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Abstract 

This paper presents a control law design 
for a linearised model of a Lynx-like 
helicopter in the 80 knots forward flight 
condition, with respect to an appropriate 
subset of the published handling qualities 
requirements. The synthesis method used 
was the Linear Quadratic Regulator (LQR) 
version of model following. The design is 
based principally on the rigid body 
quasi-steady state rotor model although a 
simplified representation of the actuator and 
blade flapping dynamics as pure delays is 
used to motivate the choice of the LQR 
input weighting matrix. The design assumes 
that all of the rigid body states can be 
measured. State estimation of actuator and 
rotor states is not used. The design is 
evaluated using a linear model which includes 
representations of the actuator and blade 
flapping dynamics. 
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Linear Quadratic Regulator 
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gain matrix in control law 
parameter in solution of 
Lyapunov equation 
roll rate, pitch rate, yaw 
rate 
Linear Quadratic Regulator 
State weighting matrix 
pitch rate; also 
parametersation of Q = 
C'H q CH 
Linear Quadratic regulator 
input weighting matrix 
Coefficient of determination 
Loop transfer function 
input vector 
body axis velocity 
components 
State vector 
output or measurement 
vector 

(> minimum over frequency of 
smallest singular value of 
return difference matrix 

i3 sideslip angle 
c. perturbation from trim value 

'· Wn parameterisation of 
compensation 

0, 'P· .; pitch, roll and heading 
angle 

p parametersation of R= pi 
iJ, !! largest and smallest singular 

values 
¢ resolvent of system matrix 

A : ¢ = (si - A)_, 

subscripts: 
CG command generator 
H helicopter 
M model 
zero eg 'P 0 trim value 

Introduction 

This paper describes the application of 
time-domain based linear quadratic 
optimisation to the design of a command 
following and stability augmentation control 
Ia w for a single rotor helicopter. The 
application of linear quadratic methods to the 
helicopter problem is far from new [Ref 
1, 2, 3]. However, it is appropriate to 
re-examine their applicability in the light of 
the new handling qualities requirements for 
military helicopters, [Ref 4, 5, 6] and this 
present work forms part of a broader study 
[Ref. 7] of multivariable control law synthesis 
methods. A limited design problem was 
specified as part of this study, in order to 
be able to make relatively quick comparisons 
of different control laws based on a 
linearised HELIST AB model of a Lynx-like 
helicopter for the 80 knot forward flight 
condition. (HELIST AB is a non linear 
analytical helicopter model developed at RAE 
Bedford [Ref.15].) Evaluation was to be 
performed with respect to an appropriate 
subset of the handling qualities requirement 
of [Ref 4 ]. This subset relates to the 
bandwidth and disturbance rejection qualities 
of the stability-loop, and also to pilot 

III.5.3.1 



control of height rate, pitch 
coordination and sideslip. The 
which individual requirements are 
detail will be discussed later on. 

rate, turn 
extent to 

satisfied in 

The following aspects will not be 
considered here although it is acknowledged 
that they cannot be neglected in the full 
design problem non-linearity, robustness 
with respect to variations in trim condition 
and issues associated with the digital 
implementation of the control system. 

Choice of Technique 

The control law synthesis technique used 
in this paper is essentially the well known 
Linear Quadratic Regulator (LOR) method of 
optimal control [Ref 8] based on a 9-th 
order rigid body model, It is assumed that 

all of the rigid body states are available and 
the use of state estimators is not considered. 

There are various factors that suggest 
this is a reasonable approach. The rigid 
body dynamics are accurately modelled 
whereas the actuator and rotor dynamics may 
not be. Furthermore while it appears to be 
technologically feasible to assume that all the 
rigid body states are available for feedback 
(possibly via a mixture of direct measurem.ent 
and calculation using the geometncal 
relationships involving the Euler angles) the 
same cannot be said of the actuator and 
otor states. In principle these states can be 

estimated using (for example) a Kalman 
Filter but the traditional version of this 
.pproach may not be robust [Ref 9] and the 
10re recent LQG/LTR version has been 

criticised on other grounds [Ref 10]. Since 
<.'e are in the fortunate position of having an 

.1dequate reduced order model, of which all 
-;e state variables are available for feedback, 

a full state feedback law is feasible and the 
LOR method becomes an option. 

Robustness with respect to model error 
- and in particular with respect to dynamics 
not included in the model at all - is an 
important consideration. LOR control laws 
have good theoretical robustness properties 
[Ref 11] but while it is pleasant to have 
some guaranteed robustness, miracles cannot 
be expected. As has been emphasized by 
Tischler [Ref 12] the effects of these extra 
dynamics can by approximated by a pure 
time delay (we consider only the rotor 
flapping and actuator dynamics here but 
Tischler takes account of several other effects 
associated with the implementation of a 
digital control system). The 80 knot, 
forward flight linearised HELIST AB models 

with and without actuator and rotor dynamics 
were examined and representative figures of 
75 ° phase lag at 10 rad/s were chosen. 
This corresponds to a time delay of 0.131 s. 
This is a large effect and it is clearly wise 
to try to take it into account in some way 
(as Tischler does). We shall return to this 
point Ia ter. 

Finally, in addition to stability 
augmentation it is necessary to design the 
'command interface' i.e. that portion of the 
control system which sits between the pilot 
and the stability loop and processes the pilot 
input to his inceptors in order to give good 
command following (Fig (1)). A model 
following version of LQR theory has long 
been available [Ref 13] which makes it 
possible to design the stability loop and 
command interface in an integrated way. 

Basic LOR Theory 

In this section we review 
theory. Fuller details may be 
[Ref 8] and [Ref 13]. 

the basic 
found in 

Let the linearised representation of the 
open loop helicopter be given by 

-"H = AH K!i + BH l!. H 

VH = CH KH 

(This representation is assumed to 
cascade compensation). The 
behaviour of the system in response 
input l!.M is given by a model: 

(1) 

include 
desired 

to pilot 

(2) 

The problem is to specify l!.H in terms of KH 
l>M and l!.M SO that the tracking error 
(YH - YM) is small. For design purposes the 
pilot inputs l!.M are taken to be step 
functions so that: 

.!:!M = Q 
(3) 

With assumption (3) the dynamics of the 
model may be rewritten as: 

[~~] [~M:Ml[:l (4) 

YM = [CM 1\t] [ :: l 
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Fig 1: Control design block diagram including time delays used 
at design stage. 

E«uations (4) define the dynamics of a new 
system called the command generator with 
state vector 2£ CG such that: 

~cG AM BM l ~CG ~ Ace ~CG 
0 0 (5) 

YcG = [CM DM] "cG = CcG "cG 

The tracking problem may be expressed in 
terms of a cost function J which is to be 
minimised by an appropriate choice of l!H: 

00 

J J <xm- xcc)'q(XH- xcc)+QH'RQHb~l 
0 

Equation (6) is a version of the standard 
Linear Quadratic Regulator problem: 

. 
A B!! :5. = " + 

00 

J f ~ ' Q ~ + Q ' R Q dt (7) 
0 

with 1! l!H 

The (A,B) composite system is uncontrollable 
because "cG is not influenced by l!H· 
However, this does not prevent us from 
obtaining a solution to (7) since (as shown in 
[Ref 9]) the Riccati equation for (7) may be 
partitioned and the part associated with the 
uncontrollability can be ignored. The 
solution to (7) (ie. the control law that we 
seek) turns out to have the form: 

l!H ~ - [ KH Kcc ] [ ~H ] 
~CG 

(9) 

where KH is the full state feedback matrix 
that stabilises 2£H when YcG = Q and is 
obtained via the solution of 

(10) 
00 

f ~H'CH'q CH ~H + QH'R QH dt 
0 

III.5.3.3 



and Kco (which gives 
interface) is given by the 
matrix Lyapunov equation: 

the command 
solution of a 

(11) 

Note that the control law eq.(9) contains 
contributions from the pilot inputs l!M as well 
as the model states <iM· In the design 
process the components of l!M were assumed 
to be step functions but the same control 
Ia w is assumed to be valid for the more 

general inputs which occur in practice. 

Application of the Theory Stability Loop 
Design 

We now come to the application of the 
general theory given in the previous section 
to the specific problem at hand. 

First of all, the handling qualities 
[Ref.4.] imposes a heading hold requirement 
in paragraph 3.2.6, which states that the 
heading shall return to within plus or minus 
10% of its peak excursion within 10 seconds 
following a pulse input inserted directly into 
the control actuator. ((Ref 4] should be 
consulted for a detailed description of this 
and other handling qualities cited in the 
present paper) It is assumed that this 
requires the presence of the heading angle '!< 
in the state vector. The linearised model of 
the helicopter is therefore a 9-th order, six 
degree of freedom system with state vector: 

.:\ us 

.:\ WB 
q 

.:\ 8 

.:\ VB (12) 
p 

.:\ 'P 

where the '<l's indicate perturbations from 
trim values eg. 

(13) 

Examination of equations (10) and (11) show 
that KH needs to be known before Kco can 
be found. This should not be taken to 
imply that the stability loop can be designed 
independently of the tracking problem. The 

state weighting matrix in eq.(10) CH' q CH 
depends (via CH) on the choice of variables 
that the system is to track. It was decided 
(Ref 7] that the choice of tracked variables 
most compatible with the limited design 
problem was: 

height rate h 
g_ pitch g_ .:\ 0 
dt dt 

turn rate g_ .:\ '!< 
dt 

.:\ sides 1 i p angle .:\ 13 14) 

The definition of sideslip angle 13 is taken 
from [Ref 8]: 

tan 13 = VB (15) 
uB 

The output vector y was taken to be 

y h 
.:\ 0 

g_ .:\ 0 
dt 

.:\ w (16) 
g_ .:\ w 
dt 

.:\ 13 

All of the components of y in eq.(16) are 
readily expressible in terms of the state 
variables and are important for requirements 
involving response to pilot input. There is 
another facet of the tracking problem which 
affects the design of the stability loop. 
According to section 3 .2.2 of (Ref 4] the 
system is supposed to exhibit rate command 
characteristics so that in response to a step 
input on the appropriate inceptor the pitch 
attitude should (in the context of a linear 
treatment) increase indefinitely at a uniform 
rate - at least in the steady state. In 
classical srso theory the vanishing of the 
steady state error requires compensation of 
the open loop system to ensure that it is 
type 2 (at least). The equivalent of this 
argument in the present situation is that if 
the pitch attitude is to increase indefinitely 
(in the idealised case of a linear model and 
a step input of infinite duration) and if we 
wish to allow for the possibility of 
coordinated activity on all four actuators to 
achieve this then the actuator weightings 
should reflect this and should be chosen to 
vanish at the appropriate rate in the low 
frequency limit: s = jw -> 0. In order to 
achieve this the four actuators were each 
preceeded by a compensator of the form 
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(17) 
with 

the choice of wn = 1 rad s-' for the 
corner frequency of eq.(l7) was made <c that 
control activity above this frequency should 
not be unduly restricted, perhaps limiting the 
bandwidth (which is required to be above 3.5 
rad/s for level I). The open loop system 
(AH BH CH DH) is assumed to incorporate 
the compensator dynamics. A consequence 
of the use of a full state feedback law that 
should be noted is that the control law 
eq.(9) includes feedback from the 
compensator states and the effect of having 
this 'inner loop' closed around the 
compensator means that the closed loop 
compensator dynamics are not the same as 
the open loop compensator dynamics eq.(l7). 
Although compensation has been discussed in 
terms only of the pitch attitude response the 
extra poles at the origin afforded by eq.(l7) 
appear to suffice for all of the command 
tracking requirements. Indeed, there is 
probably an element of overkill since height 
rate needs only follow a step function and 
there is already one pole at the origin in the 
system due to the presence of the heading 
angle in the state vector. However, the 
same form of compensation on all of the 
actuators has been retained for conceptual 
simplicity. 

Having specified CH and the 
compensation (17) it remains to complete the 
design by specifying the weighting matrices R 
and Q = CH' q CH in (10) and it is here 
that the problem of lack of visibility in the 
LQR method arises. We will present a 
rationale for the choice by Q and R that is 
adapted from an argument presented by 
Doyle and Stein [Ref 14]. 

The actuators are independent devices 
with similar ranges of variation and equal 
compensation so that it is appropriate to take 

R = pi (18) 

(The choice of the scalar parameter p will 
be dictated below by robustness 
requirements). Similarly the components of 
y_ in (16) will be weighted independently ie q 
in Q = CH'qCH will be chosen to be 
diagonal. 

Doyle and Stein suggest in [Ref 14] that 
for good performance and robustness R and 
Q should be chosen so that the maximum 

and minimum singular values of the LQR 
loop transfer function 

(19) 

be close together over the appropriate 
frequency range. This is a fairly labour 
intensive criterion to try to apply directly 
since it would be necessary to solve a Ricatti 
equation for each trial pair (Q ,R). However 
(as is pointed out in [Ref 14]) an 
approximation can be made which removes 
the need for repeated solutions of the Riccati 
equation at this stage and enables Q to be 
chosen independently of R. The LQR loop 
transfer function T H(s) satisfies the following 
identity: 
(I + T H (-jw))'R (I + T H (jw)) = 

R + BH' ¢H' (-jw) Q ~ (jw) BH (20) 

In the limit p-'>0 (corresponding to a 
high bandwidth of the nominal system) we 
get the approximation 

TH' (-jw) TH (jw)~ 1. BH' ~· (-jw) Q 
p 

¢H(jw) BH p (21) 

Hence the ratio of the maximum and 
mm1mum singular values of T is 
(approximately) independent of p so t~at Q 
can be chosen to get this ratio as dose as 
possible to unity. A numerical optimisation 
routine was used to choose the diagonal 
elements of q in Q = CH' q CH so as to 
minimise the mean value of log 
(cr (T H)/Q: (T Hll over the frequency range 
1-6 rads- 1 • 

With Q found, the value of p is chosen 
on the basis of robustness. If p is made 
smaller then the bandwidth of the (nominal) 
system will increase but the system will 
become less robust. Therefore we try to 
make p as small as possible subject to 
retaining an adequate margin of stability. As 
a measure of stability we use the smallest 
singular value of the return difference matrix 
minimised over frequency ie for the nominal 
system we would consider the quantity ---

a = infQ:( I + T H(jw)) 
w 

The smaller this quantity is, 
is the system. 

It is well known 
consideration of eq. (22) in 

(22) 

the less robust 

[Ref II) that 
conjunction with 
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the return difference identity eq.(10) leads to 
the 'guaranteed' stability margins of the 
Linear Quadratic Regulator. However it has 
already been noted that the effects of the 
rotors and actuators are far from negligible 
and it would be prudent to try to take these 
effects into account, preferably in a way that 
does not rely on a detailed accurate 
knowledge of these higher order dynamics. 
A way of doing this is to evaluate eq.(22) 
with time delays inserted into each of the 
four actuators between the compensator and 
the helicopter (Fig 1 ). The values of the 
four time delays were all taken to be 0.131 
s. 

What is a suitable smallest acceptable 
value for a in eq.(22)? The selection of a 
suitable value was motivated by consideration 
of the single input case where a is simply 
the distance of closest approach to the 
critical point on the Nyquist diagram. If the 
gain and phase margins in this case are 
constrained to be 12 dB and 45 ' then this 
supplies two points on the Nyquist diagram 
and the corresponding value of a can be 
estimated by joining these two points with a 
straight line and is approximately 0.6. 

Interpretation of Time and Frequency 
Responses 

It should be noted with regard to the 
numerical results presented in the remainder 
of this paper that: 
a) All simulations are based on linear 

models and are therefore only strictly 
accurate for small signals. 

b) While the design process is based 
principally on a 9-th order rigid body 
model, in order to gain some 
appreciation of the robustness of the 
design the helicopter model used for 
evaluation includes actuator dynamics 
(modelled as first order lags) and a 
6-th order rotor model. The actuator 
time constants used were 25 rad/s for 
the pedals and 12.6 rad/s for the 
others. 

Stability Loop : Results 

Attitude hold criteria: 

According to requirement 3.2.6 of the 
handling qualities specification document [Ref 
4]. following an impulse to the appropriate 
actuator the attitudes and heading should 
return to within ± 10% of the peak 
excursion within lOs. Simulated pitch. roll 

and heading impulse responses are presented 
in Fig 2. It is clear that all three responses 
satisfy this requirement. Of the three the 
roll response is the least well damped and 
this is presumably because the roll angle is 
not directly weighted with our particular 
choice of Q. We shall return to this point 
again in our discussion of the turn 
manoeuvre. 

Stability Loop Bandwidth 

Requirement 3.4.10 of [Ref 4] demands 
that heading responses to disturbances applied 
directly at the actuators shall meet the 
criteria set in paragraphs 3.4.1.1 (pitch) 
3.4.5.1 (roll) and 3.4.7.1 (yaw). 

Examination of the time history of step 
responses makes it clear that these responses 
are of the attitude command type and their 
bandwidths are calculated accordingly. 

The values obtained were (Table 1): 

Table 1. 

Channel 

Pitch 
Roll 
Heading 

Bandwidth 
(rad/s) 

4.1 
5.9 
5.1 

Time Delay 
(s) 

0.12 
0.09 
0.04 

The gain limited bandwidth is undefined 
for the roll response, but pilot induced 
oscillations are not a problem at this stage 
since as yet there is no pilot input. 

In addition to the bandwidth and phase 
delay criteria there is a requirement that all 
modes should have damping ratios exceeding 
0.35 for level 1 and 0.25 for level 2. For 
the evaluation system which includes models 
of the rotor and actuator dynamics all but 
one of the damping ratios exceed the level 1 
boundary. The exception is a rotor mode 
with a damping ratio of approximately 0.22 
which is only lightly coupled to the rigid 
body states and in addition is almost identical 
in the open and closed loop systems. 

Response to Pilot Inputs 

Having now completed the design and 
evaluation of the stability loop we turn to 
the design of the 'command interface •. The 
four pilot inceptors will each be designed to 
give a distinct response corresponding to a 
particular manoeuvre. Because we are 
working with linearised models it is both 
valid and conceptually simple to consider 

III.5.3.6 



1 (\ 

0.5H I . I 
~ I I 
~ 

I \ ;::.. 
0 

0.5r-------------------------~ 

-0.5 

= 
0 

-0.5 -1UL----------------------_J 
0 5 10 0 5 10 

t/s t/s 

0.5 

~D 0 

~ 

-0.5 \I ::J 
~ 

\J -1 
0 5 10 

t/s 

Fig 2: Simulated attitude and heading 
input directly to actuators. 

responses to 
(Normalised 

impulses 
so peak 

excursion is one). 

each inceptor and the requirements that 
relate to it in turn. In each case we will 
specify a model of the 'ideal' response to 
the inceptor which then gives the command 
interface via eq.(5), eq.(9) and eq.(11 ). 

First Inceptor - Height Rate Control 

The model chosen was 

AM= -l/2.5 

1 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

1/2.5 

(23) 

The interpretation of this model is 
particularly simple : in response to a unit 
step on the first inceptor the pitch, heading 
and sideslip angles would remain unchanged 
and the height rate should exhibit a first 
order response with a time constant of 2.5 s. 

The simulated height rate response (for 
the evaluation model which contains 
representations of actuator and rotor 
dynamics) is shown in the top part of fig 3. 
Requirement 3.4.3 of [Ref 4] demands that 
the response closely approximates a delayed 
first order response with specified limits on 
the effective time constant, time delay and 
coefficient of determination (r '). The values 
obtained are (Table 2): 

Time constant 
Time Delay 
r' 

Table 2 

Level 1 Boundaries 
<5.0 
<0.2 

0.97 < r 2 < 1.03 

Actual 
3.1 
0.11 

0.9991 

The results summarised in the table showing 
that the direct height rate response is 
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Fig 3: Height rate and pitch attitude response to unit step on 

first inceptor. 

Level 1. In addition to the direct response 
there is a coupling requirement (3.4.4.1.1 of 
[Ref 4]) that the ratio 

I 
peak pitch 
peak normal acceleration 

should not exceed 1.0 deg/(ft/s 2 ). 

case 

peak pitch !0 0.0010 radian 

In this 

peak normal acceleration - 1/3.1373 ft/s 2 

giving a 
deg/(ft/s 2 ) 

limit. 

coupling of approximately 0.18 
which is well within the prescribed 

Second Inceptor - Pitch Rate Control 

The second inceptor is designed to 
control pitch with rate command 
characteristics. The model chosen was 

0 
I 
0 (24) 
0 
0 

'Po 

0 
0 
1 
0 
0 
0 

The response of this model to a step 
may be described as follows. The height 
rate and heading angle do not change. The 
pitch attitude tracks the integral of the 
inceptor and the rate of change of pitch 
attitude tracks the inceptor directly. The 
ideal behaviour of the sideslip angle demands 
some explanation. If during the pitching 
manoeuvre the aircraft follows a straight and 
level flight path with zero heading angle then 
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Fig 4: Pitch attitude and roll rate response to a step input on 
the second inceptor. 

with the definition eq.(l5} of sideslip angle 
we have 

tan {3 = sin 'P tan 8 (25) 

which when linearised with sufficient accuracy 
for small trim angles gives. 

fl{3 = 'Po flO + .o 0 fl <p (26) 

Now <p and 8 0 , while both small, are of 
roughly the same magnitude so that 
constraining fl{3 = 0 would mean there would 
have to be excursions on the roll angle of 
similar size to those on the pitch angle 
which conflicts with the requirement to 
mm1m1se the coupling from pitch to roll 
angle (3.4.4.2 of (Ref 4]). Therefore in this 
case the model asks for a small excursion in 
sideslip angle 

fl{3 = 'Po flO (27) 

during the pitching manoeuvre. There is 
still coupling to the roll angle but it is less 
that that obtained with CM (6,1) set equal to 
zero. 

Fig. 4 shows the time domain responses 
of pitch attitude and roll rate for a unit step 
on the second inceptor. The left graph 
clearly shows that it is a rate command 

system as was intended. The 
shows that the pitch-to-roll 
approximately 0.5 which falls 

right graph 
coupling is 
within the 

Level 2 region as defined by requirement 
3.4.4.2 of (Ref 4]. 

Fig. 5 shows the frequency response 
from the second inceptor to the pitch 
attitude. Assessed as a rate command system 
this gives a bandwidth of 2.8 rad/s and a 

phase delay of 0.125 seconds. This is level 
2 for combat and target tracking, level I for 
all other mission task elements. 

Third Inceptor - Turn Control 

The derivation of the model for turn is 
slightly more complicated than in the 
previous two cases. First of all, in the 
'ideal turn' we shall suppose that the height 
rate,pitch attitude and sideslip angle should 
remain undisturbed. In a steady turn we 
expect the heading angle to change 
uniformly. The complication arises because 
the roll angle plays an important part in 
turn coordination, and is supposed to have a 
rate-command characteristic (requirement 
3.2.2 of [Ref 4]}. Unfortunately the tracking 
matrix CH does not pick out the roll angle, 
so we need to get at it indirectly. 
Within the linear approximation, in a steady 
turn, we expect that 

(28) 

for an idealised roll rate response we would 
expect 

!1-p(sl = l 
Um(s} s 

(29) 

Combining these last two equations gives us 
the model for heading angle expressed in 
transfer function form 

fl'l!(s) = l (30) 
Um(s) S2 

All of the idealised responses are thus 
incorporated in the following state space 
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Fig 5: Bode plot for frequency response of pitch attitude from 
second inceptor. 

model 

0 I l 0 0 

0 l I 

0 0 
0 0 
0 0 
I 0 (31) 
0 I 
0 0 

0 
0 
0 
0 
0 
0 

Examination of the roll angle response 
to a step on the third inceptor (not 
reproduced here) shows that it is indeed of 
the rate command type.Evaluated as a rate 
command system the bandwidth and phase 
delay are 4.3 rad/s and 0.084s respectively 
which is well within Level 1 for combat and 

target tracking. 
Requirements 3.4.6.1 and 3.4.6.2 of 

[Ref 4] relate to bank angle oscillations and 
sideslip excursions during a turn. With a 
rate command system for roll angle a turn is 
initiated by an impulse-like pilot input rather 
than a step like input. Fig (6) is the 
handling qualities plot for the bank angle 
oscillation requirement 3.4.6.1, which is seen 
to be at Level 1. Fig (7) is the handling 
qualities plot for turn coordination - again 
Level 1. 

Finally 3.4.4.2 (roll-to-pitch coupling) 
requires that the ratio 

maximum pitch rate 
desired roll rate 

Should not exceed 0.25 following a step 
input for at least 5 seconds in order to be 
classed as Level I, which is found to be 
satisfied. 

Fourth Inceptor - Sideslip Angle 

The model chosen was 
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AM - 0 l 
BM = -1 l 
eM = 0 

0 
0 (32) 
1 
0 

-1 

DM 0 
0 
0 
0 

-1 
0 

The interpretation of this model is as 
follows. In response to a step input the 
height rate and pitch attitude should not 
change. The (perturbation in the) sideslip 
angle should track the integral of the step, 
and the heading angle should be the negative 
of the sideslip angle. in order to rationalise 
these last two specifications we not that if 
the aircraft is in straight and level flight 
then the steady state relationship between the 
perturbations is 

(33) 

Thus the sideslip 11(3 is a function of 
both Ill<' and Llw or put another way, 
specifying 11(3 does not fix LIW uniquely. 
However since the trim pitch angle 8 

0 
is 

very small we can choose 

11w = - 1113 
(34) 

Q_ LIW = -d 11(3 
dt dt 

for the model ie we neglect the contribution 
of the perturbation in the roll angle to the 
perturbation in the sideslip angle. 

Fig (8) show the (simulated) step 
response of the actual system. It can be 
seen that equation (24) is obeyed to high 
accuracy. (The discrepancy between the two 
sides of eq.(33) due to the excursion of the 
roll angle is about 1% ). The sideslip and 
roll both have the same sign which appears 
to satisfy 3.4.9.2 of [Ref 4]. Insofar as 
3.4.9.1 and 3.4.9.3 apply to a linearised 
model they would seem to be automatically 
satisfied. 

Fig (8) shows that the heading angle 
exhibits a rate command response. The 
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bandwidth is 3.6 rad/s and the phase delay is 
0.032s which is a level 1 response. 

Discussion 

The paper has presented results which 
illustrate the application of Linear Quadratic 
Regulator theory to the design of a 
stabilization and command augmentation 
system for a linearised model of a single 
rotor helicopter. A subset of the handling 
qualities from [Ref 4] were examined for the 
case of forward flight. In most cases a 
Level 1 performance was achieved, the 
notable exceptions being the pitch-to-roll 
coupling and pitch channel bandwidth in the 
case ·of pilot input. The evaluation model of 
the helicopter included representations of the 
rotor flapping and actuator dynamics. The 
results are fairly encouraging but it must be 
stressed that there are many other effects 
which should be included in a full treatment 
of even the linearised problem [Ref 12] and 
these effects would inevitably cause a 
deterioration in performance. 

Several issues can be raised concerning 
the use of the LQR model following 
technique used in this paper. The command 
following problem imposes constraints on the 
design of the control law in a general way 
via the structure of the stability loop state 
weighting CH' q CH and in specific ways 
via the specific choice of CH and cascade 
compensation. Although it is aesthetically 
pleasing to have a method which can 
synthesize the stabilization and command 
following in a unified way it is recognised 
that the designer's freedom is restricted in 
some undesirable ways. For example, direct 
feed forward from the pilot's inceptors to 
the helicopter actuators does not seem to fit 
into this framework. 

The evaluation model of the helicopter 
- as mentioned above - included detailed 
representations of actuator and rotor flapping 
dynamics which were believed to be 
reasonably accurate for the flight regime 
under consideration. The design model also 
included a representation of these extra 
dynamics but in a much simpler form (ie. 
modelled as pure time delays at the 
actuators) which was used to aid selection of 
the actuator weighting parameter p. It should 
also be noticed that once p has been chosen 
the Riccati and Lypunov equations that have 
to be solved to get the control law (9) make 
no further reference to the rotor and 
actuator dynamics. 

The control law presented here has a 

rather complicated structure (eight integrators 
for the cascade compensation, plus several 
more for the various command models). 
This is probably more complicated than 
necessary. It may also be possible to reduce 
the number of integrators by using a finite 
end time version of LQ R theory. (for 
example 

One traditional objection to the LQR 
methodology is the lack of visibility ie the 
difficulty in choosing the state and actuator 
weighting matrices - particularly the former 

to achieve the desired characteristics of 
the closed loop system. It is felt that the 
version of the Doyle and Stein method [Ref 
14] used here is a reasonably 'visible' 
approach since the three main areas in which 
the designer needs to make choices: 

(i) Choice of CH 
(ii) Choice of frequency range for 

optimisation of CH 1 q CH 
(iii)Choice of p 

relate fairly clearly to the 
specification and to the dynamics 
unaugmented helicopter. 

problem 
of the 
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