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Notation

Coordinate Systems N circular frequency of rotor
X, Y, Z inertial coordinates revolution
X, ¥, 2 blade coordinates Matrices
Sealars D damping matrix
5“—_ dissipation function E Skew-sy.mmetric matrix due
to damping
Drr generalized damping E applied forces
FX’ FY' FZ hub forces G gyroscopic matrix
I.:" IY' IZ f:é;:fiamomenis of - K stiffness matrix
K. generalized stiffness M mass matrix
M rotor mass Q generalized forces
My, MY' M, hub moments R inertial coordinates
Mr(r) generalized mass T transformation matrix
N number of blades u modal matrix
7 kinetic energy o rotation matrix
U etastic potential energy W rotor rotation matrix
W work pq generalized coordinates
f frequency r biade coordinates
kA radius of gyration of r modal column
tens"ion carrying cr‘o‘ss- Superscripts
section arocund elastic
axis A, B cyclic coordinates
m mass C collective coordinate
n number of degrees of D differential coordinate
freedom T transposed
q generalized coordinate a,b cyclic mode shapes
t time c' collective mode shape
u, v, w displacements d differential mode shape
5 variation o, B cyclic {rotor-fixed) coordinates
£ damping coefficient Subscripts
4 pitch angle A tension axis
6 torsion angle C centrifugal
© rotation angle Yol elastic
U azimuth angle F airframe
W, circular eigenfrequency @ geometric
fay phase resohance criterion H hub
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L linear i modulus

Q quadratic Re, In real-, imaginary part

R rotor ' derivative with respect to x
e elastic * derivative with respect to {
k blade index A elastic axis

r,s mode indices rJ diagonal matrix

0 rigid-body

Symbols

- rotor-fixed system

1. Introduction

The development of advanced VTOL-configurationsg like tilt-rotor or stop-
rotor aircraft poses severe dynamic and aeroelastic problems, To avoid troub-
les with ground- or air~resonance or with whirl flutter, for example, proper
calculations must be carried out as soon as possible. Besides the formidable
task to determine reasonable unsteady airloads induced by deformations of a ro-
torcraft, which is not considered here, it is obviously important to know the
essential elastomechanical behaviour of the structure.

Helicopters suffer from forced vibrations due to the unsymmetrical flow
conditions. There are attempts to reduce the vibration level or at least the sig-
nificant peaks by means of active or passive isolation, Similar to stability in-
vestigations an adaequate dynamic representation of the whole system must be
established for layout.

In practise, the mathematical model used for vibration problems is limited
to a finite number of degrees of freedom. Although thousands of them can be
handled nowadays in connexion with finite element techniques on large computers,
there is a strong desire to put dynamic problems in a condensed form. Usually a
normal mode approach is chosen for this purpose,

In the early stages of development the analyst must rely on his skill of esta-
blishing an appropriate mathematical model, As soon as the prototype or at least
some essential hardware components become available, an experimental determi-
nation of dynamic characteristics in terms of normal modes and their associated
parameters can be undertaken by a ground vibration test,It is common practise in
the fixed-wing community to use the resuits for uliimate {lutter calculations or at
least to check and improve the {inite element model, Continucus improvements of
the measurement techniques have broadened the scope of ground vibration tests,
For example,dynamic response calculations for spacecraft structures are often
supported by a modal survey test,

2, General Remarks on Ground Vibration Testing

Before proceeding to special problems of rotary wings, some remarks on
modern ground vibration test techniques seem to be opportune, A lot of propo-
gals has been published in recent years, for example refs,.{1}, (2], showing al-
ternatives to the "classical" phase-resonance procedure. Without attempting an
appraisal of various new methods this paper features an improved phase-reso-
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nance approach used by the DFVLR-Institute for Aercelasticity in a series of
tests on airplanes and satellite structures, [3].

2.1 Test Objectives

The mathematical model describing small motions of a linear elastic and
lightly damped structure can be written with a set of n generalized coordinates
q corresponding to normal modes u

(1) Mg+Dqgq+Kgq=Q

A viscous type of damping is assumed for convenience, The generalized forces

are

(2) Q=UTF

where applied forces (and moments) are contained in F, Because of the ortho-
gonality property of normal modes, the generalized mass matrix ™ and the ge-
neralized stiffness matrix K are diagonal and for the elements

(3) K =w2M . r=1,2,...,n
rr r rr

holds. From a physical point of view, there is no indication that the generalized
damping matrix has to be diagenal, too. Faced with uncertainties of damping de-
termination it is usual to agsume a diagonal form facilitating computational work,
A modal damping ccefficient { is defined by
(4) | . Drr—zgrwerr, r=1,2,...,n

The test objectives of a ground vibration test can now clearly be seen, The
mathematical model requires

eigenfrequencies W,

normal mode shapes u, r=1,2,...,n

generalized masses M

r(r)

damping matrix B or

damping coefficients [ .
taking proper support conditions into account. In the case of aircraft, it is ad-
visable to simulate the unconstrained state by means of a soft suspension system.
The set of orthogonal rigid-body modes (zero eigenfrequency and damping) can
be included consistently in eqdl}.
2.2 Test Method

The quantities above can be obtained by application of the phase-resonance
principle:

Having tuned the {requency and the distribution of in- or anti-phase
ginusoidal excitation forces at a2 resonance in such a way that dis-
placements of all points are in quadrature, the siructure vibrates
at an eigenfrequency and the response is the corresponding normal
mode of the undamped system,

It can be imagined that in case of complex structures this condition will not be

met easily., Firstly, all resonances must be identified by sweep tests, for exam-
ple. Then the isolation of a normal mode reqguires an individual adjustment of the
forces which must be set by trial and error while monitoring many response sig-
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nals, The proper excitation can be prevented by inaccessibility of the structure,
Together with frequency clusters and damping coupling this makes it difficult to
get a pure mode, Furthermore, experience has shown, that real structures be-

have sometimes clearly non-linear, This is especially true when controls of an
aircraft are considered, In the future substantial efforts must be undertaken to-
wards proper handling of non-linearities and their effect on test methods based

on linear models,

Generalized masses are determined experimentally by frequency shifting
methods, for example, Small shifts of an eigenf{requency are produced by addi-
ticnal masses or springs and by additional forces in quadrature, Damping values
can be obtained by measuring the input energy. A simple alternate method con-
sists in switching-off the excitation and recording the decay of several points.,
This procedure is limited in practise to well-separated modes,

2.3 Test Procedure

A schematic test set-up with the facilities of the DFVLR-Institute for Aero-
elasticity is shown in Figure 1, A frequency generator provides the reference
signal for power amplifiers, which supply up to 10 electredynamic exciters, IFre-
quency and force distribution can be conirolled individually. The response is
measured by up to 300 accelerometers., Their signals are amplified and separa-
ted into real and imaginary parts, These values are digitized and fed to a process
computer, which performs calculation of generalized masses and output of modal
data., During identification and isolation phases of the test a "Phase-Resonance-
Criterion" »
V§l luv 1 ﬁz(uv)

3 lﬁ,}z

v =1

{5) b =

is computed "on-line" with g complex acceleration signals v ., Itis zero (mi-
nimum), if the phase-resonance condition is exactly (approximately) satisfied.
This single value is independent of amplitude and makes it easy to find an opti-
mum excitation.

3. The Special Case of Rotorcraft

Struciures with rotating parts require more subtle considerations, It is a
well-known procedure to take into account the effect of running rigid propellers
by means of a skew-symmetric gyroscopic matrix,[4}. This results in complex
modes and real eigenfrequencies of the undamped system. But even in the case
of hingeless types, helicopter rotors are far from being rigid and careful atten-
tion has to be given to this fact, Large steady-state tension stresses produced
by rapid spin of the rotor do work with second-order strains resulting in a "geo-~
metric® stiffness meairix, The centrifugal body forces give rise to additional
sti{fness terms, The gyroscopic matrix is extended due to elastic blade motions,

Sometimes it may be essential to retain non-linear inertial terms in the
equations of motion. Nevertheless, the mathematical model adopted in this con-
text is a linear one, simply to permit a modal approach and the principle of su-
perposition,
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3.1 Test Configurations

At a glance it seems attractive to perform the test on the whole craft with
spinning rotor, because all effects mentioned above are included, But there are
important objections against this approach. Intending to get elastomechanical pa-
rameters, the aerodynamic forces acting on the blades will introduce error,
Strictly speaking, such a test has to be carried out in a vacuum chamber and this
is practicable for models only, The "noisy" environment can digturb the measure-
ment considerably and the transmission of signals from a rotating to a stationary
system presents some problems. The phase-resonance method will fail, because
an appropriate excitation of the rotating blades is generally not possible and the
phase criterion becomes meaningless in the presence of complex natural modes,

At least for practical reasons it is worthwile to look for methods based on
tests with the rotor at rest, Then it must be accepted, that effects of spin ave in-
troduced by calculated corrections using test data, A three- or more-bladed ro-
torr possesses - when perfectly constructed - certain symmetry properties. Ad-
vantage can be taken by them testing rotor and airframe geparately. The laticr
can be investigated in a standard manner, Mounting a rigid mass dummy in place
of the rotor will reduce the Irequency range to be explored in this lest,

Recently, C, T, TRAN, W,TWQOMEY, and R.DAT published a method, which
uses the normal modes of a single blade fixed at a wall, {5}, It can be difficult to
realize the boundary conditions existing at the actual rotor hub, Therefore, in the
following the unconstrained rotor is considered on the whole, In [6] the author has
proposed to excite complex modes with phase angles equal to multiples of the angle
between neighboured blades, Thereby all blades will execute the same motion, Ty-
pical mode shapes are shown in Figure 2. In practise, identical blades cannot be
produced and even slight unsymmetries make it difficult to excite complex ¢yclic
modes, For this reason the corresponding "antisymmetric" pairs of normal modes
are chosen and by this way the necessity to deal with complex modes is removed,
too.

3.2 Rotor Equations of Motion

The additional terms introduced by spin require an excursion to the mathema-
tical model of a flexible rotor as illustrated in Figure 3. Four blades are especial-
ly chosen in this context, The Lagrange formalism is used to establish a set of li-
near differential equations

(6) 8‘3;(—--27“)27 $28 82 -a_
9 ar 9y ‘9

with kinetic energy 7, elastic potential energy & , and dissipation function 2
of the unconstrained roteor, The generalized coordinates qR can be partitioned
into

(1) ag = {40 Yo ¥o % 9 0]

describing rigid-body motions and q, representing elastic motions, respectively.
The generalized forces QR can be deduced from virtual work

AT
(8) 62(7~QRG qp

and will be zero when no hub and aerodynamic forces are considered, Performing
integration and summation over atl blades the kinetic energy reads

1 T .
(9) J==3> (R R, dm .
2kf k Tk
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The {ime derivative of the column matrix

+

(10) Rl R ¢ <b e o) ‘*uk K
of inertial coordinates " ' 7{ of a mass element dm on blade k is necded.
R . containes the didplatementa u.,v.,w._  of the rotor cenire ol mass, ¢x,¢ .
Cbz describe rotations of the referance frame, for example J

Y 0
(11) <bx =10 cos e, - sing .

0 sinqox cosqox

The position of the k-th blade is defined by
I - sind
cos t,bk sind, 0

= 3 f
(12) \Dk smqbk cosg)k 0 .
0 0 1
where -
= o+ -T
(13) $, = Qt +Y,
. 27r
o= -1 .
(14) b =T (k - 1)
The coordinates of dm in the blade system, (x . Y., Zk) can be split up into
constant terms {x,y, z) and those depending in imear {u, v, w), or guadratic
(uQ, VQ’ WQ)k manner on the generalized coordinates a . brigéfly writien
= r+ + F .
(15) rk rmc Ok

Performing rather tedious operations the kinetic energy expression with all terms
up to second order will be obtained. The displacements u,v,w can be expressed
by normal modes of the rotor at rest like

- ¢ C a - b . = a
(16) i %: u_q; + Er: (ur cosxbk -u smu!sk) q.

b ol a . el ﬁ k ~ d
+§ (ur <:c>sqbk + u, sm:,bk) q. + («1) E; u,
and by the transformation

o . A
q, _ cosQt sinQt | |q

8

(17) B
q.. -sinQt  cos Ot q.

_ ¢ C a b
(18) uk = ; ur qr +§ (ur cos z!zk - ur smz,bk) q

b a |, B K d D
+ Z (ur cos zpk -+ ur smipk) qP 4+ {~1) u, q,
r r

is obtained, The so-~called "multi-blade coordinates®, (7], are grouped as {ndi-

cated in Figure 2, The mode shapes u? and u? can be found by
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a_2 - + b _ 2 - .
(19) uT % G, . cosd)k and u, - %ukr szn%k

from the shape of the "antisymmetric® normat mode q?:, for example, By use of
eq. {18) the trigonometric terms are removed from 7 when summing up over k.
Elastic potential energy and dissipation function of the rotor at rest can be ex-
pressed by

2
(20) [ C I‘I‘ I‘ +Zw + + Z 0 ri‘)r' II‘) ]

and
2
(21) [ZE,C C C C an Tod a(q +4 +ZCDD ?r ?:1‘

The transformation {17} must be applied to get I and £ , Performing the ope-
rations in eq. (G)

(22) M, & +(G_ +D_)éa

R R *(Kgp + Eplag =Qp

R R R

is obtained, The symmetric B and the antisymmetric E_ matrix are caused
by damping. The structure and coefficients of the various mzﬁrlces are given in
the appendix. The stiffness matrix is split up as follows;
' = + K+
(23} KR KG o KE

By the special choice of rotor modes several orthogonality conditions permit
considerable simplifications., So a diagonal mass matrix is obtained, for example,

Up to this point no special mathematical blade model has been adopted., To
evaluate the matrix coefficients, which are not obtained by test, displacement
functions may be defined in the following manner

X
A A A A 2
= ot o 1 0] "o gt
yv zwl+6['(y!v +z, W k' & 8') dx

u--
(24) V=V .28
W= W+y8
and x 62 g2 o g2
= 12 ) "o w2 .
g z0V' -y8w +6f(y Bw"-z Bv 5 kA 5 ) dx
- .Y g2
(25) VQ u28
.z .2
WQ -"2"9

where a separation of the mode shapes into flapping W and tagging ¥ of the
elastic axis and rofation @ has to be performed, The expressions contain the
same approximations as used in reference [8i, In (3} the underscored terms are
retained. Details of the complete approach above must be left to a forthcoming
report,
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3.3 Modal Synthesis

It remains the task to couple rotor and airframe. Using the results of a
ground vibration test on the unconstrained airframe (rigid-body modes included)
and on the unconstrained isolated rotor, the equations of motion with interaction
forces and moments at the hub read

- , T

MFO o G 00 O© QF KFO o a5 UFHO -

(26) { O &500 qO+OGOOGOe a, +10 QO 9,5 |5{0 1T FFI‘
.
O Ugy i

0o oM llg|loa G |la|lo oK ila

e el ee e

Damping and the other generalized forces are not included for brevity, From
compatibility conditions

2D YUr 9 = 9" Yeur %

a transformation.
9 1 o a

(28) % {Yeg " Yen a ] Te
q. o 1

is found, which reduces the size of the problem by six. Restoring symmetry,.
the equations of motion of the coupled sysiem read

(29) Mp+Gp+ Kp =0

There is a true zero column on the right side because of the equilibrium condi-
tion

(50) Fog* Foo=0

Eq..(29) may be subject to an eigenvalue/eigenvector analysis,

4, Application to a Simple Model

To illustrate the theoretical considerations about an unconstrained isolated
rotor, a ground vibration test has been carried out on a simple model, In order
to get some indication about measuring accuracy the test object was chosen in
such a way to permit an exact analytical solution., The model consists of two ho-
mogeneous brass rods with rectangular cross section. They are clamped together
at a massive hub forming a four-bladed "rotor" of 2m diameter.

4.1 Test Set-up

The test arrangement is shown in Figure 4. The rotor has been suspended
softly by rubber cords, By this way the rigid-body {requencies are placed below
2 cps , The details of the hub are shown in Yigure 5. The test object was equipped
with 48 pick-ups to measure in flap and lag directicons, For excitation special
non-contact electrodynamic exciters were used as shown in Figure 6, Elastic
torsiconal deformations have not been taken into account, because the torsion ei-
genfrequency had been expected at 235 ¢ps . This is considerably above the range
to be investigated., The test was performed in not very elaborate manner, Gene-
ralized masses were determined by the additional mmass procedure, Damping co-
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efficients were obtained by the in-put energy method and {or the lower modes by
decay records, too,

4,2 Test Resgults

In Figure 7 the second antisymmetric flap bending of blade 2 and 4 is shown
as an example for a mode obtained by test, Agreement with the analytical solution
is good. Examining the complete test results the measurement of mode shapes
shows a random error of 3 percent, The eigenfrequencics, generalized masses,
and damping coefficients of all measured modes are listed in Table 1, Correlation
with analytical results is generally good for eigenfrequencies but sometimes poor
for generalized masses, The differences in antisymmetric modes can be aliributed
partly to the hub construction (the blades are not exactly arranged in a plane), which
permits coupling between flap and lag motions, The blade oifset was not considered
in the analysis,

The determination of gecometric stiffness terms requires products of deriva-
tives of measured modes, This seems to be a critical point, Table 2 shows eigen-
‘frequencies of differential modes, when the rotor is spinning at multiples of the
first nonrotating flap bending frequency, The analytical values are based on an
expansion using 6 nonrotating exact normal modes in {lapping and lagging, re-
spectively, The test values are obtained by using the measured modal parameters,
of course, and by calculating geometric stiffness with aid of interpolating spline
functions, Cood correlation can be observed and this holds also for the mode
shapes not listed here, By the use of three flap and two lag modes the truncation
error in the normal mode approach is less than measuring accuracy.

Se Conclusioni

Ground vibration tests on rotorcraft can be used to determine the elastome-
chanical parameters necessary for aercelastic and dynamic analyses, After some
general remarks the specific problems associated with rotor spin are discussed,
Practically, full-scale tests are feasible on non-rotating components only. A me-
thod is presented, which uses the normal modes of the airframe together with
those of the whole unconstrained rotor at rest., Compared with single blade testing
this approach results in a reduction of coupling terms in the linear rotor equations
of motion and has the advantage of better representation of blade root conditions
by use of the actual hub. The effects of rotor spin are introduced by correction
terms, which can be calculated with test data, Multiblade coordinates yield ma-~
trices with constant coefficients, Rotor and airframe are coupled by a modal syn-
thesis,

A test on a simple four-bladed model generally shows good correlation with
analytical results, The experimentatl determination of generalized masses involves
larger errors and must be subject of further improveinent,

The model test of the non-rotating isolated rotor described in this paper must
be considered as a first step to an experimental substantiation of the whole approach,
Further tests should deal with truncation errors introduced by modal synthesis, for
‘example, A test on an idealized model with rotating rotor is intended using ground
vibration test techniques with non-appropriate excitation, The results will be com-
pared with those obtained Ly the proposed method,
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Fig. 1. Schematic Ground Vibration Test Set-Up
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Fig. 3: Typical Unconstrained Rotor Modes
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Fig.6: Acceleration pick-ups and noncontact exciter
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calculated eigenfrequency 74.064 cps

measured eigenfrequency 72.89 ¢ps

. Blade
{0 1
o 2
& 3
+ 4
E x [m]
2
- analytical solution
Q
*
N
Fig. 7: Example of a rotor mode
Type: collective Lantisymmetr. (2. antisymmetr. |differential
T test M & fr | M &l b M S | IM &
A analysis Vepglkgem® % | cps |kgend| %% | cps (kgen?| % | cps |kgem’| %
1 T. 18,473,994 |1.03 (23,7 |2.22 0,35 {23.5 |2.03 ]0.,4816.,20 {3.18 |, 38
*A |8,4113,98 {.~ 323,8|1,79 |-~ ]23.8 {1.79 |-~ 16.18 [3.28 {--
fla 2 T 143.7]4.,02 10,35 }73.8 {2,192 |0,79}72.9 {2.,07 [0.71 37,9 3,68 (0,44
P *A }145,1(3,82 |-~ 74,6 {1,897 | -- 74,6 |1,97 j~- 38,7 13.28 |-~
3 T {114.|3.,55 0,76 151, 13.056 [0,52 1148, {3.16 |0.,597106, {4,155 {0.42
* A |116,]3.57 [~- 146, [2.40 ¢t ~- 146, (2,40 | -~ 108, 13,28 |-~
1 T |94,9{3.62 {0,47]26,8 1,65 {0.,72126,9 (1.80 [0,70823,5 {3.24 |0,84
A 95,813,554 |-~ 28,2 {1.99 } -~ 28,2 11,89 | -- 24,7 13,28 |--
lag o T == |-- [-- |186.]2.96 Jo.69]155, ]3.04 | 0.79]147, |2.85 |0.65
A - - - 163, {1.85 | -~ 163, |1,85 | ~~ 155, 13,28 |--
Table 1: Model test results in comparison with theoretical analysis
T test 1. flap 2. flap 3. flap 1. lag 2. lag |
A analysis | T A T A T A T A 1T A
O, . 20006,18 37,9 [38,7 j106, [108,]23.5 [24.% 1147, {150,
6,18 (9.26 [0.81 41,0 {42,0 [109, 1112, (23,7 (24,9 {148, {156,
/2r(12.4 14,9 |15.1 [49.,3 50,7 } 118, |121,}24,3 [25.6 [152, |158,
[cps][18.,5 [21.,0 (21,4 [60.7 {62.4 131, {135, 25,1 [26.6 157, {161,
24,7 (27,2 127,77 {73.8 |75,7 147, |153,[26.,3 27,9 {164, |LGG.
30,9 [33.5 (34,2 187.8 |89,9 (166, )172,{27,6 [29.4 [173, |172,

Table 2: Eigenfrequencies of differential inodes of the spinning rotor
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Appendix

Matrices of the Unconstrained Rotor Equations of Motion

The column of generalized coordinates can be written
T , T T T.T
- c” A" B D
(AL} qg = {"‘0 Vo Vo % % 2 4 q9 q ]

The mass matrix is diagonal

M -=r C
(A2) R MMMI LI, MM

with elements

2 2 2
(A3) Mc =Nf<uc + v +wc>dm; MC =0 (r4s),
r r r rs

A
MBMJ

rr

(A4) MA - 1\ B M Mﬁ =N (u +u v v +wa +Wb )dm; M =M
r r r r r
2

rr " rr 2 rs
dz D {r + 8)
(AS) "hf( +V +w )dm; M~ =0 (r+s8).
r rs
The upper tr1angle of the skew-symimetric gyroscopic matrix reads
o -
0
0 ;
A
0 IZ- GX GXB
‘ YA ¥YB
(A8) G_=0 0 ch G
0 G
o
AB
GA G
skew~symmetric GB
A G"]

with elements
XA _ | YB a b
(A7) GLoe+G -Nf(xwr+ywr) dm

XB N b a
(A8) G -—-G -~Nﬂxwr-y“fr)dm
(A9) G Nf(xu°+yv°) dm
(A10) G —-ZNf u v -V u‘“‘) dm
A . . a a b a a b b
(All) G = rs-—l\f[(ur v8+ur Vet VUt VL us) dm
{Al12} GAB= 2 MA + Nf(ub va - uavb - \.rbua +vaub)dm
rs rs r s r s r s r s

(a13) GP = -2Nf(ud N ud) dm
rs I B r 5
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The damping matrix is assumed diagonal

a1y D = To 0 0 0 0o p° p* pP pY
with elements
(A1) pC =205 MC©
rs r *r '8 :
(A18) phpf La A cA M
rs rs r °r rs
(ALT) DD—Z D CD MD
rs r °r rs .
The stiffness matrices are all syminetrie. The centrifugal terms are included in
0
¢
0
5 0
= . . 0
(A18) Kc Q KS
A AB
Ke Ke
. B
symanetric Kc D
N Ke.d
with elements
(a20) k© = mC - f Cw dm ,
Crs rs
{A21) KA = g5 = - —-f a +w wb)-2(vaub+vaub-uavb-uavb)] dm
Crs Crs rs VeV s Er rs$ s8r rs
(a22) kDB Bl L [(waw w wa)—Z(uava-v u?ou vb+vbub)} dm,
Crs rs” 2 s r 8§ rs r sr
(a23) K2 = wm° -wadwd dm .
Crs rs r s
The geometric stiffness reads
-0 -
0
0
0
2 0
(A24) KG:-Q . 0 <
G KA KAB
G G
KB
symmetric G
D
with elements
C . . [ .cc ce ce ]
529 Ky [+ (55 0400 o 0 o3
(A26) K = r 1;'/' +ub +u +ubb)+y{ aa vbbw a+vbb)] drm
Grs s e rs sr
AB _Nff . ab ba ba _ab ab ba
(A27) I{Gr-s* Zf[h(urs_urs"‘usr' usr)+y(vrs-vrs+vsr ]
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D dd | dd dd . dd
a N + +y
(A28) K. . hf[x(urs u ) }(vrs+vsr)]dm

The uab , for example, is a second order displacement which can be computed
using equatmn (25) by inserting the values of a (r,a)-mode and a (s, b)-mode as
factors,

The elastic stiffness matrix is diagonal

(h29) K = féooooong Kﬁ Kg KEJ

with elements

2
C C C
{A30) KErS =W Mrs R
2
A _.B _ A A
(A31) KErs ) KErs S YL Mrs '
D2 D

H

D
(A32) K'Ers W Mrs .

The transformation (17) yield a skew~symmetric matrix

0
0
0 .
0
- 0
Ep = 0 0
(o]
skew-symmetric 0
e o—
with
(A34) EAB = 2DA
rs rs

which depends on damping,

Finally, the generalized forces read
T T T T
{A35) QR a [FX FY Fz MX MY MZ Q Q Q o]

with elements

C c

. 2 c
(A36) Q[ =T, w {+M o rH+NGf(xur+yvr) dm
A a a
(A37) Qr 2 (F u + FYVr H * MX (‘Der * MYq“'yrH)
B,/ b b b
(A38) Q=2 (Fyu  +F, v +Myo) o+ My myrH)
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