation to the airfl"ame occurring at the blade 
passage frequency of n/ rev where 11 n" is the 
nwnber of blades. 

For a fout'-bladed rotor, higher harmonic 
control {HHC) achi.eves reduction of airframe 



4/ rev vibration levels by superposition of perturM 
bat ions of 3, 4, and 5/ rev blade feathering on the 
basic 1/rev cyclic pitch required for helicopter 
trim, While the concept is not new, only- recently 
has it been shown feasible. In particular, results 
of experimental efforts described in References 1, 
2, 3, 4, and 5 have shown that successful sup­
pression of vibration can be achieved by oscillating 
the blades at relatively small angles, generally 
less than 0. 5 degree. These results are highly 
encouraging because they indicate that successful 
vibration reduction can be achieved with no sig­
nificant penalties in blade flap bending, push-rod 
loads, or rotor performance. 

Further, it would appear that technology 
has advanced to the point where higher harmonic 
control offers the next logical step for alleviating 
helicopter vibrations. Consider Figure l, which 
shows the trend of helicopter cockpit vibration 
levels over the past twenty-five years. Observe 
that the helicopter industry has reached an asymp­
tote in the level of vibration reduction that can be 
achieved by present methods. Desired2 is a level 
of 0. 02g, one-fifth that attainable with today 1 s 
technology. The authors beli.eve that such levels 
can be realized only by a major breakthrough in 
vibratLon reduction techniques. Higher harmonic 
control offers one method that promises such a 
breakthrough. 
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Figure l. Trend of Helicopter Vibration 
Levels Since 1955 

1980 ' 

While early attempts at higher harmonic 
control had to rely on purely mechani.cal devices 
{Reference 6), there have been two advances in 
the past ten years that both eliminate the need 
for such devices and simultaneously offer great 
promise toward development of a practical, 
flightworthy higher harmonic control system. 

2 
Recommended by NASA Research and Technology 
Advisory Council Subpanel on Helicopter Tech­
nology, Washington, D. C,, May 24, 1976. 
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These are: {l) the advent of the high-speed, 
lightweight microprocessor; and {2) development 
of Fast Fourier Transform methods for spectral 
anal)rsis {References 7, 8 and 9). Both are 
essential to implement an acti.ve rotor vibration 
control system. The system described has the 
capability to: 

• Sample vibratory hub loads. 

• Convert these analog signals to digitized data 
{A to D converter). 

• Separate amplitude and phase of n/rev compo­
nents by Fast Fourier Transform methods 
{microprocessor). 

• From several sampli.ngs use the appropriate 
algorithm to determine amplitude and phase of 
rotor higher harmonic feathering inputs to null 
vibratory hub loads (microprocessor). 

• Convert resulting digitized input to an analog 
signal (D to A converter). 

• Amplify and feed resulting higher harmonic 
signals into the helicopter 1 s primary control 
system servos. 

Over the past several years the NASA 
Langley Research Center and the Structures 
Laboratory, USARTL, has undertaken a comprew 
hensive program to reevaluate higher harmonic 
blade pitch control for helicopter Vibration reduc­
tion. Hughes Helicopters under contract to NASA 
and Army has been tasked with provi.ding analyses 
and computer programs for supporting wind tunnel 
data reduction. As an extensi.on of this effort, 
Hughes Helicopters is also working with NASA 
and Army on the implementation of analyses to 
sense and suppress vibratory exci.tati.on in either 
the open or closed loop mode. 

The NASA/Army/Hughes effort is 
directed toward systematic development of a 
flightworthy active vibration control system. 
The purpose of initial phases of the project 
has been to explore the effectiveness of various 
solution techniques {algorithms) in determining 
the control inputs required for reducing hub­
transmitted forces. This has been accomplished 
by tests using a 2. 7-m (9-ft) diameter, four­
bladed aeroelastically-scaled articulated rotor. 
Tests have been conducted in the NASA/Langley 
5-m (16-ft) transonic dynamics wind tunnel 
(TDT) (see Figure 2). The TDT facUlty has 
the unique capability of using either Freon-12 
or air as the fluid medium. The advantages 
of Freonwl2 as a test medium for aeroelastic 
testing .of scale model rotors has been dis­
cussed in Reference 17. 



Figure 2. NASA/ Army Aeroelastic Rotor 
Experimental System (ARES) 

For data reduction and analysis, the model 
and its instrumentation are linked to a Xerox 
Sigma 5 data acquisition system, especially 
designed to support aeroelastic research. 

An outline of the research now under way 
is presented in Figure 3. This paper is a status 
report of work to date. In addition the paper will 
address such topics as: 

• Characteristics of alternative mathematical 
algorithms especially developed to generate 
required swashplate inputs from sampled 
vibratory force data so as to minimize air­
frame vlbration. 

• Reduction of coupled rotor hub forces and 
momo.::nts with multiple vibratory swashplate 
input. 

ACTIVE CONTROLS FOR REDUCTION OF 
HEL!COPTER AEROELAST!C RESPONSE 

• ESTABLISH HIGHER HARMONIC CONTROL EFFECTIVENESS 

- EXPERIMENTAL PROGRAM 

- FOUR·BLADED ARTICULATED ROTOR 

- SWASHPLATE EXCITATION 

- OPEN LOOP 

- SINGLE INPUTS AT FIRST, THEN MULTIPLE INPUTS 

• DETERMINE CONTROL LAWS FOR ACTIVE SYSTEM USING 

- ANALYTICAL PROGRAM 

• ASSESS EFFECTIVENESS OF ACTIVE SYSTEM USING WIND 
TUNNEL MODEL TESTS 

• VALIDATE CONCEPT THROUGH FLIGHT TESTS 

Figure 3. NASA/Army Active Higher Harmonic 
Control Program 
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• Design application of higher harmonic blade 
feathering as an actlve feedback control system 
in an OH-6A helicopter. 

2. Background 

For alrframe vibrations that occur at 
integral multiples of rotor speed, the principal 
source is the rotor system. Here, harmonics of 
aerodynamic loads on the blade give rise to vibra­
tory response of the blade. Since the blade is 
restrained at the root, blade responses result in 
root shears and moments, which feed from the 
rotor hub to the airframe as vibratory shears and 
moments. 

As the forces go from the rotating to the 
fixed fuselage system, the rotor system in steady­
state flight acts as a filter. For an n- bladed 
rotor system, the troublesome frequencies which 
filter through, are those at nand 2n/rev, respec­
tively. Si.nce the lower harmonics of blade loading 
are considerably greater than the higher, experi­
ence has shown that n/rev vibration of the air­
frame is the most critical. It can be shown that 
n/rev fuselage vibrations in the fixed system are 
a result of the n-1, n, and n+l/rev vibratory 
response of the blades in the rotating system. 

Consider, as an example, a four-bladed 
rotor. Three factors contribute to the vibratory 
response: (l) the magnitude of 3, 4, and 5/rev 
aerodynamic excitation of th.e blades; (2) the 
resulting 3, 4, and 5/rev vibratory response of 
the blades; and (3) the 4/rev coupled response of 
the airframe or rotor support system. 

For a four-bladed helicopter, higher har­
monic blade feathering for vibration reduction is 
achieved by superimposing 4/ rev swash plate 
motion upon basic collective and cyclic flight 
control inputs. Perturbing the swashplate at 
4/rev both vertically and in pitch and roll results 
in third, fourth, and fifth harmonic blade feather­
ing. Fourth harmonic blade feathering is achieved 
by oscillating the swashplate vertically about its 
collective position, while third and fifth harmonic 
blade feathering results from 4/rev tilting of the 
swashplate in pitch and roll about its cyclic tilt 
position. 

Since th.e introduction of the hellcopter with 
its primary means of achieving flight control 
through first harmonic feathering, engineers 
have speculated on whether additional advantages 
could be achieved by higher orders of blade 
feathering. One of the earliest applications was 
the work of Drees and Wernicke (Reference 6) 
who conducted an experimental investigation in 
1963 of the effects of second harmonic feathering 
on the dynamic and aerodynamic characteristics 
of a modified UH-lA helicopter. The UH-lA 



aircraft, with a conventional two-bladed teetering 
rotor, incorporated a mechanical device by which 
amplitude and phase of second harmonic feather· 
ing were adjustable in flight. 

Although the flight test investigation failed 
to fully achieve its predicted object\.ves, the pro· 
ject did demonstrate that some reduction in 
vertical vibration at the aircraft center of gravity 
could be obtained through proper application of 
second harmonic feathering. Failure of this work 
to achieve de:::;ired objectives can be attributed to 
several factors. First, second harmonic feather­
ing strongly couples into both first and third har· 
nlonic loads. The first harmonic loads are 
directly related to those resulting from the basic 
cyclic pitch required for flight control. Second, 
it was difficult at best to attempt to introduce 
higher harmonic control by a mechanical device, 
open loop, without benefit of feedback. 

Following the work of Drees and Wernicke, 
there have been a number o£ theoretical and 
experimental studies directed at further exploring 
higher harmonic control (References 10 through 
14). Continued efforts in this area have been 
particularly encouraged by the results o£ experi~ 
mental work reported by London, Watts, and 
Sissingh in Appendix C of Reference 1 and sum· 
marized by Sissingh and Donham in Reference 2, 
by the work of Shaw and McHugh reported in 
References 3 and 4, and most recently by the 
work of Hammond given in Reference 5, These 
experimental data indicate in general that suc­
cessful suppression of vibration can be achieved 
by oscillating the blade at relatively small ampli­
tudes (in most cases less than 0. 5 degree) and 
that there is negligible effect on alternating blade 
flapwise and edgewise bending moments. Some 
increase in blade torsion and correspond i.ng con­
trol loads was noted. 

3. Wind Tunnel Tests 

As already noted, wind tunnel tests of the 
HHC concept are presently being conducted in 
the 5-m (16-ft} NASA/Langley TDT, The Z. 7-m 
(9-ft) diameter aeroelastically·scaled model 
rotor used for the tests is shown installed in the 
wind tunnel in Figure 2. The sequence o£ research 
is outlined in Figure 3, referred to previously. 

Dynamic characteristics of the blades are 
given by the blade frequency diagram presented 
in Figure 4. The nominal rotor operating speed 
of 630 rpm represents the rotational speed used 
for operating the model in Freon-12 for the tests. 
Observe that edgewise and flapwise modes for 
the model rotor are representative of full· scale 
articulated blade values, but in torsion, the model 
blades are somewhat stiffer than current genera­
tion rotors, with the first torsion mode above 
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9/rev. The blades are L 3-m (52-in) long with a 
10. 8·cm (4. 24-in) chord. They are restrained by 
a coincident articulated hinge with its axis offset 
7. 6-cm (3-in) from the center of rotation. For 
the model blades, a standard NACA 0012 airfoil 
was selected, and the blades were untwisted. 

ROTOR SPEED- RPM 

Figure 4. Calculated Model Blade Natural 
Frequency Characteristics 

The fi.rst goal of the program was to relate 
4/rev vibratory swashplate inputs (collective, 
pitch, and roll) to 4/ rev vibratory forces and 
moments at the rotor hub. Initial tests were 
conducted applying manual phase and amplitude 
sweeps to explore the frequency response of the 
six hub forces and moments. Fixed system loads 
were measured by a six-component balance 
mounted below the model base. Blade and pitch 
link loads were measured during all tests so as 
to monitor the influence o£ hi.gher harmonic 
control on these parameters. 

Figures 5 and 6 help provide a basic under· 
standing of the early tests. Figure 5 illustrates 
how the 4P hub normal force is affected by a 4P 
collective input of 0. 5 degree at the various 
phases noted on the figure. The 4P hub normal 
force response phase and magnitude are given by 
the azimuthal and radial coordinates respectively 
of the data points shown. The baseline data poi.nt 
represents the ambient hub 4P normal force 
response which is to be compensated through the 
use o£ higher harmonic feathering. It may be 
seen from the figure by observing the data point 
at 27.0 degrees input phase that the 0. 5 degree 
of 4P collective inputs is more than is required 
to compensate for the baseline response. 

Figure 6 is a different presentation of the 
same data to illustrate how varying the input 
phase for a constant input amplitude can be used 
to find the minimum 4P hub response, Once the 
phase for minimum response is found, the input 
amplitude can be modulated to obtain the lowest 
possible 4P hub response. The 11optimum" 
data point on the figure was obtained in this 
manner. 
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Wind tunnel results showing the effect of the 
"optimized" 4P collective input (0. 22 degree 
amplitude, 30 degrees phase) of Figure 6 on blade 
loads are presented in Figures 7 through 12. Fi.g­
ures 7 and 8 show that the flapwise and edgewise 
alternating bending moments are relatively insen­
sitive to the 4P input, but Figure 9 indicates that 
the alternating torsional moment is aggravated. 
The harmonic decomposition of the root torsional 
moment shown in Figure 10 indicates that the 
fourth harmonic component is the primary con­
tributor to this increase in the alternating tor­
sional moment. Figure 11 shows the increase in 
the fourth harmonic component of torsional 
moment as a function of radial blade station. 

The source of the increase in blade tor­
sional moment is shown vividly in Figure 12 where 
a harmonic decomposition of the pitch link load is 
prese·nted. Here it may be noted that, as should 
be expected, the 4P collective input introduced a 
significant fourth harmonic response in the pitch 
link load. As noted in Figure 4 however, the first 
elastic torsion mode of the blade was above 9P at 
the design operating speed. Thus, a more tor­
sionally compliant rotor may not have undergone 
as large amplification in pitch link loading. The 
increase in SP content of torsional moment and 
pitch link load, as depicted in Figures 10 and 12, 
can be attributed to inadvertent mixing of 4P col­
lective signals with swashplate pitching and rol­
ling motion. Appendix I presents results of a 
simplified analysis of pitch link loads as a func­
tion of 4P feathering. Results indicate that 
higher harmonic feathering will not induce prohib­
itive pitch link loads on an OH-6A. 
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In summary, the wind tunnel tests have 
shown that by manually sweeping the phase and 
amplitude of a single 4P input parameter (collecw 
tive pitch) it is possible to determine the input 
4P amplitude and phase sufficient to null a given 
component of vibratory force {normal force). It 
should be obvious that such a technique if implew 
mented in an active feedback control system 
would be highly inefficient. That is, many 
samplings would have to be made in order to find 
the correct amplitude and phase of control input 
to null one component of force. 

In actuality, to null vertical fuselage or air­
frame vibrations it is necessary to minimize not 
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one component but three components of hub 
response. Those that primari.ly contribute to 
vertical fuselage response are vertical forces, 
fore-aft forces, and pitching moments. A suc­
cessful active feedback control system therefore 
must incorporate solution methcx:l.s (algorithms) 
that minimize all three components and that are 
highly reliable and require a minimum number of 
samplings. To this end, a number of mathematical 
methods have been developed, These methods 
{algori tluns) are described in the following section. 
For illustrative purposes, each algorithm pre­
sented will be applied to the wind tunnel test data 
previously considered (see Figure 5). For refer­
ence, those data are given in tabular form in Table I. 



TABLE I. SCHEDULE OF 4P COLLECTIVE 
I~PUTS AND HUB RESPONSES 
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4. Harrnonlc Control Solution Algorithms 

The effectiveness of higher harmonic control 
having been establi.shed through wind tunnel test­
ing described in the previous section, algorithms 
for solving for required feathering i.nputs are 
developed next. The need to implement higher 
hat·monic control in an adaptive control system 
places special requirements on solution techni­
ques. Algorit!uns to be employed must be numer­
~cally efficient to permit a high soluti.on update 
rate. It follows that the algorithm must require 
a minimum of sampled data, both in quantity and 
type to avoid burdensome data acquisition require­
ments. Finally, there exist several control 
modes that m•.lSt be explored, such that an optimal 
control input solution can be derived. These 
control modes are: 

• A slngle swashplate degree of freedom (pitch, 
roll, collective) is used to control a single hub 
response. 
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• A single swashplate degree of freedom is used 
to control an aggregate of hub responses. 

• Multiple swashplate degrees of freedom are 
used to control a single hub response. 

• Multiple swashplate degrees of freedom are 
used to control multiple hub responses. 

Solution techniques have currently been 
derived for the single-input/single-output and 
multiple-input/multiple-output modes of harmoni.c 
control. The algorithms are presented in the 
sections that follow, 

Single-Input/SinglewOutput Solution Algorithms 

Several solution techniques have been 
developed to calculate 4P phase and amplitude of 
a single swashplate input necessary to suppress a 
single transmitted hub l:'esponse._ These techni­
ques were developed in support Of a 1977 NASA/ 
Langley TDT test program and, consequently, 
results have been generated from available test 
data. The val:'ious techniques will be developed 
and contrasted in the following section. 

Three-Point Technique 

In developing numerical algorithms to cal­
culate optimal swashplate inputs, advantage was 
taken of the almost linear l:'elati.onship between 4P 
feathering inputs and 4P hub oscillatory forces 
and moments. The first such approach developed 
requires advanced knowledge of baseline vibration 
levels and two samples of oscillatory output in 
response to known 4P feathel:'ing inputs. By using 
4P collective swashplate inputs to minimize 4P 
hub normal forces, the procedure can be outlined 
as follows: 

Define feathering inputs and response quantities 
as phasors having magnitude and phase as: 

Phasor representing 
4P component of basew 
line hub normal force, 
wlth ampli.tude 

I FzsLI and phase 
relative to an index 

blade d:t z BL 

Phasor representing 
4P component of hub 
no I:' mal force in 
response to an 
arbitrary 4P collec­
tive input 



Phasor representing 
41:-' component of hub 
normal force in 
response to an 
arbitrary 4P collec­
Hve input different 
from above 

Phasor representing 
the first arbitrary 4P 
collective perturba­
hon with magnitude 
I eotl and phase .C:..¢>01 

Phasor representing 
a second arbitrary 4P 
collective perturba­
tion 

2. Transform phase and amplitude to sine and 
cosine magnitudes: 

3. 

4. 

F ZSBL 

.:tc. 

Assume there exists a plane, Figure 13, that 
describes the relationship between 4P hub 
normal force cosine magnitude and 4P swash­
plate collective sine and cosine magnitudes. 
Assume a similar plane exists for the sine 
ma.gnitude of 4P hub normal force. In addition, 
establish the following limitations: 

a. The Fzc and Fzs planes are not parallel 
to each other 

b. Neither of the two planes are parallel to 
the plane of zero response (Fzc = Fzs = 0) 

c. The locus of points representing the interw 
section of the planes is not parallel to the 
plane of zero response. 

Write equations for the Fzc and Fzs planes 
in terms of two arbitrary coefficients and 
baseline magnitudes. 

(1) 

(2) 
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By substituting two frequency response 
samples, the coefficients in Equations {1) and 
(2) may be det~.>rmined. 

5. Referring to Figure 13, Fzc and Fzs in 
Equations (l) and (2), respectively, may now 
be set to zero. This yields equations for two 

lines in the zerowresponse plane, represented 
by line segments AB and CD in Figure 13. 
Simultaneous soluti.on of the two equations 
yields point P, whose coordinates are the sine 
and cosine magnitudes of the 4P collective 
input needed to null the sine and cosine mag~ 
nitudes of hub response. 

Fzc Fzs 

I 

' ... ...,/ ,,./FzgPLANE 

" -/ ..... ___ , 
Fzc PLANE',, I ,., 

Figure 13. Planar Relationships Between 4P 
Collective Input and 4P Shaft 

B 

Axial Force Sin and Cos Components 

A schedule of 4P collective inputs andrew 
sulting 4P hub normal force responses for a 
particular wind tunnel tri.m condition is presented 
in Table I. The test was conducted such that 4P 
collective amplitude was held constant while phase 
was swept manually in near 45Mdegree increments. 
Table II presents results using data from Table I 
with the three-point technique. Results were 
calculated based on combinatorial permutations 
of two of the eight available data points to check 
solution consistency. A single solution was then 
obtained by neglecting those solutions with phase 
greater than one standard deviatlon away from 
the mean phase. A new mean phase and amplitude 
were then calculated from the reduced set of 
solutions. Results generated from test data were 
fairly consistent with three exceptions noted in 
Table II. Close examination revealed that when 
4P perturbations were made 180 degrees apart, 
as were the three flagged cases of Table II, the 



planes that resulted we1·e vertical and coplanar, 
thereby defining an infinite set of non-unique 
soluti.ons. Rather than impose a sampling 
scheme to preclude 180-degree-apart sampling, 
it was deemed more appropriate to develop a 
technique that has no such constraints. 

TABLE II. SOLUTION INPUTS BASED ON 
THREE-POINT TECHNIQUE 

(DATA FROM TABLE I) 

Three-Point Higher Harmonic Solution 

Data f1·orn -l:P Input 4P Input 
Case::> Amplitude Phase 

214 2 15 o. 2115 28. I005 
214 2 16 0.2109 28. 1328 
214 2 17 0.2100 28.2249 
214 218 0. 1974 26. 13I9 
214 219 0. 2113 28.3749 
214 220 0. 2 1 09 28.2207 
ZH 221 0.2109 28.0845 
2 15 216 0.25I9 26.2867 
215 217 o. 2510 25.2689 
215 218 0.2511 32.3555 
2 15 219- 0. 3616 91. OI83 
2 l 5 220 0. 2413 23.0785 
215 221 0.2236 28.452I 
216 217 0.2505 24, 5436 
216 2 18 0.25I2 32.7IOI 
216 219 0.2416 40.1010 
216 220- 0.2186 I3.64I6 
216 22 I 0.2081 29.9136 
217 218 0. 2 515 33.4378 
2I7 219 0.2442 3!.5965 
217 220 0.2649 28.0025 
217 221- 0. 1028 87. 1869 
218 219 0. 2504 33. I809 
2I8 220 0. 2522 33.0913 
218 221 o. 2562 32.9755 
219 220 0.23I6 34. 1967 
2I9 221 0. 22 08 34. 3967 
220 221 0.2083 34. 652 0 

Linear Higher Harmonic Solution 

4P Input Ampli.tude 4P Input Phase 

0. 2 32 5 30. I404 

:'-Jonlinear (Six-Point) Technique 

The second numerical approach investigated 
replaces the planes of the former approach with 
second-order surfaces defined by Equations (3) 
and (4): 

' 2 A Soc +Bees + cooceos. oeoc + Eeos 

reoc2 + ceosz ~ Heoceos reoc + Jeos 

F ZC - F ZC 8L ( 3 ) 

FZS- FZSBL (4 ) 

22-9 

The shape functions above are similar to 
cubic polynomials used in finite element plate 
analysis; the lower-order terms are retained to 
improve the approximation while higher-order 
terms are eliminated to reduce the number of 
samples required to define coefficients A 
through J. 

In addition to a baseline condition, five 
sample swashplate inputs and resulting hub 
responses are required to uniquely define the two 
shape functions. Once the ten coeffi.cients are 
defined, a Newton-Raphson iterative scheme is 
used to solve the set of nonlinear algebraic 
equations for the required swashplate inputs. 

Table III presents results generated from 
Table I data using the nonlinear approach. Good 
agreement is seen between the linear and non­
linear algorithms, indicating hub forces are 
more linear than nonlinear with control inputs of 
small amplitude. 

The paramount drawback to this type of 
analysis lies in its arduous data processing 
requirements. The inversion of 5 by S matrices 
coupled with an iterative solution process could 
erode control loop response. Thus, a third 
predictive analysis was investigated which has 
no inherent sampling constraints nor exhaustive 
data processing requirements. 

TABLE III. SOLUTION INPUT BASED ON 
SIX-POINT NONLINEAR TECHNIQUE 

(DATA FROM TABLE I) 

Nonlinear Higher Harmonic Solution 
Using Ncwton-Raphson Iteration 

Number of Iterations = 3 

4P Input 4P Input 
Data from Cases Amplitude Phase 

2 14, 2 I 5, 2 I 6, 
2 I 7, 218 0,2230 29. 5I49 

Two~ Point Technique 

The third single~input/single-output 
algorithm i.nvestigated requires a baseline and 
only one sample. swashplate input and resulting 
hub frequency response to provide a solution. 
The technique is based on the following tacit 
assumption: if higher harmonic partial response 
is defined as that portion of hub oscillatory force 
due solely to 4P feathering inputs {i.e., total 
response minus baseline response), then 4P 
sample input phase leads harmonic partial 
response phase by a constant amount. The 
validity of this assumption using Table I data is 



established in Table IV. Referring to Figure 14, 
the algorithm can be summarized as follows: 

l. Using phasor notation, vectorlally subtract 
the baseline hub response of interest from the 
perturbation hub response. 

15 I 

2. Rotate the higher harmonic partial response 
phasor until it opposes the baseline phasor. 
If FzHH has magnltude and phase iFzHHI 
and BzHH• respectively, this step requires 
a rotation of magnitude! 8ZHH- (.:PzBL- 180). 

3. By virtue of the assumption that the difference 
between control input phase and harmonic 
control partial response phase is constant for 
a given flight condition, the required control 
input phase may be written 

(6) 

4. Allowing that harmonic control partial 
t"Csponse magnitud~ iFzHHI is linear with 
contt"ol input amplitude, the required control 
input amplitude fat" nulling basellne response ,, 

I"' I '' gt. 

1'.1 I u .I (7) 

TABLE IV. ASSUMPTION: SAMPLE INPUT 
PHASE LEADS HIGHER HARMONIC 

CONTROL PARTIAL RESPONSE 
PHASE BY CONSTANT AMOUNT 

4P Collective 4P HHC 
Input Phase Partial Response 

(deg) Phase A 

27 222 196 
73 275 202 

114 310 197 
166 358 19 3 
209 39 190 
2 56 90 194 
310 147 197 
351 185 194 

Table V presents results generated by the 
two-point approach using wind tunnel data from 
Table I. The level of agreem~nt between this 
approach and the previous techniques indicates 
it is the most likely candidate for control appli­
cations, given its generality and simplicity. 
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180 
RESPONSE MINUS BASELINE 

--+--

BASE INE _., 

LS 

0 RESPONSE PHASE 

Figure 14. Two-Point Higher Harmonic 
Solution Technique 

TABLE V. SOLUTION INPUTS BASED ON 
TWO-POINT TECHNIQUE 
(DATA FROM TABLE II) 

Two~ Point Higher Harmonic Solution 

Data from 4P Input 4P Input 
Case Amplitude Phase 

214 0. 2108 23. 1569 
2 15 0.2219 21.6276 
216 0. 2066 27, 3438 
217 0, 2 3 65 31.3915 
218 0.2496 33.5275 
219 0,2449 29. 7635 
220 0. Z2 13 26.8919 
221 0. 2028 29.2229 

Linear Higher Harmonic Solution 

4P Input Amplitude 4P Input Phase 

0.2205 28. 7951 

Thus, it has been established that by 
virtue of the almost linear relationship between 
feathering inputs and hub oscillatory forces, 
several techniques exist for pt"edicting 4P con~ 
trol input to minimize baseline vibrati.ons on 
the basis of sampled data. The potential of 
these techniques, as well as others to be 
applied in a multiple- input/multiple~ out put 
mode, will be discussed in the next section. 



5. :\'lult iple -Input I Multiple- Output 
Harmonic Control 

A primary consideration in approaching 
higher harmonic control in a multiple-input/ 
multiple-output mode is that there exist only 
three independent swashplate degrees of free­
dom to minimize six hub vibratory responses. 
One approach is to minimize just the three hub 
responses that largely contribute to vertical 
fuselage response; namely, 4/rev vertical 
forces, 4/rev fore-aft forces and 4/rev pitching 
moments at the hub, Alternatively, one could 
address the respon::.ws contributing to lateral 
fuselage t·esponse: -t/rev side forces and 
-tl rev rolling and yawing moments, or some 
<.:01nbination of tht.' lwo. 

Techniques d•:vdoped for calculating •·)ti.­

mal swashplate inputs for suppressing multiple 
hub responses all assum0 the same general linear 
rdationship bo.:tween 4P hub responses and 4P 
f..:athering inputs. Consider the vertical vibrati.on 
problem, for example: 

,,,. ,,,.~ z oF z 
0 F 

__ 1._ 
cZ ,, . c,'; 

1. 
;1. ·" u'i 

It is seen that the transfer matrices relating 4P 
swashplate inputs to 4P hub osclllatory responses 
are fully coupled, Preliminary test data have 
shown that optimal swashplate inputs for the 
multiple-input case are not simply a linear com­
bination of optimal inputs for the respective single­
input cases, Thus, interharmonic coupling must 
be adequately represented in the analytical model, 

Using measured normal force, axial force 
and pitching moment hub frequency response data 
{of which Table I is a subset), the transfer matrix 
( H1] was calculated and inverted. Solution of the 
coupled equations yielded the following swashplate 
multiple inputs to null vibration: 

Collective: 

Lateral 
Cycli.c: 

Longitudinal 
Cyclic: 

0. 15-degree amplltude 
302-degree phase 

0. 69-degree amplitude 
129-degree phase 

0. 60-degree amplltude 
92-degree phase 

It is interesting to note that not only are the 
optimal pitch angles of reasonable magnitude, but 
the collective input requi.red has decreased from 

J.\! y y •\! ~~~ y y , "-lyy :L - ___:_'L ~e - ~ 4> {8) that of the single-i.nput case (0. 22 degrees). 
!l: ,ii 

,, .,r· 
.::..Fx 

__ .. _· 
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~a • 
'" 

,, 
oc the la tc ral- torsi on vibration 

~ ,f 
.;.f'y 01. --- ~e 

·!I. 
,, 

.;.\I 
v:::I':\X ./\:XX 

66 ';:(. 
XX ,;, 

,, 
,\I o:::l, i'. 

.;.:::1/.Z. 
_l..!:_ u. 

__ , ___ {e 
J/. 

,, 

In matrix notati.on, 

,. 
oF x 

!-~ 
,;;; 

problem 

.,;'fy 
;; 

<!~ 

o:::lxx 
~~ ,. 

o'lzt:: 
(¢ 

co 

1 
I 

In developing a technique for generating the 
necessary transfer m.ttrices, it is desirable to 
again mini.mize sampling and data processing 
requc 'ements. Thus, to simply extend the six-
poi.nt nonlinear technique to three inputs and 
three outputs, would require fifteen input pertur­
bations, and forty-eight Fast Fouri.er Transform 
{FFT) spectral analyses to deri.ve elements of 
the transfer matrix, thereby proving too burden­
some for adaptive control systems. Similarly, 
the three-point technique would require six input 
perturbations and 21 FFTs in a three-input, 

(9) three-output mode. Even extending the two-point 
technique to such a mode would require three 
perturbations and twelve FFTs per solution 
update. A multiple linear regression technique, 
outlined in Reference 15, requires only three 
perturbations and six FFTs, thereby representing 
an attractive approach to multiple-input/multiple-

(10) 
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output higher harmonic control. 

Multiple Regression Solution Technique 

The analysis of a linear system with p 
inputs and a single output shall be considered 
first. The assumption of li.nearity dictates that 
a single hub response (e. g., normal force) can 
be written in terms of individual component 



responses to the p inputs, {swashplate pitch, 
roll, collective) as follows: 

r (tl 

' 
F It)._ F It) + F It)+ F' z (tl 

z I Zz Z 3 o 
( 11 I 

where Fz 0 represents baseline normal force 
response. Writing DuHamel 1 s integral for the 
individual inputs, then taking Fourier transforms 
and summing yields the frequency domain counter~ 
part of Equatlon {11). 

F (() 

' 
!! (fl X lfl + F Ul 

kF k zo 

'· 
(121 

Acknowledging the existence of additive 
random noise, the p transfer coefficiE!nts HkF (£} 
are calculated {References 15 and 16) by writing 
the probability density function for noise in terms 
of these coefficients and maximizing the prob­
ability estimate. 

(131 

(141 

and the inner products are defined by 

' (X., X,' 2: X. X, 
J 

,, 
" v~ I ( 15 I 

(j, l '· 2. ... pi N ~ ? 

where in this case ( )':' denotes complex conjugate. 
In addition, 

Xlv = Complex Fourier transform of swash­
plate collective inputs at frequency fy 

Complex Fourier transform of swash­
plate lateral cyclic inputs at frequency 
fy 

X3v ::: Complex Fourier transform of swash­
plate longitudinal cyclic inputs at 
frequency £.... 

If the above analysis is performed two more 
times, one each for hub pitching moment and 
axial force, we obtain 

(fz' ',' tM X, I (f ><' x,, 
J 

1- i< HFJ o·' IF x,, (M_ • x,, (f . Xzl e~ r z · M ' y " y 

lfz. x,, tM x,, 1F, x,> 
J ' 

p" 3) (3 X 3} (3 " 3) 

Thus, Equation (12) can be extended to 
i.nclude three hub outputs as follows: 

('" ' "] ('"] ' '" 

M lfl. "' I I {Hr·~· H\1 ifF"} Xz If) '" 

f It! I I x
3

tfl 
' ) 

(161 

( 1 71 

The higher harmonic solution input is 
obtained by setti.ng F z' My and Fx to zero, 
inverting the complex transfer functi.on matrix 
and multiplying: 

(

XI [f)] 
x

2
1n 

X 3 (f) 

where 

HM ' 

' (

-F,
0 1fil 

-M
10

10 

.F lfl 

'" 

now denotes an optimal solution. 

(181 

It is seen that the transfer !unction gener· 
ated in thi.s estimation technique can be used to 
relate 3, 4, and 5/rev harmonic blade pitchi.ng to 
similar harmonics of blade flapwi.se and edgewi.se 
root shears. Writing third, fourth, and fifth 
harmorlic blade pi.tchi.ng in terms of fourth har­
monic swashplate pi.tching, rolling and collective 
motion in addition to solving for similar harmonics 
of blade root shears in terms of fourth harmonic 
hub forces and moments permits the direct apph­
cati.on of Equati.on (18). Once an objective function 
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is written in tl'rms of swashplate displacements 
and hub forces and moments, optimal swashplate 
inputs t-equired to null ce z·tain hub vibt-atory 
forces can be derived, as in Equation (18). 
Reference 16 presents details for the constructi-on 
of a confidence region for the estimate of the he~ 
quency response function at a given frequency. 
In addition, special smoothing and filtering tech­
niques may be necessary to improve the statis­
tical nature of the sampled data. Reference 9 
lists several frequency domain techniques for 
sznoothing raw spectra. 

6. Fl•atun~s of a Flightvcorthy 
Active Control System 

The final step in tht.'! cun·ent higher har­
monic control progran1 is the demonstt·ation of a 
ilightworthy acttve control system, Elements of 
a typical active vibt·ation suppression system are 
illustrated in Figures 15 and 16. For the OH-6A 
shown, vibratory forcvs and moments are sensed 
by a stt-ain~gauge array mounted on the helicopter 1s 
static {nont-otating) mast. Hughes Helicopters 1 

designs incot·porate a non1·otating mast which 
houses the main rotor drive shaft. Thus, all 
rotor loads {except torsion) are transmittt.'!d to 
the fuselage through the mast, thereby facilitating 
the task of obtaining rotor feedback. Strain-gauge 
data are tht.'!n fed to a microprocessor located in 
the cabin. 

STRAIN·GAUGED STATIC 
MAST 

2 MINICOMPUTER SUBSYSTEM 
3 HIGH FREQUENCY HACS 

ACTUATORS (3) 
4 MINICOMPUTER 
5 A·D CONVERTER 
6 D·A CONVERTER 
7 SIGNAL CONDITIONER 
8 HYDRAULIC PUMP 
9 COLLECTIVE PITCH 

CONTROL STICK 
10 FUGHTCONTROLSYSTEM 

{CYCLIC CONTROL) 
11 MAIN GEARBOX 

Once obtained, the strain-gauge data is 
digitized and an optimal solution determined by 
means of an onboard, general purpose digital 
mict-oprocessor. Digital~to-analog conversi8n 
yields voltages proportional to optimal 4P phase 
and amplitude for each of three actuators. These 
are input to an oscillator that generates correc­
tive 4P sinusoidal signals which drive the high­
frequency electrohydraulic actuators. Dut-ing 
initial flight testing, blade and pitch link loads 
will be monitored to ensure that such loads re­
main within allowable fatigue limits. The sequence 
of control flow is illustrated in Figure 17. 

Once initial input pat-ameters have been 
loaded eithet- on the ground ot- in flight from an 
external storage device, baseline hub vibratory 
response levels are obtained. The 4P spectt-al 
content is calculated and stored for each hub 
force degree of freedom. Following a 4P pertur­
bation of the swashplate, hub 4P response is 
again determined and stored. Phase and ampli­
tude of the 4P inputs is obtained from a servo 
ram linear vat-i.able differential transformer 
{LVDT) and input to a hub response analysis. 
Calculated hub response is compared with actual 
response data and optimal 4P phases and ampli­
tudes calculated from the error and baseline 
response data. Although the active control sys­
tem under consideration features three channels 

Figure 15. OH-6A Installation of Active Higher Harmonic Control System 
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of hub vibratory response and inputs, Figure 17 
i.llustrat~s a slngle channel case. 

Active system design criteria should be 
addressed as early as possible in the design 
cycle so as to take advantage of the opportunity 
to integrate the system with existing control 
concepts. Thus if more than one control concept 
is implemented, such as a stabili.ty augmentation 
system, (SAS), there may be benefits in utilizing 
common system components. Also, close atten­
tion should be paid to fail operational character­
i-stics of the system. Reliability criteria include 
the following: 

• With an in-flight failure, the HHC system 
reverts to the primary control $ystem. 

• The HHC system must incorporate a stable 
control loop $equence. 

• A manual pilot override should be provided to 
be used for a failu1·e in the microproces$Or. 

• The HHC system ,;hould be designed to monitor 
pitch Hnk loads with an automatic cutout, 
should these exceed limit load. 

With t·ellability and safety of flight require­
ments established, design criteria for hydraulic, 
electrical, and cooling subsystems can be deter'­
:nined. That ls, once frequency and amplitude 
limits for higher harmonic feathering are estab­
lished, this defines hydraulic flow rates and 
corresponding hydraulic system power and cooling 
requirements. 

Figure 16. OH-6A Higher Harmonic Control 
System Actuator Installation 

ROTOR 

,--......_....,! 

SIGNAL 
GENERATOR 

I 
I 
I 
I 

4P 
SWASHPLATE 
ANGLES 

4P I 
HUB 
NORMAL 
FORCE l 

OPTIMAL 
SWASHPLATE 

INPUT 
ALGORITHM 

RESPONSE I 
1+---C..'CXJ 

Figure 17, Active Vibration Suppression System 
Control Flow 

7. Conclusions 

Data obtained from a recent wind tunnel 
investigation of single-input/ si.ngle-output higher 
harmonic control have led to the following con­
clusions: 

• By varying phase and amplitude of higher har­
monic blade feathering, the 4P spectral com­
ponents of hub oscillatory responses can be 
minimized for a given trim condition. 

• For the model rotor tested, 4P collective 
inputs needed to minimize 4P hub normal 
forces induced higher peak-to-peak torsional 
moments and, hence, higher pitch link loads 
on an articulated rotor. 

• Flapwise and chordwise bending moments were 
fairly insensitive to "optimal" 4P collective 
inputs, on the rotor tested. 

An investigation of several techniques for 
predicting 4P swashplate inputs needed to mini­
mize 4P hub vibratory responses using wi.nd 
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tunnel test data has generated the following 
conclusions: 

• There exists an almost linear relationship 
between 4P hub responses and 4P feathering 
inputs. 

• Optim.al single inputs can be generated from 
vibratory response data. Such inputs can be 
calculated from a completely general six­
point nonlinear algorithm, However, by 
taking advantage of several key asswnptions, 
a computationally more efficient technique 
can be derived requiring only two sample 
response data points. 

• Techniques exist for treating the multiple­
input/multiple-output mode of higher harmonic 
control. The effectiveness of these algorithms 
will be assessed in an upcoming wind tunnel 
program, 
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APPENDIX I 

CONTROL LOADS 

As noted previously, 4P response of the 
model pitch link loads during harmonic feathering 
was notably degraded. Although tennis racket­
type torsional loading as induced by high fre­
quency blade feathering tends to aggrevate control 
loads, i.t is apparent that such loads may fall 
within present design criteria in most applicatior1s, 
Consider the rigid blade, rigid pitch link approxi­
mation to a feathering rotor in Figure I. 1. The 
feathering equation of motion for such a rigid 
system in a vacuum can be written as, 

{! • 1 1 ;:>itl + ~/¢> (tl (! • ! l ~ Rf'ttl 
~~ n' n YY 

II. l I 

where lr;z and Iyy dre blade cross section chord­
wise and flapwise mass moments of inertia, and 
R is the pitch-link/feathering-axis offset. 

Since 

' '/Y 

in most cases we t:an write 

{! •I J "(! -1 ) " [ 
zz yy «7. yy x.x 

where Ixx is the blade feathering inertia. 

(I. z) 

By imposing simple harmonic motion as follows, 

P(t) : P ~"' (41< + 6) 
0 

(I. 3 I 

(!. 4) 

and substituting equations (I. 2), (I. 3), and (I. 4) 
into (I. 1), the following relation for 4P control 
load amplltude in terms of 4P feathering ampli­
tude can be derived: 

p 
0 

~ 15 II. 5 I . 

Table I. 1 presents pertinent configuration data 
for the nine-foot wind tunnel model rotor as well 
as OH-6A blade data. Calculated 4P pitch link 
load amplitude under the influence of 0. 22-degree 
4P feathering is presented for both blades, 

The ability of equation (I. 1) to predict 4P 
control loads is substantiated in Figure I. l. The 
corresponding 10. 1-lbf penalty associated with 

Z2-l6 

4P pitching of an OH-6A blade is not prohibitive 
and easily falls within current design criteria for 
standard pitch links. Since the control load 
penalty is a function of the square of feathering 
frequency, critical attention should be given to 
control loads in higher frequency applications of 
harmonic feathering, 

z 

X 

Figure I, l. Rigid Blade, Rigid Pitch-Link 
Configuration 

TABLE!. l. MODEL ROTOR AND OH-6A 
BLADE DATA 

Parameter 9-ft Model OH-6A 

lxx N-m-sec 2 /rad 
(in-lbr- sec 2 I rad) 

O.OO!l 0.0508 
(0. 011 (0.451 

n (rpm) 630 465 

n (rad/ sec) 65. 97 48. 69 

R em 3. 6 !5.4 
(inches) (l. 401 (6. 081 

Po N 8. 0 44. 9 
(lbfl (l. 81 110. 1 I 

·~ 
i 


