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Abstract

The numerical errors introduced during aeroelastic (CFD–CSD) rotor simulations relative to conserva-
tion of the structural and fluid dynamics equations of motion are discussed and quantified. The preservation
of work during the transfer of data loads and deflections between the fluid/structure interface is discussed
for lifting-line and lifting-surface beam models, using structured and unstructured CFD solvers. It is shown
that interpolation methods with C0 and higher are required to preserve the work for both spatial and
temporal interfaces. A method to obtain the CSD airstation distribution with the minimal data transfer
error for a given grid is discussed. Unstructured CFD methods appear to be more sensitive to the level of
continuity (consistency) of the methods than structured solvers.

Nomenclature

dr Displacement vector, m
f Function
F Force vector, N
F Combined force and moment vector
[G] Interpolation matrix
[H] Shape function
[I] Identity matrix
` Beam length, m
M Moment vector, N-m
N Maximum number of nodes
O Order or approximation
Q Nodal loads
r Position vector, m or shape parameter
R Multidimensional space
S Surface or area, m2

S Spline
t Time, s
x Variable value vector
V Velocity vector, m/s
W Work, N-m
x, y, z Cartesian components of position, m
α Rotation angle vector

β Coefficients for 2–D splines
∆ Difference
γ Coefficients for 2–D splines
ε Error
Ω Azimuth, degrees
Subscript and Superscript

ı,  Variable number
T Matrix transpose

Ω Azimuthal Location
−1 Matrix inverse
Abbreviations

CFD Computational Fluid Dynamics
CSD Computational Structural Dynamics
MQ Multiquadric-Biharmonic Method
TPS Thin Plate Spline

Introduction

The development of efficient numerical techniques
to accurately simulate rotor airloads, vibration char-
acteristics and noise signatures has been a major fo-
cus of research for the past twenty to thirty years
within the rotorcraft community. The rotor flow field
is a complex interaction of nonlinear unsteady aero-
dynamics and structural dynamics, which must be
trimmed for level flight or controlled during a ma-
neuver. The aerodynamics includes the incompress-
ible Mach region, where it may encounter high angle
of attack/separated flow, as well as high-speed flight
in the transonic and low supersonic Mach region. In
addition, for low-speed forward or hover flight con-
ditions, the wake system does not propagate rapidly
downstream, but remains in the near field of the ro-
tor, adding vortex interactions that must be modeled.
The dynamics of the rotor include coupled flapping,
pitching, and lead/lag motion, along with nonlinear
elastic blade deformations that result from the un-
steady aerodynamics loading. Thus an accurate pre-
diction of the rotor behavior is an inherent aeroelastic
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problem that relies on the accurate prediction of all
of these components.

While the external dynamics of the problem must
be modeled accurately, improvement of aeroelastic
methods has centered on the independent develop-
ment of accurate, efficient resolution techniques of
the fluid and structural dynamics equations of mo-
tion. It is well-known that the equations of motion
that describe the fluid flow field and elastic structure
are very different, resulting in computational tech-
niques and grid requirements that are significantly
different. Two classes of solutions for rotorcraft ap-
plications have evolved from these requirements. The
first, and earliest, class of solution methodologies has
resulted in a set of computational techniques known
as comprehensive codes, which are characterized by
the utilization of finite-element structural methods
combined with lower-order aerodynamics, such as
lifting-line, dynamic inflow, and prescribed or free
wake models. Most of the earlier versions of these
codes operated in the frequency domain, although
the recent trend has been toward time-domain-based
algorithms. The attraction of these comprehensive
codes is their ability to obtain aeroelastic simulations
very rapidly for design and operations analysis, but it
comes at the price of reduced aerodynamic fidelity re-
sulting in less accurate prediction of the rotor behav-
ior during some flight conditions. Among the most
popular of these codes are DYMORE [1, 2], RCAS
[3], CAMRAD II [4], UMARC [5], and HOST [6].
A detailed discussion of the current capabilities of a
number of these comprehensive codes can be found
in Kunz [7].

As computational capabilities have improved, and
as researchers begin to develop advanced blade con-
cepts, the need for improved aerodynamic model-
ing in these simulations has resulted in the devel-
opment of more accurate, though much more costly,
computational techniques. In particular, for the last
decade, numerical research has focused on techniques
to harness the capabilities of the nonlinear, finite-
element, multi-body modules of these comprehensive
or computational structural dynamics codes (CSD),
as well as the higher aerodynamic resolution capabil-
ities found in computational fluid dynamics (CFD)
codes that resolve the Reynolds-Averaged Navier-
Stokes (RANS) equations. This class of simulations
has become known in the rotorcraft community as
CFD–CSD coupling. The history of the develop-
ment of CFD–CSD coupling methods can be found
in Datta et al. [8], along with some significant early
efforts in the 1990’s [9, 10], that were not included
in the review. Some notable recent work extending
the CFD–CSD techniques [11] – [15] are also recom-
mended to obtain a synopsis of the current state-of-

the-art.

While some thought has been given towards the
development of a new fully-coupled numerical simula-
tion, where the entire set of fluid and structural me-
chanics equations are resolved simultaneously, most
aeroelastic development has concentrated on utiliz-
ing existing (legacy) CFD and CSD codes, giving
rise to tightly-coupled and loosely-coupled simulations.
Within this work, tight coupling refers to the situa-
tion where data are exchanged between the CFD and
CSD codes at each time step (or small subset of CFD
timesteps) during a revolution of the rotor, while a
loosely-coupled analysis exchanges data for an entire
revolution of the rotor. While these CFD–CSD meth-
ods have improved the ability of the rotorcraft com-
munity to capture major nonlinear phenomena, they
have additional numerical complexities that must be
optimized to reduce numerical errors.

Any numerical simulation technique is inherently
susceptible to errors due to a variety of sources. For
rotorcraft simulations, these errors can run the gamut
from engineering simplification assumptions, such as
turbulence models, lack of geometric conservation
laws, and geometrically inexact representation of the
rotor blade, to numerical truncation errors associated
to spatial and temporal algorithms to represent the
governing equations, to round-off errors from float-
ing point operations. These are all well recognized
sources of error within each discipline, and the meth-
ods to mitigate them are extensively documented and
will not be pursued here. However, when one consid-
ers the numerical simulation of a flexible rotor via
loose or tight coupling, a new set of errors arises that
is associated with the need to exchange data between
two disparate solution techniques and grids. Consider
a typical delta airloads coupling technique (for exam-
ple, Fig. 1) utilized by many CFD–CSD methodolo-
gies. Within the CFD analysis, the pressure variable
at each node on the rotor surface blade is computed.
However, the aerodynamic load or force is needed by
the CSD code, requiring the integration of these pres-
sures over the area of the blade covered by the CFD
grid. If the CFD and CSD surface grids are not co-
incident, then a transfer of loads between the two
grids is necessary. Conversely, the blade deflections
are computed at the CSD nodes, which then must
be transferred to the CFD grid. Since interpolations
and possibly extrapolations are needed, small differ-
ences arise whenever the data is transferred. While
this error may be small at one calculation, it must be
noted that this information is typically transferred at
each one degree or less azimuth, resulting in 360 or
more exchanges per revolution.

Most current CFD–CSD coupling methods are
based on a lifting-line interpolation. That is, the
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Figure 1: Example of CFD-CSD loose coupling,
where N=number of rotor blades.

blade is treated as a beam with bending and torsion
only along the radial axis, with the airfoils (chord-
wise axis) remaining rigid. This allows integration of
forces and moments about a blade strip, with the data
transfer at a given chord location (usually quarter-
chord), as illustrated in Fig. 2a. Comparison of dif-
ferent CFD–CSD coupling results has raised the ques-
tion of the importance of interpolation/extrapolation
errors in this data transfer. One technique that has
been utilized to mitigate these interpolation errors in
light of these questions, is to set the structural airsta-
tions to be coincident with the midpoint of the CFD
spanwise strips (Fig. 2b). This will aid in the min-
imization of errors across the fluid/structure inter-
face, but with the advent of unstructured methods for
CFD-CSD coupling, the naturally occurring integra-
tion strips are no longer straightforward, as shown in
Fig. 2c. In addition, if advanced blade designs incor-
porating aeroelastic-tailoring techniques that modify
the local airfoil camber are to be modeled, then the
simplified lifting-line data transmission will need to
be expanded to a lifting-surface model.

Methods to mitigate these data errors have been
studied and published for fixed-wing applications, of
which a representative subset can be found in Refs.
[16] – [21]. These prior studies clearly indicate that
the transfer of data in aeroelastic simulations is not
a triviality that can be ignored. They provide a ba-
sis from which this work addresses the topic of data
transfer across the fluid/structure interface specifi-

cally for CFD–CSD coupling of rotors.
This paper will first address the concept of us-

ing variational quantities as a metric to assess the
fluid/structure interface compared to a metric based
upon vector quantities. Next, studies involving
legacy CFD and CSD using current coupling practices
illustrate the impact of the data transfer across the
fluid/structure interface for beam and surface repre-
sentations of rotor blades, and from these results best
practices are extracted.

Variational Quantity Analysis

The analysis of the quality of CFD simulations ap-
plies the branch of analytical mechanics known as
vectorial mechanics, where vector properties (forces,
moments, momentum) are the foci of correlation.
These quantities provide an instantaneous snapshot
of the flow field variables at each time step and work
well when correlating with theoretical and experimen-
tal field data. By definition, however, aeroelasticity
involves the change of these vectors over time and/or
space. Within the field of analytical mechanics, the
assessment of an aeroelastic simulation can be ex-
trapolated to the branch known as variational prin-
ciples (energy principles). These approaches scruti-
nize the system changes in temporal or spatial dimen-
sions through the use of work and energy parameters.
Thus, the balance of the forces and moments is nec-
essary, but not sufficient; the equivalence of the total
work between the CFD and CSD methods is also nec-
essary.

For example, the work can provide a more mean-
ingful assessment of how well the data manipulation
across the disparate aerodynamic and structural grids
has been accomplished as it includes both the forcing
function (aerodynamic load) and its response (blade
deflection). To apply this, first consider the work on a
particle that, under the influence of an external force
F moves from point a to b

W |ba =
∫ b

a

F · dr (1)

For the aeroelastic problems of interest in this work,
the force in eqn. 1 consists of the aerodynamic forces
on a rotor blade and the distance is the elastic dis-
placement of the rotor blade. In addition, work done
by the moments M applied with the rotation vector,
α, should also be considered, resulting in the total
work at each azimuthal location, Ω,

WΩ =
∫

S

(F · r)dS =
∫

s

(F · r + M ·α)ds (2)

when the pressure and viscous forces, together de-
noted as F are integrated over the blade surface S, or
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the forces F and moments M per unit span are inte-
grated over a reference radial axis, s. Since the rotor
blade is discretized as part of the numerical analysis,
the integral equation can be replaced by a summa-
tion. For example, the integral over the reference
axis would become

WΩ =
N∑

ı=1

(Fı · rı + Mı ·αı) (3)

where the ı subscripts indicate the discrete counter-
parts to the the continuous functions. It is assumed
that the rotor surface is not changing shape at each
instant when data are transferred between the CFD
and CSD modules, so the errors incurred during the
data transfer across the fluid/structure common in-
terface can be analyzed via the equivalency of work,
that is

WCFD = WCSD (4)

Thus for a rotor blade at the same azimuthal location,
the work computed from disparate CFD and CSD
rotor models should be equivalent. In other words,
the fluid/structure interface will contribute no errors
to the system’s conservation of work (or energy) if
the difference in the work for each method, ε, is zero:

WCFD −WCSD = ε = 0 (5)

When ε is non-zero, it can be utilized as a measure of
the CFD-CSD grid interpolation error that detracts
from the conservation of the system.

Consider next the transfer of discrete data, {f̂},
(for example, forces, loads or deflections) across the
fluid/structure interface, which can be expressed as

{f̂}CFD = [G]{f̂}CSD (6)

where [G] is the transformation or interpolation
method. Each element of the {f̂} array can be ex-
pressed as

f̂CFD
ı =

NCSD∑
=1

Gij f̂
CSD
 (7)

The work at the fluid/structure interface can be com-
puted using the discrete CFD grid locations

WCFD =
NCF D∑

ı=1

Fır̂ı (8)

while the work computed on the rotor blade using the
discrete CSD grid locations can be expressed as

WCSD =
NCSD∑

=1

Fr̂ (9)

where F represents the integration of the pressure
loads and viscous forces and the ı and  subscripts
denote distinct locations used by the CFD and CSD
methods, respectively, to exchange data. If displace-
ment, r̂ı, is used as the data, f̂ in the transformation
relation of eqn. 7, and it is substituted into eqn. 6,
then the work can be expressed as

WCFD =
NCSD∑

=1

( NCF D∑
ı=1

FıGij

)
r̂ (10)

and finally it can be readily seen that in comparison
with eqn. 9 that

F =
NCF D∑

ı=1

FıGij (11)

It has been noted [16] that energy across the
fluid/structure interface is conserved if the virtual
form of eqn. 4 is achieved.

This discrete force, Fi is obtained at the CFD grid
node or cell center, depending on the computational
method. If all of the CFD force locations are coinci-
dent with the structural airstations, then the discrete
deflection values, rı and r, are coincident and are di-
rectly extracted from the CSD methodology. Since
[G] = [I], it is easy to confirm that the balance of
force and work is satisfied, and that the conserva-
tion is limited only by the intrinsic assumptions of
the individual aerodynamic and structural mechani-
cal modules.

However, if the grid nodes and airstations are not
co-located, then [G] is no longer the identity matrix
and errors may arise if the interpolation method is
not consistent. Most of the CSD methods utilized
for CFD-CSD rotor coupling are based on finite el-
ement techniques. The natural interpolation func-
tions would therefore be those based on finite ele-
ment interpolation methods. Indeed, once the loads
are interpolated to the CSD airstations, they should
be transferred to the modes of the structural node
using the shape function of the local finite element to
ensure proper evaluation of the work done by these
forces. This is illustrated by a simple beam undergo-
ing bending

W =
∫ `

0

F (x)z(x)dx

= ẑT

∫ `

0

HT (x)F (x)dx

= ẑT
nodes∑
ı=1

H(xı)Fı

= ẑT Q

(12)
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where H(x) stores the shape functions of the beam
element, and where q are the nodal loads applied to
the structural model. When nodal loads are com-
puted using eqn. 12, the work done by the aerody-
namic forces is properly transferred to the structural
model. Poor quality interpolations can thus be exac-
erbated once the consistent loads are applied to the
structure via eqn. 12. Various techniques to minimize
the intepolation errors via the formulation of appro-
priate interpolation methods, [G] have been devel-
oped (Refs. [16] - [21]) for application to fixed-wing
aeroelastic problems.

The aeroelastic analysis of a rotor in flight involves
not only the interpolation of the rotor blade surface
grids but also the temporal integration of the system.
To examine this aspect of the problem, consider again
the definition of work on a particle, eqn. 1, where
the displacement of the particle is now recast in a
parametric form with respect to time, r(t), so that
the equation for work becomes

W |t2t1 =
∫ t2

t1

F · dr
dt

dt =
∫ t2

t1

F ·Vdt (13)

This equation can be manipulated to examine tem-
poral interpolation errors associated with the trans-
fer of motion data applied to the rotor blade as it
rotates about the hub. Just as the spatial scales
needed to resolve the CFD and CSD governing equa-
tions are different, so are the temporal integration
scales. CFD-CSD rotor simulations are typically ac-
complished using 0.05◦ to 1◦ azimuthal increments by
the CFD code, while the CSD code is stable and ac-
curate using larger (5◦ to 15◦) azimuthal increments,
depending on the flight conditions under evaluation.
Since the CSD simulations are often far less expen-
sive computationally than their CFD counterparts,
one solution to the disparate time steps is to use the
smaller CFD time step within the CSD simulation,
eliminating the need for interpolations. However, if
the stability of the CSD simulation is problematic at
very small azimuthal increments, or other reasons to
maintain these disparate time increments exist, then
the larger CSD increments of azimuthal motion re-
quire interpolation at each of the smaller CFD time
steps to obtain the requisite blade deflections. The
accuracy of the interpolation can be evaluated using
the time dependent form of the work equation, eqn.
13, for each quantity of interest in a manner similar
to the spatial interpolations.

Interpolation Methods

The computational aeroelastician must develop
consistent methods of data exchange across the dis-
parate meshes required by the aerodynamic and

structural dynamics models. Herein the one– and
two–dimensional methods for lifting-line and lifting-
surface representations of the rotor blade evaluated
in this study are presented. Additional methods of
interpolation are discussed and evaluated for non-
rotorcraft methods in Refs. [16] – [21], to name a
few.

1–D Methods

One-dimensional interpolation methods that have
been evaluated include the proximal (nearest-
neighbor) interpolation, linear interpolation and cu-
bic spline. Two forms of cubic splines are explored,
natural and Hermite cubic splines. These methods
were chosen to provide a range of interpolations from
the simple point sampling to methods with C2 con-
tinuity.

Proximal interpolation is also known as nearest-
neighbor interpolation and point sampling. For an in-
put location x within the bounds of a one-dimensional
array of data, the nearest point in the array is located,
and the value of the function at the point is assigned
to the input location, yielding a piecewise-constant
interpolation. Consider an input location, x, then the
nearest-neighbor search of a one dimensional array of
length N yields an f(x) such that {x : 1 ≤  ≤ N
and ∃x : min(x − xı) for all ı = 1, N}. This is the
least expensive of all of the interpolation methods
with no additional array storage beyond the original
database and an operation count of O(N + 3), where
N is the array cardinality, assuming that all of the
array nodes are examined.

Linear interpolation is an approximation based on
the definition of a local linear polynomial about the
input location {x : xı ≤ x ≤ xı+1} where

f = f(xı) + (x− xı)
(f(xı+1)− f(xı))

(xı+1 − xı)
(14)

This yields a function that is C0 continuous. In one
dimension, the approximate cost of this function is
O(N + 6), and it does not require additional array
storage beyond the database array.

Cubic Splines comprise a popular piecewise poly-
nomial interpolation technique that minimizes the er-
rors compared to a polynomial interpolation, avoid-
ing overshoots (Runge’s phenomenon) that may ap-
pear with higher-order polynomial interpolation. The
cubic spline, S(x), is constructed for n+1 data points
to create n piecewise cubic polynomials so that

S(x) =


S0(x) x ∈ (x0, x1)
S1(x) x ∈ (x1, x2)
. . .
SN−1(x) x ∈ (xN−1, xN )

(15)
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with the additional requirements at the database ar-
ray

S(xı) = f(xı) ı = 1, N
Sı−1(xı) = Sı(xı) ı = 1, N − 1
S′ı−1(xı) = S′ı(xı) ı = 1, N − 1
S′′ı−1(xı) = S′′ı (xı) ı = 1, N − 1

(16)

to ensure C0 to C2 continuity. The cost of this func-
tion is approximately three times the cost of the linear
interpolation method.

Hermite Cubic Splines are a form of cubic splines
that are third-degree and cast the spline polynomials
in Hermite form. Hermite form requires that each
piecewise polynomial basis include two control (end)
points and two tangents [22]. The tangents provide
a further form of control of the local spline, and in
some instances can provide smaller errors in the in-
terpolation. However, the penalty of this method is
the cost, which is approximately double the cost of
the natural cubic spline.

2–D Methods

For lifting-surface applications, the 1–D interpolation
methods above can be extended to include 2 dimen-
sions. However, based on the fixed-wing studies dis-
cussed previously, it is clear that to provide consistent
equivalence in properties across the fluid/structure
interface, advanced methods are required. Two meth-
ods are demonstrated within the framework of this
work, multiquadric-biharmonics (MQ) and thin plate
splines (TPS). These were chosen due to the ease by
which they can be utilized in existing methods with-
out code reformulation.

In prior studies [18, 19], these methods were shown
to be accurate and robust compared to similar inter-
polation techniques. MQ requires that at least two
of the three Cartesian coordinate directions for the
surface be single-valued. While MQ works very ac-
curately for small extrapolation areas, it can distort
the overall function when large extrapolation areas
are required. For disparate grid scales (such as the
rotor blade radius compared with the chord), these
methods are more accurate when they are scaled to
(x, y, z) ∈ [0, 1].

Multiquadric-biharmonic (MQ) method is an in-
terpolation technique that represents an irregular sur-
face, defined in terms of the coordinates of a set of N
points, in terms of a set of quadratic basis functions.
Kansa [23] has shown that the method’s conditioning,
accuracy, and general numerical performance are im-
proved by (1) permitting the shape parameter,r, to
vary among the basis functions; (2) scaling and/or
rotating the independent variables so that (x, y, z) ∈
[0, 1] ; and (3) applying it in overlapping subdomains

to reduce matrix inversion costs. The multiquadric
method is the summation of quadric surface equa-
tions with unknown coefficients to represent irregu-
lar surfaces. This method was originally developed
by Hardy [24] to construct a function H(x) given its
values at a set of N discrete nodal values Hı = H(xı)
at nodes x = xı, for ı = 1, 2, ..., N . The interpolation
equation is written as

H(x) =
N∑

ı=1

γı((x− xı)2 + r2)0.5 (17)

where the coefficients γı are to be found. In order to
find the values of the coefficients γı one simply applies
this equation to each of the N points yielding

H(x) =
N∑

=1

γ((xı − x)2 + r2)0.5 (18)

Per Kansa [23], the shape parameter, r, is com-
puted as

r2
 = r2

min

(r2
max

r2
min

) −1
N−1

(19)

where the minimum and maximum values of r are
user defined.

Thin-plate splines (or surface splines) provide a
means to characterize an irregular surface by using
functions that minimize an energy functional. This
methodology is very similar to the MQ method, but
the primary difference in these two methods is the
choice of the basis functions. Here, the problem is
approached from an engineering representation of the
surface. That is, for a one-dimensional (1-D) prob-
lem, elementary cubic splines can be interpreted as
equilibrium positions of a beam undergoing bending
deformation. For a 2-D problem (such as a surface),
these splines can be determined from the minimiza-
tion of the bending energy (thus defining the equi-
librium position) of a thin plate. Since these types
of splines are invariant with rotation and translation,
they are very powerful tools for the interpolation of
moving or flexible surfaces, and act in a manner sim-
ilar to finite-element basis functions.

The methodology applied here was verified mathe-
matically by Duchon [25]. The bending energy for a
thin plate extended to multi-dimensional domains is

Φ =
∫
R
|Dmv|2dR (20)

where m > l/2 when discrete values are used (as is
the case here). this functional is very easy to solve.
The basis function can be written as
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H(x) = β0 + βxx + βyy + βzzı+
N∑

=1

γ(xı − x)2log|xı − x|
(21)

The coefficients γı, for ı ∈ [1, N ], and β0, βx, βy, βz

are determined by solution of the minimization prob-
lem with the additional constraints that

N∑
ı=1

γı =
N∑

ı=1

γıxı =
N∑

ı=1

γıyı =
N∑

ı=1

γızı = 0 (22)

These can be expressed in matrix form as {H} =
[B]{γ}+ [R]{β} and [R]T {γ} = 0.

Results

For all computations, the errors presented are rel-
ative errors that have been computed via the expres-
sion

ε =
(fexact − fpredicted)

fexact
× 100 (23)

and are presented as percentages. To ensure that
the interpolation methods are performing correctly,
the data have been interpolated across identical grids
(CFD grid is identical to the CSD grid) and the work
error has been verified to be zero (within the compu-
tational accuracy of the machine).

1–D (Radial) Blade Modeling

The first evaluation of the equivalence of spatial
quantities is the interpolation across the aerodynamic
and structural meshes. If a structural beam model is
assumed, the aerodynamic loads and moments can
be integrated and transferred along a radial line from
blade root to tip. This radial line is typically chosen
to be the quarter-chord or elastic axis, as denoted in
Fig. 2, for both structured and unstructured CFD
grids. The loads on the beam linearly increased from
the root to the tip, as did the blade deflection. This
is followed by an evaluation of actual CFD-CSD sim-
ulations.

Spatial Interpolation: Load–Deflection Data

This test sequence was designed to evaluate the errors
associated with the interpolation methodology. Thus,
the work computed from the CFD grid is assumed to
be the exact work, and will form the baseline com-
parative value. Four popular interpolation methods,

described previously, were evaluated, along with vari-
ations in the nodal locations to determine the con-
stitutive error sources and lead to a best-practices
recommendation.

The set of nodal locations that comprised the CSD
airstations (rcsd) for this study was based on constant
spacing in addition to a grid that utilized clustered
nodes at the root and tip where the aerodynamic val-
ues may rapidly change. The algorithm for the con-
stant spacing is based on

rcsdi = rcfdmin +(rcfdmax −rcfdmin)
(i− 1)

(Ncsd − 1)
(24)

where Ncsd is the total number of CSD airstation
locations. Care was taken to ensure that this prob-
lem remained one of interpolation, without extrapo-
lation. The sets of constant spaced airstations chosen
for study include Ncsd ∈ [ı : 10 ≤ 10 ∗ ı ≤ 500] and
assuming Ncfd ∈ [ : 81 ≤ 80 ∗ jmath + 1 ≤ 401]
to determine the characteristics of the work conser-
vation for a wide range of fidelity of CFD grids and
airstation combinations.

The results of interpolations using these parame-
ters is illustrated in Fig. 3 via the average work error.
Using a simple comparison of the summed forces, the
interpolations appear to be very accurate, as the rel-
ative errors decrease from the O(10−5) to O(10−7)
as the number of radial stations increases. The rela-
tive errors associated with the work are typically 2 to
3 orders of magnitude higher than the relative force
errors. The average work error appears to indicate
that all of the interpolation methods are comparable,
implying that the best (most efficient and accurate)
interpolation method would be the proximal or linear
interpolations, given the mean cost of each method
is 1.0, 0.4726, 0.1664, 0.1481 for the Hermite cubic,
cubic, linear, proximal methods, respectively. How-
ever, further insight into the accuracy of the meth-
ods can be obtained from Fig. 4, which illustrates
the behavior of the interpolation methods for two of
the Ncfd cases. The proximal interpolation method
clearly does not provide the accuracy implied in the
average results, as there is significant scatter associ-
ated with the method, with no clear basis to assess
when the method will provide minimal errors.

For the remainder of interpolation methods, the
relative work error indicates that the while Ncsd <
Ncfd, the error decreases as Ncsd approaches Ncsd

until it reaches 1 – 3 optimal grid distributions, fol-
lowed by error growth that smoothly increases until it
reaches a limiting value when Ncsd >> Ncfd. The op-
timal equally spaced CSD grid distribution is deter-
mined when the distance between the CSD airstations
correlates with the average distance between CFD
node and midpoint, that is ∆rcsd ≈ 0.5∆rcfdmax

7



and has the most locations that coincide closely with
the midpoints of the CFD nodes. As the number of
CFD nodes are increased, the number of CSD nodes
needed to achieve minimal error is seen to scale ap-
proximately linearly, but not usually with a slope of
1 as the minimal error depends on the CFD grid dis-
tribution. Further, the magnitude of the minimal
error at the optimal location(s) decreases approxi-
mately two orders of magnitude as the CFD fidelity
increases initially, although a point of diminishing re-
turn is rapidly encountered, as shown in Fig. 5. Sim-
ilar trends are seen with CSD grid distributions that
are refined near the tip and root.

Consider next these interpolations when applied
not to an instantaneous theoretical application, as
was just described, but as one interpolation step in
the loose coupling process described in Fig. 1. These
computations were accomplished in the radial direc-
tion for 1◦ azimuthal increments and were not in-
terpolated in the azimuthal direction. The relative
errors due to both the work and loads are shown in
Fig. 6. As noted previously, the use of loads (forces
and moments) as a measure of accuracy alone leads to
the conclusion that the interpolations are more accu-
rate than they are within the aeroelastic application
for which they are used. In contrast to the prior the-
oretical beam example, the loads errors are only a
factor of 2 – 3 rather then 2 – 3 orders of magnitude
lower than their work error counterparts. The exam-
ple provided in Fig. 6, is that of the 81 station CFD
grid. From the prior study, it was noted that the
minimal error occurred with 50 equally spaced CSD
airstations, which is also seen to be true for the full
rotor interpolation as well. The cubic spline performs
best of the interpolation methods, and it is notewor-
thy that larger differences using work (rather than
forces) are now observed between the Hermite cubic
spline implementation compared with the standard
cubic spline.

The impact of these interpolations on the rotor are
illustrated with Figs. 7 and 8. The differences in
the linear and spline interpolation results are not dis-
cernible visually, so one figure is used to illustrate
these group results. The proximal interpolation is
characterized by discontinuities in the deflection and
force/moment interpolations, as illustrated in Fig.
7b and 8b. These discontinuities are observed for
all combinations of CFD and CSD node selections
and occur for interpolations in deflections, forces and
pitching moments. While not readily apparent, the
differences in the CFD (a) and non-proximal inter-
polations (c) are in areas with small radial expanses
and/or with rapid changes, such as the tip region of
the pitching moment.

Temporal Interpolation: Motion Data

In the prior studies, all interpolations were made at
identical azimuthal locations for the rotor. However,
unlike the prior spatial examples where data can be
mined at any set of airstations without affecting the
overall cost or accuracy of the CSD simulation (when
using finite-elements), temporal location changes will
impact the CSD simulation time. Depending on the
flight conditions of the rotor, typically the CSD sim-
ulation can be run at 5◦ azimuth increments to ob-
tain accurate results, while the CFD code must be
run at < 1◦ azimuthal increments. As noted previ-
ously, running the CSD simulation at the same az-
imuth increment as the CFD code will result in no
work errors due to temporal interpolation (since there
is none). However, this can add significant costs
to loosely-coupled simulations, and it of interest in
tightly-coupled simulations as freezing motion dur-
ing small azimuthal increments is a way to increase
the efficiency of the CFD–CSD simulations.

The results of the temporal interpolation are very
similar to those of the spatial interpolation. Figure 9
illustrates the results for 5◦ azimuth interpolation. It
is obvious that the discontinuities that resulted from
the spatial interpolations are again observed for tem-
poral integrations. The influence of interpolation us-
ing the most accurate methods are depicted in Fig. 9
a and c, in conjunction with Fig. 10. For this case,
the interpolation methods begin to loose accuracy at
15◦ azimuth interpolation for the smaller features of
the motion. The trends in the errors are comparable
to the spatial interpolations previously discussed.

CFD–CSD Rotor Simulations

The initial beam simulations provide understanding
of behavior of the interpolation, and overall the study
indicates that for a single interpolation, the tech-
niques evaluated result in less than 1% error in vir-
tual work when transferring data between the CFD
and CSD methods. However, for CFD–CSD rotor
computations, it is necessary to understand the con-
sequences of the interpolation errors on the simula-
tion. Thus, the next step is to apply the results of the
prior studies to a CFD–CSD rotor problem of inter-
est. The CSD method utilized for these simulations is
DYMORE [1], using a C0 finite element beam model.

For this evaluation, the impact of the CSD airsta-
tion locations for a given interpolation method is
studied. It was observed that the interpolation er-
rors were minimized for the 81 radial station CFD
grid at about 50 airstations, with all methods except
the proximal method yielding approximately compa-
rable interpolation accuracy. Fig. 11, which illus-
trates the cubic spline method clearly indicates that
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the small interpolation errors can have a significant
impact on the CFD–CSD simulation. The 81-station
result at the 77% radial station provides the result
obtained without spatial or temporal interpolation.
The 41-station result is closest to the minimal er-
ror distribution observed for the spatial interpolation,
while the 21-station and 61-station show that the pre-
dicted deflections are not as accurate, and that work
errors are increasing, as expected. Similar trends are
observed for normal force and pitching moment for
these simulations, and these results are comparable
to the observations of Farhat [16] in fixed-wing appli-
cations. Other important results that are extracted
from a CFD-CSD simulation are the controls needed
to achieve the trimmed solution. For these results, a
given thrust coefficient and zero pitching/rolling hub
moments were utilized as the basis for trim. The 41-
station and 61-station results remained, respectively,
within 10% and 15% of the predicted controls (col-
lective and cyclics). The 21-station results were 40%
to 50% in error with respect to the non-interpolation
results. This is comparable to differences of 1◦ (41-
stations) to 5◦ (21-stations) in collective. These re-
sults were found to be repeatable for another test
case evaluated using the same parameters. For high
thrust and maneuvering cases on the edge of the
flight envelope that are of particular interest to the
research community, the over prediction in the col-
lective, which is needed to achieve trim, could result
in failure of the CFD-CSD methodology.

Unstructured CFD Methods

The question of conservation during the data ex-
change between a structured CFD and the CSD
methodologies can be avoided if the airstations are
chosen to lie at the radial CFD grid locations.
However, as illustrated in Fig. 2c, unstructured
CFD methods are constrained to use interpolation
when a surface mesh of triangular faces is employed.
Thus, the surface loads must be converted into one-
dimensional lifting-line format so that it may be used
by the CSD code. To accomplish this, the CFD rotor
surface is first divided into panels that mimic struc-
tured grid radial stations extending from leading edge
to trailing edge, where the center of each panel cor-
responds to an airstation on the lifting-line model.

There are two methods to obtain the forces and
moments for these airstations. The first is to slice
the blade along a radial station that intersects the
point and the blade surface from leading to trail-
ing edges, resulting in forces and moments per unit
length. These are then integrated over the panel
area and evaluated similarly to the structured CFD
method. A second approach is to sum integrated
forces from each CFD surface cell that lie within the

panel are to define the total forces and moments act-
ing on the panel. This has the potential to capture
changes in the physics over small areas (for example,
loads from a micro flap or piezoelectric device that is
smaller than the extent of the defined panel) without
a priori knowledge of the loading.

When implementing the second approach, it is nec-
essary to recognize that an unstructured cell may
not necessarily be contained within a single airstation
panel. If the load is assumed to be constant over the
CFD cell, then this issue can be addressed by com-
puting the percent of the cell area present in each
panel, yielding an exact representation of the load-
ing, or a proximal (nearest-neighbor) assumption can
be made. The impact of the proximal assumption
can be seen in Fig. 12, which compares the result-
ing airstation loading during the CFD-CSD coupling
process. The proximal method results in a piecewise
airloads profile over the azimuth, along with a sig-
nificant loss of accuracy, indicating a loss in virtual
work, as per Farhat’s analysis [16] and that observed
herein for the structured grid.

While the linear interpolation and spline interpola-
tions yielded very similar results for the interpolation
of the blade motion, their application in the unstruc-
tured methodology provides results that are not as
comparable, as observed in Fig. 13. The cubic spline
provides a much smoother deflection, similar to that
for the unstructured method, while a simple linear in-
terpolation to the unstructured modes includes what
appear to nonphysical oscillations.

2D Spatial Conservation

While the primary focus of CFD-CSD coupling to
date has focused on the assumption that a beam
model can correctly represent the structure of the ro-
tor, research into advanced concepts such as aeroelas-
tic tailoring of the rotor blade via piezoelectric con-
trols will require that the rotor blade be structurally
modeled as a plate or shell. Thus, the loads-deflection
interchange will require that two-dimensional inter-
polation be applied. For this application, the re-
searcher may once again utilize the CFD grid to
set up airstations where the structural model is to
be queried for deflection information. If the CSD
methodology can extract this information directly
from the finite elements at airstations that are cen-
tered within each CFD node, then conservation be-
tween the grids is assured. If it is not possible,
then again interpolation is necessary, now with two-
dimensional methods.

Two-dimensional interpolation methods for fixed-
wing CFD-CSD coupling are widely published, as
noted previously. Therefore, the application of two
of these interpolation methods will be directly evalu-
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ated for a typical rotor blade in level flight. In order
to include illustrations that are visually significant,
figures will restricted to the blade tip region. The
original CFD tip grid includes 41 radial stations with
56 chord stations, shown with the force distribution
in Fig. 14. The CSD surface is composed of equidis-
tant 11 and 21 radial airstations, in combination with
21, 41 and 61 chord airstations.

The magnitude of the errors in two-dimensional
applications is much higher than its one-dimensional
counterpart, as shown in Fig. 15 Increasing the num-
ber of stations in the radial direction yields a trend
of diminishing return similar to that observed previ-
ously for one-dimensional applications (Fig. 6). In-
creasing the number of airstations along the chord
improves the interpolation as well, although the cost
of the interpolation is prohibitive to increasing the
number of points without the addition of computa-
tional partitioning, as noted in the method descrip-
tion. The thin plate spline (TPS) method appears to
be more sensitive to the number of chord airstations
compared with the MQ method. As the number of
chord airstations is increased, the methods yield com-
parable accuracy in the interpolations.

Further analysis, including CFD-CSD coupling
is planned with both unstructured and structured
methods in the near future.

Conclusion

It has been demonstrated that the choice of inter-
polation method and selection of airstations for the
exchange of data across the fluid/structure interface
can impact the ability of CFD–CSD coupling meth-
ods to predict accurate loads. It is recommended for
lifting-line (beam) CSD representations of rotors that
• Airstations are located along the reference axis

at the midpoint between each CFD radial node
to avoid interpolation in structured grids. This
will not require modification of or additional
cost in finite-element models that allow airsta-
tion queries of the consistent basis function.

• When interpolations are necessary, airstations
are located so that the minimum error is ob-
tained after interpolation. This requires airsta-
tions to be located near the CFD nodes or mid-
points, and they should be tailored for each new
CFD grid. The airstation locations can be scaled
linearly if the CFD grid distribution remains the
same during grid refinement.

• The interpolation method should be chosen to
be C0 or higher. For this work, the CSD finite
element model enforced C0 continuity. Proximal
methods should be avoided.

• Use of total forces and moments as a measure
of accuracy are not as informative as the equiva-
lence of work across the fluid/structure interface.

• Unstructured CFD codes must utilize some form
of interpolation, and they also appear to be more
sensitive to the interpolation methods. They
may require higher levels of continuity (Cn) to
be as accurate as their structured CFD counter-
parts.

As researchers investigate advanced aeroelastic tai-
loring of rotor blades, lifting-surface structural repre-
sentations will be necessary.

• Surface representations are more sensitive to in-
terpolations, and it is more difficult to preserve
work across the fluid/structure interface.

• Interpolation techniques that preserve work
across the fluid/structure interface has been a
topic of study within the fixed-wing community
and their applicability to rotor blades have been
demonstrated.

• Additional research in this area is planned in the
near future.

Acknowledgments

First and foremost, the author is indebted to Prof.
Olivier Bauchau at Georgia Tech, not only for this pa-
per, but throughout the years for the many technical
conversations on structural dynamics and CFD–CSD
coupling. While he provided many insightful com-
ments for this work, any mistakes herein are the au-
thor’s own. The author would like to thank the Non-
linear Computational Aeroelasticity Lab (NCAL) at
Georgia Tech for their contributions to this work, in-
cluding Jennifer Abras, Yann Vonderscher, and Eric
Lynch, specifically, who all contributed data from
their respective research. The author would like to
thank Nic Reveles in particular for his unstinting ef-
forts that contributed to this study.

Computational support for the CFD simulations
was provided through the DoD High Performance
Computing Centers at MHPCC, ERDC and NAVO
through an HPC grant from the US Army. Dr. Roger
Strawn is the S/AAA of this grant.. The computer
resources of the Department of Defense Major Shared
Resource Centers (MSRC) are gratefully acknowl-
edged.

References

[1] Bauchau, O.A., Bottasso, C.L., and Nikishkov,
Y.G., “Modeling Rotorcraft Dynamics with Fi-

10



nite Element Multibody Procedures.” Mathe-
matical and Computer Modeling, Vol. 33, 2001,
pp. 1113–1137.

[2] Abras, J. N., Smith, M. J., and Bauchau, O.
A., “Rotor Airload Predictions Using Coupled
Finite Element and Free Wake Methods.” Pre-
sented at the American Helicopter Society 62nd
Annual Forum, Phoenix, AZ, May 9–11, 2006.

[3] Saberi, H., Khoshlahjeh, M., Ormiston, R. A.
and Rutkowski, M. J., “Overview of RCAS
and application to advanced rotorcraft prob-
lems.” AHS International 4th Decennial Special-
ists’ Conference on Aeromechanics, Jan 21-23
2004, San Francisco, CA, 2004, p 741-781.

[4] Johnson, W., “Rotorcraft Dynamics Models
for a Comprehensive Analysis.” American Heli-
copter Society 54th Annual Forum, Washington,
D.C., May, 20–22 1998.

[5] Bir, G., and Chopra, I., “Development of
UMARC (University of Maryland Advanced Ro-
torcraft Code).” American Helicopter Society
46th Annual Forum, Washington DC, May 1990.

[6] Beniot, B., Dequin, A., Kampa, K., Grunhagen,
W., Basset, P., and Gimonet, B., “HOST, a Gen-
eral Helicopter Simulation Tool for Germany and
France.” American Helicopter Society 56th An-
nual Forum, Virginia Beach, Virginia, May, 2–4
2000.

[7] Kunz, D. L., “Comprehensive Rotorcraft
Analysis: Past, Present and Future.” 46th
AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference,
Austin, TX, April 18–21 2005.

[8] Datta, A., Nixon, M., and Chopra, I., “Review
of Rotor Loads Prediction with the Emergence
of Rotorcraft CFD.” Presented at the 31st Eu-
ropean Rotorcraft Forum, Florence, Italy, Sept.
13–15, 2005.

[9] Smith, M. J., A Fourth-Order Euler/Navier-
Stokes Prediction Method for the Aerodynam-
ics and Aerolasticity of Hovering Rotor Blades.
PhD Dissertation, Georgia Institute of Technol-
ogy, 1994.

[10] Bauchau,O. A. and Ahmad, J. U., “Advanced
CFD and CSD Methods for Multidisciplinary
Applica- tions in Rotorcraft Problems,” AIAA-
1996-4151, 6th NASA and ISSMO Symposium
on Multidisciplinary Analysis and Optimization,
Bellevue, WA, Sept. 4–6, 1996.

[11] Beaumier, P., Costes, M., Rodriguez, B., Poinot,
M., Cantaloube, B., “Weak and Strong Cou-
pling Between the elsA CFD Solver and the Host
Helicopter Comprehensive Code.” Presented at
the 31st European Rotorcraft Forum, Florence,
Italy, Sept. 13–15, 2005.

[12] Shelton, A., Braman, K., Smith, M. J. and
Menon, S., “Improved Turbulence Modeling for
Rotorcraft, American Helicopter Society 62nd

Annual Forum, Phoenix, AZ, May 9–11, 2006.

[13] Bhagwat, M., Ormiston, R., Hossein, S., and
Xin, H.,“Application of CFD/CSD Coupling for
Analysis of Rotorcraft Airloads and Blade Loads
in Maneuvering Flight,” American Helicopter
Society 63rd Annual Forum, Virginia Beach, VA,
May 1–3, 2007.

[14] Abras, J. and Smith, M. J., “Rotorcraft Simula-
tions Using Unstructured CFD-CSD Coupling.”
AHS Specialists Meeting, San Francisco, CA,
January 2008.

[15] Ananthan, S., and Baeder, J., “Prediction and
Validation of Loads on Bearingless Rotors Us-
ing a Coupled CFD-CSD Methodology.” Ameri-
can Helicopter Society 64th Annual Forum, Mon-
treal, Canada, April 29–May 1, 2008.

[16] Farhat, C., and Lesoinne, M., “A Conserva-
tive Algorithm for Exchanging Aerodynamic and
Elastodynamic Data in Aeroelastic Systems.”
AIAA-98–0515, 36th Aerospace Sciences Meet-
ing and Exhibit, Reno, NV, Jan. 12–15,1998.

[17] Farhat, C. , Lesoinne, M., and LeTallec,
P. “Load and motion transfer algorithms for
fluid/structure interaction problems with non-
matching discrete interfaces: Momentum and
energy conservation, optimal discretization and
application to aeroelasticity.” Computer Meth-
ods in Applied Mechanics and Engineering, v
157, n 1-2, Apr 28, 1998, p 95-114.

[18] Smith, M. J., Hodges, D. H., and Cesnik, C. E.
S., “An Evaluation Of Algorithms Suitable For
Data Transfer Between Noncontiguous Meshes.”
ASCE Journal of Aerospace Engineering, Vol 13,
No. 2, April 2000, pg. 52-58.

[19] Smith, M. J., Cesnik, C. E. S., and Hodges,
D. H., “An Evaluation Of Computational Al-
gorithms Suitable For Fluid Structure Interac-
tions.” AIAA Journal of Aircraft, Vol. 37, No. 2
(Mar-Apr 2000), pg. 282-294.

[20] Aminpour, M., Pageau, S., and Shin,
Y., “Improved Interface Modeling

11



Technology.” AIAA-2001-1548, 42nd

AIAA/ASME/ASC/AHS/AASC Structures,
Structural Dynamics, and Materials Confrence
& Exhibit, Seattle, WA, April 16–19, 2001.

[21] Ahrem, R., Beckert, A., and Wendland, H.,
“A Meshless Spatial Coupling Scheme for
Large-Scale Fluid-Structure-Interaction Prob-
lems.” CMES - Computer Modeling in Engineer-
ing and Sciences, v 12, n 2, 2006, p 121-136.

[22] Conte, S. D., and de Boor, C., Elementary
Numerical Analysis: An Algorithmic Approach.
McGraw-Hill Book Company, New York, New
York, 1980.

[23] Kansa, E. J., “Mulitquadrics - A Scattered Data
Approximation Scheme with Applications to
Computational Fluid Dynamics I: Surface Ap-
proximations and Partial Derivative Estimates.”
Computers and Mathematics with Applications,
Vol. 19, No. 8/9, 1990, pp. 127 145.

[24] Hardy, Rolland L., “Multiquadric Equations
of Topography and Other Irregular Surfaces.”
Journal of Geophysical Research, Vol. 76, No.
8, March 1971, pp. 1905 - 1915.

[25] Duchon, Jean, “Fonctions-Spline nergie Invari-
ante par Rotation.” Technical Report R. R. No.
27, Universit de Grenoble, January 1976.

(a) Structured grid with arbitrary CSD airstations

(b) Structured grid with CSD airstations at
midpoints of radial grid slices

(c) Unstructured grid

Figure 2: An example of CFD Blade Grids and cor-
responding CSD airstations.
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Figure 3: Average one-dimensional (radial) work er-
ror due to interpolation.

(a) 81 CFD Radial Locations

(b) 241 CFD Radial Locations

Figure 4: Comparison of one-dimensional (radial)
work error due to interpolation.

Figure 5: Minimal one-dimensional (radial) work er-
ror due to interpolation.

Figure 6: Interpolation errors for a rotor undergoing
radial deflections.
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(a) CFD 81 radial station grid

(b) Proximal interpolation

(c) Linear, Cubic Spline, Hermite Spline
interpolation

Figure 7: Comparison of one-dimensional (radial)
normal force interpolations using 50 equidistant CSD
airstations.

(a) CFD grid

(b) Proximal interpolation

(c) Linear, Cubic Spline, Hermite Spline
interpolation

Figure 8: Comparison of one-dimensional (radial)
pitching moment interpolations using 50 equidistant
CSD airstations.
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(a) CFD 81 radial station grid, 1◦ azimuth

(b) Proximal interpolation

(c) Linear, Cubic Spline, Hermite Spline
interpolation

Figure 9: Comparison of normal blade motion using
5◦ azimuth increments interpolated to 1◦ azimuth in-
crements.

(a) 10◦ azimuth increments

(b) 15◦ azimuth increments

Figure 10: Comparison of normal blade motion at
higher azimuth increments interpolated to 1◦ azimuth
increments using spline interpolation.

Figure 11: Comparison of normal blade motion using
cubic splines after CFD-CSD coupling.
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Figure 12: Comparison of airloads with and with-
out overlapping grid surface element division on span
station assignments. Figure courtesy of Ref. [14].

Figure 13: Comparison of interpolation methods
applied to grid motion for unstructured lifting-line
CFD-CSD coupling. Figure courtesy of Ref. [14].

Figure 14: Two-dimensional CFD grid with loads dis-
tribution along the tip.

Figure 15: Errors associated with two-dimensional in-
terpolation using multiquadric-biharmonics and thin
plate splines.
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