
Paper No. 12 

GROUND VIBRATION TEST 

A TOOL FOR ROTORCHAFT DYNAMIC AND AEROELASTIC INVESTIGATIONS 

by 

F. Kieflting 

DFVLR- Institute for Aeroetasticity 

Gottingen, Germany 

12.1 





Notation 

1. Introduction 

2. General Remarks on Grund Vibration Testing 

2.1 Test Objectives 

2. 2 Test l'v1ethod 

2. 3 Test Procedure 

3, The Special Case of Rotorcraft 

3. 1 Test Configurations 

3. 2 Hotor Equations of Motion 

3. 3 Modal Synthesis 

4. Application to a Simple Model 

4. 1 Test Set-up 

4. 2 Test Results 

5, Conclusions 

6. References 

Pictures 

Tables 

Appendix 

12,2 



Notation 

Coordinate Systems n circular frequency of rotor 
revolution X,Y,Z 

x,y, z 

Scalars 

D rr 

FX, Fy• F z 

IX' Iy• Iz 

K 
rr 

M 

MX,MY, MZ 

Mr(r) 

N 

m 

n 

q 

t 

u,v,w 

{j 

' {t 

e 
r.p 

tb 

w 
r 

A 

inertia\ coordinates 

blade coot'dinates 

dissipation function 

generalized dnmping 

hub forces 

rotor moments of . 
inertia 

generalized stiffness 

rotor mass 

hub moments 

generalized mass 

number of blades 

kinetic energy 

elastic potentia\ energy 

work 

frequency 

radius of gyration of 
tension carrying cross­
section around elastic 
axis 

mass 

number of degrees of 
freedom 

generalized coordinate 

time 

displacements 

variation 

damping coefficient 

pitch angle 

torsion angle 

rotation angle 

azimuth angle 

Matrices 

D damping matrix 

E skew-symmetric matrix due 
to dnmping 

F applied forces 

G gyroscopic mntrix 

K stiffness matrix 

M mass matdx 

Q generalized forces 

R inertia\ coordinates 

T transformation matrix 

U modal matrix 

<P rotation matrix 

\jl rotor rotation matrix 

P, q generalized coordinates 

r blade coordinates 

u modal column 
r 

Superscripts 

A,B 

c 
D 

T 

a, b 

c 

d 

0!,{3 

Subscrip~ 

A 

c 
E 

F 

cyclic coordinates 

co\\ective coordinate 

differentia\ coordinate 

transposed 

cyclic mode shapes 

co\\ective mode shape 

differential mode shape 

cyclic (rotor-fixed) coordinates 

tension axis 

centrifugal 

e \as tic 

airframe 

circular eigenfrequency G 

phase resonance criterion H 

geometric 

hub 
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L tinear 

Q quadratic 

R rotor 

e elastic 

k blade index 

r,s mode indices 

0 rigid -body 

Symbols 

rotor-fixed system 

1. Introduction 

II 
Jl£., Jm 

II 

modulus 

rea\., imaginary part 

derivative with respect to x 

derivative with respect tot 

elastic axis 

diagonal matrix 

The development of advanced VTOL-configurations like titt-rotor or stop­
rotor aircraft poses severe dynamic and aeroelastic problems. To avoid tt·oub­
\es with ground- or air-resonance or with whirl flutter, for example, pcoper 
calculations must be carried out as soon as possible. Besides the formidable 
task to determine reasonable unsteady airloads induced by deformations of a ro­
torcraft, which is not considered here, it is obviously important to know the 
essential e\astomechanica\ behaviour of the structure. 

Helicopters suffer from forced vibrations due to the unsymmetrical flow 
conditions. There are attempts to reduce the vibration \eve\ or at least the sig­
nificant peaks by means of active or passive isolation. Similar to stability in­
vestigations an adaequate dynamic representation of the whole system must be 
estab \ished for layout. 

In practise, the mathematical model used for vibration problems is limited 
to a finite number of degrees of freedom. Although thousands of them can be 
handled nowadays in connexion with finite element techniques on large computers, 
there is a strong desire to put dynamic problems in a condensed form. Usually a 
normal mode approach is chosen for this purpose, 

In the early stages of development the analyst must rely on his skill of esta­
btishing an appropriate mathematical model. As soon as the prototype or at least 
some essential hardware components become available, an experimental detecmi­
nation of dynamic characteristics in terms of normal modes and their associated 
parameters can be undertaken by a ground vibration test, It is common practise in 
the fixed-wing community to use the results for ultimate flutter calculations or at 
\east to check and improve the finite element model. Continuous improvements of 
the measurement techniques have broadened the scope of ground vibration tests. 
For exam pte, dynamic response calculations for spacecraft structures are often 
supported by a modal survey test. 

2, General Remarks on Ground Vibration Testing 

Before proceeding to special problems of rotary wings, some remarks on 
modern gt'ound vibration test techniques seem to be opportune. A tot of propo­
sals bas been published in recent years, for example refs.11 ), 12 ), showing al­
ternatives to the "c tassicat" phase -resonance procedure. \Vi thout attempting an 
appraisal of various new methods this paper features an improved phase-reso-
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nance approach used by the DFVLH-Institute for Aeroelasticity in a series of 
tests on airplanes and satellite structures, [3]. 

2. 1 Test Objectives 

The mathematical model describing small motions of a linear elastic and 
lightly damped structure can be written with a set of n generalized coordinates 
q corresponding to normal modes u 

( 1 ) Mq+ Dq+Kq = Q 

A viscous type of damping is assumed for convenience. The generalized forces 
are 

(2) 

where applied forces (and moments) are contained in F. Because of the ortho­
gonality property of normal modes, the generalized mass matrix M and the ge­
neralized stiffness matrix K are diagonal and for the elements 

(3) K =riM r=1,2,. • .,n 
rr r rr 

holds. From a physical point of view, there is no indication that the generalized 
damping matl'ix has to be diagonal, too. Faced with uncertainties of damping de­
termination it is usual.to assume a diagonal form facilitating computational work. 
A modal damping coefficient ( is defined by 

( 4) D =2( w M , r = 1,2, ... ,n 
rr r r rr 

The test objectives of a ground vibration test can now clearly be seen. The 
mathematical model requires 

eigenfrequencies w 
r 

normal mode shapes ur r = 1, 2, ••• , n 

generalized masses Mr(r) 

damping matrix D or 

damping coefficients ( 
r 

taking proper support conditions into account. In the case of aircraft, it is ad­
visable to simulate the unconstrained state by means of a soft suspension system. 
The set of orthogonal rigid-body modes (zero eigenfrequency and damping) can 
be included consistently in eq.( 1 ). 

2. 2 Test Method 

The quantities above can be obtained by application of the phase-resonance 
principle: 

Having tuned the frequency and the distribution of in- or anti -phase 
sinusoidal excitation forces at a resonance in such a way that dis­
placements of all points are in quadrature, the structure vibrates 
at an eigenfrequency and the response is the corresponding normal 
mode of the undamped system. 

It can be imagined that in case of camp lex structures this condition will not be 
met easily. Firstly, all resonances must be identified by sweep tests, for exam­
pte. Then the isolation of a normal mode requires an individual adjustment of the 
forces which must be set by trial and error white monitoring many response sig-
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na\s, The proper excitation can be prevented by inaccessibility of the structure, 
Togetherwith frequency clusters and damping coupling this makes it difficult to 
get a pure mode, Furthermore, experience has shown, that rea\ structures be­
have sometimes ctear\y non-linear, This is especially true when controls of an 
aircraft are considered, In the future substantia\ efforts must be undertaken to­
wards proper handling of non-linearities and their effect on test methods based 
on linear models, 

Generalized masses are determined experimentally by frequency shifting 
methods, for example, Sma\\ shifts of an eigenfrequency are produced by addi­
tional masses or springs and by additional forces ln quadrature, Damping values 
can be obtained by measuring the input energy. A simple alternate method con­
sists in switching-off the excitation and recording the decay of several points. 
This procedure is limited in practise to we\\-separated modes. 

2, 3 Test Procedure 

A schematic test set-up with the facilities of the DF'VLR-Institute for Aero­
elasticity is shown in Figure 1, A frequency generator provides the reference 
signa\ for power amplifiers, which supp!.y up to 10 electrodynamic exciters, Fre­
quency and force distdbution can be controlled individua\\y, The response is 
measured by up to 300 acce\erometcrs. Their signals are amplified and separa­
ted into rea\ and imaginary parts, These values are digitized and fed to a process 
computer, which performs c<J.tcu\ation of generalized masses and output of modal 
data, During identification and isolation phases of the test a "Phase-Hesonance­
Criterion" 

(5) 

ju j·JI.e(u.) 
II II 

Jl 
l: 

11=1 
!:>. =------

Jl 
l: 

II = l 

is computed "on-line" with Jl complex acceleration signals 11 , It is zero (mi-
nimum), if the phase-resonance condition is exactly (approximately) satisfied, 
This single value is independent of amplitude and makes it easy to find an opti­
mum excitation. 

3. The Special Case of Rotorcraft 

Structures with rotating parts require more subtle considerations, It is a 
well-known procedure to take into account the effect of running rigid propellers 
by means of a skew-symmetric gyroscopic matrix,[4]. This results in complex 
modes and rea\ eigenfrequencies of the undamped system. But even in the case 
of hinge\ess types, helicopter rotors are far from being rigid and careful atten­
tion has to be given to this fact. Large steady-state tension stresses produced 
by rapid spin of the rotor do work with second-order strains resulting in a "geo­
metric" stiffness matrix, The centrifugal body forces give rise to additional 
stiffness terms, The gyroscopic matrix is extended due to elastic blade motions. 

Sometimes it may be essential to retain non- linear inertia\ terms in the 
equations of motion. Nevertheless, the mathematical mode\ adopted in this con­
text is a linear one, simply to permit a modal approach and the principle of su­
perposition, 
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3, 1 Test Configurations 

At a glance it seems attractive to perform the test on the whole craft with 
spinning rotor, because a\\ effects mentioned above are included, But there are 
important objections against this approach. Intending to get etastomechanica\ pa­
rameters, the aerodynamic forces acting on the blades witt introduce error, 
Strictly opeaking, such a test has to be carried out in a vacuum chamber and this 
is practicable for models only. The "noisy" enviromnent can disturb tile measure­
ment considerably and tile transmission of signals from a rotating to a stationary 
system presents some problems. The phase-resonance method witt fait, because 
an appropriate excitation of the rotating blades is generatty not possible and the 
phase criterion becomes meaningless in the presence of complex natura\ modc:s. 

At \east for practical reasons it is worthwite to took for methods based on 
tests with the rotor at rest, Then it must be accepted, that effects of spin at·e in­
troduced by calculated corrections using test data, A three- or more-bladed ro­
toc possesses - when perfectly constructed - certain symmetry properties. Ad­
vantage can be taken by them testing rotor and airframe separately, The tatter 
can be investigated in a standard manner, Mounting a rigid mass dummy in place 
of the rotor wii.l reduce the frequency range to be explored in this test. 

Recently, C, T. TRAN, \V, TW0:\1EY, and R. DAT published a method, which 
uses the normal modes of a single blade fixed at a watt, [5 ), It can be difficult to 
rea\i;:e the boundary conditions existing at the actual rotor hub, Therefore, in the 
fo\\owing the unconstrained rotor is considered on the whole, In [ 6] the author has 
proposed to excite comptex modes with phase angles equal to multiples of the angle 
between neighboured blades. Thereby att blades witt execute the same motion, Ty­
pical mode shapes are shown in Figure 2. In practise, identical blades cannot be 
produced and even slight unsymmetries make it difficult to excite complex cyclic 
modes, For this reason the corresponding "antisymmetric" pairs of normal modes 
are chosen and by this way the necessity to deal with complex modes is removed, 
too. 

3. 2 Rotor Equations of Motion 

The additional terms introduced by spin require an excursion to the mathema­
tical mode\ of a flexible rotor as i\\ustrated in Figure 3, Four blades are especial­
ly chosen in this context, The Lagrange formalism is used to establish a set of li­
near differentia\ equations 

( 6) ~(ar)_ar +au +~=Q 
dt DqR ilqR iJqR oqR R 

with kinetic energy T , elastic potential energy U , and dissipation function l! 
of the unconstrained rotor. The generalized coordinates qR can be partitioned 
into 

( 7) 

describing rigid-body motions and qe representing elastic motions, respectively. 
The generalized forces QR can be deduced from virtual work 

T 
(S) oi'J=QnoqR 

and witt be zero when no hub and aerodynamic forces are considered, Performing 
integration and summation over at\ blades the kinetic energy reads 

,.. 1 "'f · T · (9) J = 2 t Rk Rk dm • 
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The time derivative of the column matrix 

( 1 0) 

of inertia\ coordinates JS• Yk, z
1 

of a mass element dm on blade k is needed. 
R0 contai.nes the displace\nerits \.t

0
, v 

0
, w 

0 
of the rotor centre of mass. cl>x' <:> , 

<l> descnbe rotatwns ol the reference frame, for example Y 
z 

(11) 

0 

cos cp 
X 

slncp 
X 

- :intpx] 
coscp 

X 

The position of the k-th blade is defined by 

[

cos 1/Jk 

\Ilk = ~inl/>k 

- sinl/> k 

cos\& k 

0 

(12) 

where 

( 13) 1/l =nt+IF k k 

(14) 
- 2 7T 
1/>k = N (k - 1) 

The coordinates of dm in the blade system, (x
1 

, yk, zk)' can be split up into 
constant terms (x, y, z) and those depending in linear (u, v, w)

1 
or quadratic 

(uQ, vQ, wQ)k manner on the generalized coordinates qe, bri~f\y written 

(15) rk=r+rLk+rQk 

Performing rather tedious operations the kinetic energy expression with a\\ terms 
up to second order wit\ be obtained •. The displacements u, v, w can be expressed 
by norma\ modes of the rotor at rest \ike 

(1 6) - "'cC "'a- b- a uk = '-' u q + '-' (u cos 1/>k - u sin 1/lk) q r r r r r r r 

and by the transformation 

[

q Ct] [ cos (1 t 
(1 7) r = 

q~ -sin 0 t 

. " ] [A] Sln ut q 

cos ()t q~ 
(18) 

a b . A 
(u cos~~. - u sml/>k) q r K r r 

is obtained, The so-catted "mu\ti-b\ade coordinates", [7], are grouped as indi­
cated in Figure 2. The mode shapes u~ and u~ can be found by 
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( 19) a 2 "_ -u = - L., u. cosi/J 
r Nk lU k 

and 

from the shape of the "antisymmetric" normal mode q~, for example. By use of 
eq, (18) the trigonometric tet·ms are removed from T when summing up over k. 
Elastic potential energy and dissipation function of the rotor at rest can be ex­
pressed by 

(2 0) 1 [ C
2 

C C
2 2 2 

{3
2 

D D D
2 J U=-

2 
"w M q +"w"' M"' (q"' +q )+"w M q 
.l....J r rr r W r rr r r L...J r rr r 

r r r 
and 

(21) 

The transformation (l 7) must be applied to get U and/) , Performing the ope­
rations in eq, (G) 

(2 2) 

is obtained, The symmetric DR and the anti symmetric E R matrix are caused 
by damping. The structure and coefficients of the various matrices are given in 
the appendix. The stiffness matrix is split up as follows: 

(23) 

By the special choice of rotor modes several orthogonality conditions permit 
considerable simplifications. So a diagonal mass matrix is obtained, for example, 

Up to this point no special mathematical blade model has been adopted, To 
evaluate the matrix coefficients, which are not obtained by test, displacement 
functions may be defined in the following manner 

X 

U = ~yv' - Z~ 1 + f (y V11 + Z ~~~ - kA
2 

{) 1 8') dx 
0 

A A 

(24) v = v - ze 

w = ~ + ye 
and 

X 

u =zev•-yew'+f(y e,v"-z ev" 
Q O A A 

(25) v = - l e2 
Q 2 

w = - ~ e2 
Q 2 

where a separation of the mode shapes into flapping ~ and lagging 0 of the 
elastic axis and t'otation e has to be performed, The expressions contain the 
same approximations as used in reference [ 8 ), In (5) the underscored terms are 
retained. Details of the comp tete approach above must be left to a forthcoming 
report, 
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3, 3 Modal Synthesis 

It remains the task to couple rotor and airframe. Using the results of a 
gt·ound vibration test on t11e unconstrained airframe (rigid-body modes included) 
and on the unconstrained isolated rotor, the equations of motion with interaction 
forces and moments at the hub read 

O ][qFl [U~H O l ~F l 0 q = 0 1 Fl-
O T F 

Ke qe 0 UeH IU 

Damping and the other generalized forces are not included for brevity. From 
compatibility conditions 

(2 7) 

a transformation. 

(2 8) 

is found, which reduces the size of the problem by six. Restoring symmetry,. 
the equations of motion of the coupled system read 

(2 9) Mp+Gp+Kp=O 

There is a true zero column on the right side because of the equilibrium condi­
tion 

(30) FH+ F =0 F RH 

Eq •. (29) may be subject to an eigenvalue/eigenvector analysis. 

4. Application to a Simple Model 

To illustrate the theoretical considerations about an unconstrained isolated 
rotor, a ground vibration test has been carried out on a simple model. In order 
to get some indication about measuring accuracy the test object was chosen in 
such a way to permit an exact analytical solution. The model consists of two ho­
mogeneous brass rods with rectangular cross section. They are clamped together 
at a massive hub forming a four-bladed "rotor" of 2m diameter. 

4,1 Test Set-up 

The test arrangement is shown in Figure 4. The rotor has been suspended 
softly by rubber cords, By this way the rigid-body ft·equencies are placed below 
2 cps • The details of the hub are shown in Figure 5. The test object was equipped 
with 48 pick-ups to measure in flap and lag directions. For excitation special 
non-contact electrodynamic exciters were used as shown in Figure 6, Elastic 
torsional deformations have not been taken into account, because the torsion ei­
genfrequency had been expected at 235 cps • This is considerably above the range 
to be investigated. The test was performed in not very elaborate manner, Gene­
ralized masses were determined by the additional mass procedure. Damping co-
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efficients were obtained by the in-put energy method and for the tower modes by 
decay records, too, 

4. 2 Test Results 

In Figure 7 the second antisymmetric flap bending of blade 2 and 4 is shown 
as an example for a mode obtained by test. Agreement with the analytical solution 
is good. Examining the complete test results the measurement of mode shapes 
shows a random error of 3 percent, The eigenfrequencics, generalized masses, 
and damping coefficients of all measured modes are listed in Table 1. Conelation 
with analytical results is generally good for eigenfrequcncies but sometimes poor 
for generalized masses. The differences in antisymmetric modes can be attributed 
partly to the hub construction (the blades a.re not exactly arranged in a plane), which 
permits coupling between flap ami lag motions, The blade offset was not considet'ed 
in the analysis, 

The determination of geometric stiffness terms requires products of deriva­
tives. of measured modes. This seems to be a critical point. Table 2 shows eigen­

. frequencies of differential modes, when the rotor is spinning at multiples of :he 
first nonrotating flap bending frequency. The analytical values are based on an 
expansion using 6 nonrotating exact normal modes in flapping and lagging, t'e­
spectively. The test values are obtained by using the measured modal parameters, 
of course, and by calculating geometric stiffness with aid of interpolating spline 
functions, Good correlation can be observed and this holds also for the mode 
shapes not listed here. By the use of three flap and two lag modes the truncation 
error in the normal mode approach is less than measuring accuracy. 

5. Conclusions 

Ground vibration tests on rotorcraft can be used to determine the elastome­
chanical parameters necessary for aeroetastic and dynamic analyses. After some 
general remarks the specific problems associated with rotor spin are discussed. 
Practicatly, futl-scale tests are feasible on non-rotating components only. A me­
thod is presented, which uses the normal modes of the airframe together with 
those of the whole unconstrained rotor at rest. Compared with single blade testing 
this approach results in a reduction of coupling terms in the linear rotor equations 
of motion and has the advantage of better representation of blade root conditions 
by use of the actual hub. The effects of rotor spin are introduced by correction 
terms, which can be calculated with test data. Multiblade coordinates yield ma­
trices with constant coefficients. Rotor and airframe are coupled by a modal syn­
thesis. 

A test on a simple four-bladed model generatly shows good correlation with 
analytical results. The experimental determination of generalized masses involves 
larger· errors and must be subject of further improvement. 

The model test of the non-rotating isolated rotor described in this paper must 
be considered as a first step to an experimental substantiation of the whole approach. 
Further tests should deal with truncation errors introduced by modal synthesis, for 

example. A test on an idealized model with rotating rotor is intended using ground 
vibration test techniques with non-appropriate excitation, The results will be com­
pared with those obtained uy the proposed method, 
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Fig. 4: Hotor rnodet ground vibration test set-up 
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Fig. 6: Acceleration pick-ups and noncontact exciter 

12. 14 



Cl 

<D 

Cl 

N 

Cl 

s 
.::. 0 
i!: ~ 

0 
I 

<D 

Cl 
I 

0 

calculated eigenfrequency 74.64 cps 

measured eigenfrequency 72.89 cps 

0.6 

+ 

ana lytic a l solution 

Fig. 7: Example of a rotor mode 

Blade 

(!] I 
(!) 2 
<!> 3 
+ 4 

(!] 
x (m) 

1¢0 

Tvoe: colle-ctive 1. antisymmetr. 2. antisymmetr. differential 

T test fr Mr r;r fr Mr t;r fr Mr ~r fr Mr 
A analysis cps kgcm .,. cps kgcmz .,. cps kgcm2 % cps kg em• 

1, 
T. 8,47 3,94 l. 03 23.7 2.22 0,35 23,5 2,03 0,48 6.20 3.18 
A 8,41 3.98 . - 23,8 1, 79 -- 23,8 1, 79 -- 6.18 3.28 

flap 2. 
T 43,7 4.02 0,35 73.8 2,19 o. 79 72.9 2.07 o. 71 37,9 3,68 
A 45.1 3,82 -- 74.6 1,9 7 -- 74.6 1,97 -- 3 8. 7 3.2 8 

3. 
T 114. 3,55 o. 76 151, 3,05 0,5?. 148, 3,1 6 0,59 1 () 6. 4.15 
A 11 6. 3.5 7 -- 14 6. 2.40 -- 14 6, 2.40 -- 1 08. 3.28 
T 94,9 3,62 o. 47 2 6.8 1,65 0,72 2 6.9 1,80 0,70 2 3.5 3.24 

1. 
A 95,8 3,54 -- 28.2 1,99 -- 28.2 1,99 -- 24.7 3,28 

lag 
T -- -- -- 15 6, 2,96 0,69 155, 3,04 o. 79 14 7. 2.86 

2, 
A -- -- -- 1 63. 1.85 -- 163. 1,85 -- 155. 3.2 8 

Table 1: Model test results in comparison with theoretical analysis 

T test 1. flap 2. flap 3. flap 1. tag 2. log 
A analysis T A T A T A T A T A 

o. ll. ~ 0 1 b,l H 37,9 38,7 106, l 08, 23,5 24.7 14 7. 155, 
6,18 9.2 6 0,31 41,0 42,0 109, 112. 23.7 24.9 148. 156· 

fl/27f 12.4 14,9 15,1 49.3 50,7 118. 121, 24.3 25,6 152, 158, 

[cps] 18,5 21,0 21,4 60,7 G2,4 131, 135. 25.1 2 6,6 15 7. 161, 

24.7 2 7,2 2 7. 7 73.8 75,7 147. 153, 2 6,3 2 7,9 164. 1 66, 
30,9 33.5 :14,2 87,8 89,9 166, 172. 2 7,6 2 9.4 173, 1 72. 

Table 2: Eigenfrequencies of differential modes of the spinning rotor 
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Appendix 

!vTatrices of the Unconstrained Rotor Equations of l\Iotion 

The column of generalized coordinates can be written 

(Al) 
CT AT BT 0 TjT 

qR=[uovowo<Px<Py<Pzq q q q 

The mass matrix is diagonal 

(A2) M = rM M M I L I MC MA MB MDJ 
R X X" Z 

with elements 

(A3) 

(A4) ,MA=MB=O 

(A5) 
D 

M = 0 
rs (r * s) • 

The upper triangle of the skew-symmetric gyroscopic matrix reads 

0 

0 

0 

0 

0 

skew-symmetric 

with elements 

(A7) a;A=+G~B = -Nj(xw~ +yw~) dm 

XB YA 1( b a (AS) G =-G = -N xw -yw ) dm 
r r r r 

(A9) a;c = 2N j( xu~+ yv~) dm 

(AlO) GC =- 2Ni(uc vc - vc uc) dm 
rs r s r s 

GXAGXB 

GYA GYB 

Gzc 
Gc 

(All) G = G = - N u v + u v - v u - v u dm A B 1C a a b b a a b b) 
rs rs r B r s r s r s 

AB A 1( b a a b b a a b) (A12) G = 2M + N u v - u v - v u + v u dm rs rs r a r s r s r s 

12. 16 

rs rs 
(r * s) 



The damping matrix is assumed diagonal 

(Al4) DH = ro 0 0 0 0 0 DC DA DB DDJ 

with elements 

(Al5) De= zwc (c Me 
rs r r rs 

(Al6) DA=DB =2wACAMA 
rs rs r r rs 

(A17) DD = 2wD CD MD 
rs r r rs 

The stiffness matrices are att symmetric. 111e centrifugal terms are included in 

2 
(AlU) KC = -0 · 

with elements 

0 
0 

0 

symmetric 

0 
0 

c c J c c (A20) K = M - N w w dm , 
Crs rs r s 

0 

KAB 
c 

KB 
c 

(A21) A B A Nj [ a a b b a b a b a b a b ] KC = KC = 2M - -2 (w w +w w )- 2(v u +v u - u v - u v ) dm rs rs rs r s r s s r r s s r r s 

(A22) AB B l\ J [ a b b a a a a a b b b b J KC = 2fll - -
2 

(w w -w w )- 2(u v -v u -u v +v u ) dm, 
rs rs r s r s r s r s s r s r . 

(A23) 

The geometric stiffness reads 

0 
0 

0 
0 

0 
0 

symmetric 

with elements 

(A25) KGCrs = Nr fx (uec +uee)+y(vee +vee)] dm 'J .. rs sr rs sr 
A TB Ny· [ Ra bb aa bb aa bb aa bb ] (A26) K = h.G =- x(u +u +u +u ) +y(v +v +v +v ) 
Grs rs rs rs sr sr rs rs sr sr 

(AZ 7) KAB l\_rr ( ab ba ha a b) ( ab ba ba a b)] d 
Grs= 2J x urs-urs+usr-usr +y vrs-vrs+vsr-vsr m 

12, 1 7 

dm 



(A28) KD , Nj[x(udd + udd) + y(vdd + vdd)J dm 
Grs rs sr rs sr 

The u~~ , for example, is a second order displacement which can be computed 
using equation (25) by inseeting the values of a (r, a)-mode and a (s., b)-mode as 
factors, 

The elastic stiffness tnatrix is diagonal 

(A29) ~= rooooooKC KA KB D 
E E E KEJ 

with elements 

(A30) K~ c2 c = w M rs r rs ' 

(A31) I<i B A
2 

MA = I<J; = w rs crs r rs 

I'D 
2 

(A32) = wD MD 
"Ers r rs 

The transformation (1 7) yield a skew-symmetric matrix 

with 

(A34) 

E =Cl· 
R 

0 
0 

0 
0 

skew-symmetric 

which depends on damping, 

0 
0 

Finally, the generalized forces read 

0 

[ 
C T AT B T JT 

(A35) QR = FX Fy F 2 MX My Mz Q Q Q 0 

with elements 
C c c 2jc c 

(A36) Qr =F2 wrH+MZ<DzrH+ND. (xur+yvr) dm 

(A 7 ) QA _ 2 (· a < a a + a ) 3 r - F X urH + F Y v rH + MX "'xrH My<PyrH 

(A38) Q~ = 2 ( FX u~H + F y v~H + MX "'~rH +My cn~rH) 
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