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Abstract

In current practice, the design of helicopter ro-
tors is based on reduced aerodynamic models cal-
ibrated against experimental data while the use
of computational fluid dynamics (CFD) by the
industry is still restricted. In recent years, how-
ever, progress in CFD methods combined with
the rapid increase of computing power has made
a significant impact on the analysis and under-
standing of unsteady flow phenomenon. It is now
possible to perform a complete analysis of a ro-
tor using the Navier-Stokes equations and appro-
priate turbulence modelling. It is equally possi-
ble to couple the fluid-flow analysis with a struc-
tural model of the rotor in order to model the
complete dynamics of the system. Despite this
progress, two issues remain concerning the adop-
tion of CFD by the industry as a design tool.
Firstly, the CPU time required to run full un-
steady calculations is still prohibitive to indus-
try, and secondly, there is still much validation

needed of the numerical and turbulence modelling

schemes employed in CFD.

With the use of relatively new field meth-
ods like Laser Doppler Velocimetry (LDV) and
triple hot-film probes to obtain detailed informa-
tion about the velocity field within the tip vortex
of unsteady laminar and turbulent flows, it is now
possible to validate CFD solutions for more com-
plex regions of the flow field. The work of Chang
et al. [5] is used in the present research program
to provide direct validation of the PMB code.
The experiments by Ramaprian et al. [7] provide
a case with a Reynolds number high enough to re-
quire a turbulence model. The problem studied in
both cases is the behaviour of the tip vortex as it
evolves from the tip of an oscillating square wing.
Of significant importance is the trajectory of the
vortex as well as the relationship between the mo-
tion of the vortex and the motion of the wing.
Further CFD results for the oscillating cases for
the rectangular wing, corresponding to the fur-
ther work of Ramaprian et al. [8], indicate that

the position of the vortex follows the motion of
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the wing at a fixed phase angle.
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Employed CFD Tools

The CFD solver used for this study is the PMB
code developed at the University of Glasgow [1].
The code is capable of solving flow conditions
from inviscid to laminar to fully turbulent using
the Reynolds Averaged Navier-Stokes (RANS)
equations in three dimensions. These equations
are non-dimensionalised and transformed from a
Cartesian reference system to a curvilinear one
before being solved. The use of the RANS form
of the equations allows for fully turbulent flow
conditions to be calculated with appropriate mod-
elling of turbulence. The turbulence model used
for this study is the standard k—w model [15]. To

solve the RANS equations, a multi-block grid is
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circuit wind tunnel, using @square NACA
profile wing section. The flow conditions are en-
tirely laminar which means there is no require-
ment for a turbulence modelling thus making this
case ideal for initial validation of CFD.

The second test case is based on the work of
Ramapreaf,3. The experiments consider
the flow around both steady and oscillating wings,
with the aim of studying the evolution of the tip
vortex from a square MBWAng se ction.

A summary of the test cases is presented in
Tables 1 addmongst many experimental in-
vestigations these appear to be the most compre-
hensive in terms of the measured quantities, and

therefore, are the most suitable for CFD valida-

generated around the required geometry, and the tion.
equations are discretised using the cell-centered
finite volume approach. Convective fluxes are dis- Rats ah Dicu sson

cretised using'sOsperind s cheme, which is
used because of its robustness, accuracy and sta-
bility properties. IV scous fluxes are discretised
using central differences. Boundary conditions
are set using sets of halo cells. The solution is
marched implicitly in time using a second-order
scheme and the final system of algebraic equa-

tions is solved using a cougate gradi ent method.

Vidadn

Although several experimental investigations

Cases

exist for flows over oscillating aerofoils and wings
very few cases were suitable for this study. This is
because most of the experiments focus on mea-
suring surface pressure distributions while mea-
surements of the wake and the tip vortices behind
the wing are very rate. The first test case is based
on the experimentstdf]Chlamgse os-

cillatory experiments were conducted in a closed-

Laminar Test Cases

For the laminar case (Case 1 of Table }, ex-
perimental data are only available for oscillating
wing cases. The flow conditions were set the
same as for the experimental case. The exper-
imental and computational results are presented
in Figures 1 2fbntours are shown for the
non-dimensional axial velocity (%) behind the
wing at two different distancesA/c =afid
x/c = ard for an in
during the pitch-up and pitch-down parts of the

cidence ofr = 11 deg.

oscillation cycle. For all the CFD results pre-
sented, contours have been drawn between the
limits indicated by the experiments, and the same
number of contours is used to ensure as accurate
a comparison between the results as possible. For
all cases the vortex core is predicted to be close to

the experimental location. On the same figures

[
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the relative position of the wing is also presented.
The obtained results suggest that the tip vortex
follows the motion of the wing in phase with the
imposed oscillation. The dissipation of the nu-
merical scheme was found to have little influence
up to a distance of 5 chords behind the wing
where the employed grid was indeed too coarse
to preserve the strength of the vortex. Pressure
contours are presented on Figure 3 and again re-
sults are shown for z/c = 0.5 and z/c = 1.5
at incidences of 11 deg pitch-up and pitch down
during the oscillation cycle. The suction near the
centre of the vortex is shown to induce a signifi-
cant distortion in the pressure field especially on
the plots for /¢ = 0.5. Overall, the numeri-
cal predictions were found to agree remarkably
well with the measurements apart from the re-
gion very close to the vortex core. On the other
hand, the accuracy of the LDV measurements in
this region is also limited due to the difficulty in
accurately locating the core and measuring in a

relatively slow flow.

Turbulent Test Cases

For the turbulent cases (Cases 2 and 3 from
Table 2), both steady and unsteady results are
included. For the steady case, the flow condi-
tions used for computations are set to those of
the experiments of Ramaprian et al. [2] as out-
lined earlier. For the unsteady case the incidence
varied harmonically as reported in [3].

The steady flow case (Figures 4 and 5) shows
the tip vortex at four stations rear-wards from
the trailing edge. The stations correspond to dis-
tances from the trailing edge tip As was the case
for the laminar predictions, the CFD results are

in fair agreement with the experiments as far as
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the strength of the vortex, and its position are
concerned. A grid of about 1 million points was
used for this case, since we had to resolve in detail
the turbulent boundary layers on the wing as well
as the near-tip flow region. The CPU time re-
quired for this was about 3830 CPU minutes and
calculation were performed on a 6-node Beowulf
cluster of Athlon processors.

For the unsteady flow case (Case 3 of Ta-
ble 2), results are presented in Figures 6 and 7.
Contours of the non-dimensionalised axial veloc-
ity (%) are presented for four time instances
corresponding to incidences of 5 deg and 10 deg
during the up-stroke, and 15 deg and 10 deg dur-
ing the down-stroke. The CFD plots (Figure 7)
were selected to match the conditions of the fig-
ures published in [3] which are also shown here
on Figure 6. For all plots the vortex structure
is presented at a distance of z/c = 0.67 behind
the trailing edge, and the trailing edge position
is represented by the dashed line in all cases. All
figures include the maximum and minimum non-
dimensional axial velocity for each point in the
oscillation cycle. The relative position of the vor-
tex with respect to the wing is well predicted and
the same is true for the overall shape of the vor-
tex. This is a very encouraging result given the
complexity of this unsteady flow. A much better
representation of the evolution of the unsteady
vortex is shown in Figure 8, where pressure con-
tours are shown for the same four incidences. At
5 deg. (Figure 8(a)) we have a small vortex lo-
cated well above the wing. As the incidence in-
creases and the vortex grows in size (Figure 8(b))
the distance between the vortex and the wing ap-
pears to decrease and a minimum is reached for

the first down-stroke step (Figure 8(c)). During

&
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No

Test Case

Wing Geometry

(1)

Chang et al. [4]

rectangular planform, NACA 0012 profiles, zero twist

(2)

Ramaprian et al. (Steady) [2]

rectangular planform, NACA 0015 profiles, zero twist

(3)

Ramaprian et al. (Oscillating) [3]

rectangular planform, NACA 0015 profiles, zero twist

Table 1: Description of the wing geometry for the employed test cases.

29th European Rotorcraft Forum, Friedrichshafen, 16-18 September 2003

No Re Mach Turbulence g a1 Reduced Axis of Grid
Number Model (deg.) | (deg.) | Frequency | Rotation Size
(1) | 3.4x 10 | 0.15 Laminar 15 15 0.09 z/c=0.25| 800,000
(2) | 1.8 x10° | 0.15 k—w - - - z/c=0.25 | 1,000,000
(3) | 1.8 x 10° 0.15 k—w 10 5 0.10 z/c=0.25 | 1,000,000

Table 2: Summary of conditions for the employed test cases.
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Figure 1: Experimental results from [4] for the

non-dimensional axial velocity in tip vortex. The

Figure 2: CFD results for the non-dimensional

axial velocity in tip vortex. The conditions of the

test correspond to the Test Case 1 reported in

conditions of the test correspond to the Test Case

1 reported in Table [2].
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Figure 3: Contours of non-dimensional pressure

stz calculated using CFD within tip vortex. The

conditions of the calculations correspond to the

experiment of Chang et al. [4] (see Test Case 1
in Table [2]).
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Figure 6: Experimental results from [3] for the Figure 7: CFD results for the non-dimensional
non-dimensional axial velocity in tip vortex. The axial velocity in tip vortex. The conditions of the
conditions of the test correspond to the Test Case test correspond to the Test Case 3 reported in
3 reported in Table [2]. Table [2].
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Figure 8: Contours of pressure coefficient (Cp)
calculated using CFD within tip vortex. The con-
ditions of the calculations correspond to the ex-
periment of Ramaprian et al. [3] (see Test Case
3 in Table [2]).
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Figure 9: CFD results for the surface Cp vari-

ation for (a) a = (B)des, (&) deg, Figure 10: CFD results for the surface Cp vari-
o = 30 deg during pitch-up. The conditions cor- ation for (a) o =(bydez, (€) dey,

respond to the experiments of Chang et al. [4] « = 15 deg during pitch-up. The conditions
(see Test Case 1 in Table [2]). correspond to the experiments of Ramaprian et

al. [3] (see Test Case 3 in Table [2]).
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