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The paper describes the method used for investigations of the tail 
rotor blade loads in hovering and the results obtained. The developed 
analytical method is specific as its single algorithm covers all known 
types of blade-to-head attachments, and, when analysing loads, the tail 
rotor as a whole is considered. This allows to determine loads applied to 
gimballed rotors, two-bladed teetering rotors and their combinations in the 
form of four-bladed rotors consisting of two pairs of two-bladed teetering 
rotors with due account of attachment elastic properties of each two-bladed 
module. 

SUBJECT OF INVESTIGATIONS. COORDINATE SYSTEMS 

The helicopter making a turn in the horizontal plane relative to the 
centre of gravity position in hovering is investigated. The helicopter 
rotates at an angular velocity,n ,and with an angular acceleration £0 . The 
tail rotor rotates steadily at an angular velocity w. The following 
counterclockwise coordinate systems are introduced (Figure 1) : 

The triads of 

fixed earth axes; 

helicopter centre of mass 
system; the x8axis runs in 
direction, and the Y8 axis, 
main rotor shaft; 

coordiriate 
the flight 
along the 

tail rotor head coordinate system; the 
Zzaxis runs along the tail rotor shaft, 
the Yraxis, along the projection of one 
of the head sleeves on the plane of ro
tation. 

the single 
centre of each system. 

vectors e
3

,e
8

and ~are connected with the 

is: 

axes 

The matrix of transition from the earth axes to the helicopter axes 

The matrix of 
is: 

c 8 = 0 
(

cose 

3 
sin& 

0 

1 

0 

transition from the 

( cos0 
c. -s~n0 ·a 

helicopter 

sin0 0) casu 0 . 

0 1 

BLADE ELEMENT VELOCITIES 

The radius-vector of a blade point is: 

( 1) 

axes to the tail rotor 

(2) 

(3) 

The absolute velocity of a blade point is an absolute time derivative 
of the radius-vector of this particular point: 

a, c7
3 ·- c7 ,. ar

13 • 
Ia = --- = ~· dt dt dt 

( 4 ) 
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The first term in this expression is the velocity of the 
centre of mass, the second, the velocity of the tail rotor hub 
the third, the velocity of the relative blade section movement. 

helicopter 
centre, and 

d- d7 ~·7 

With 'J - 1 · _·,_-~ , Q x ~j ~ d-·., "'7",- ~~- D1 '· ~· and , using the transition 
~- B' Jr . 

matrices CQ
3 

and C18 to change over to the triad axes e~ we can obtain 
projections of the absolute velocity of the blade points. -

cos0(cosG 

. ( . 
-SHJ0 cosO I\ -: 2 si::-1~- ~ ! .. 6sin0 - r . .,.. -~..r - Orz sin0 

B F t" \ x, I 
(5) 

sine 

AIR FLOW VELOCITIES IN BLADE SECTIONS 

Let us place the OLX~YtZ~counterclockwise coordinate system in some 
i-th blade section so that the X~axis could run along the blade chord to
wards the trailing edge, and the Y,-axis, at a tangent to the blade rigid 
axis of this section, and the Z;-axis, normal to the 0~ X·, Y;. plane (Figure 2). 

During blade deformation, each section turns by an angle }3y in the Z1 01 Y1 
plane of thrust, and by an angle fix in the x,~Y,plane of rotation. 

We can get the c;, transition matrix from the o,x, Y, z,coordinate system 
having the~ triad to the O;X;YiZ;coordinate system by assuming that the 
angles ftx and J~ are small: 

( ~ :: ;) 
The j3y angle comprises the aoK 

available in the rotor, i.e. 
design 

( 6} 

coning angle if it is 

( 7} 

where f3'y is the elastic component of the blade section angle in 
the plane of thrust. 
Having the air flow velocity projections in the e~triad axes that are 

equal in magnitude but opposite in sign to expressions (5}, and the c,, 
transition matrix from the ei triads connected to the rotor centre to the~eL 
triad axes, we can get air flow velocity projections in each blade section 
with due account of its deformation in two planes: 

-I-~ -I' -(31 x, X )' 

' v 0 <i Ci -V '. -/3,;1~ - ~-~. f3,.J~ ( 8} v I 
' 

,, 
' ' ' 

,, 
-I·~ f3., I) - I' z 

' ' 
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TAIL ROTOR INDUCED VELCCITIES 

The calculation of tail rotor induced velocities in hovering turns is 
made by using the vortex theory [1] which allows to take into account 
radial and azimuth variability o~ the air flow velocity normal to the rotor 
disc that occurs in hovering turns. The initial equations used for 
calculations of induced velocities are the following: 

- equation used for calculation of the circulation at 
each disc point 1 

[(T, ul • ~ c,.<T,v)C,b; < 9 ) 

- equation used for calculation of the circulation 
distributed along the blade radius 

ZJ("'i',0) Cy 
y0',¢l·,·· .... (10) 

.. , ;-; , r ( lo ..,.. ui) 

In the axial flow condition 
( 11) 

Using equations (9) 
can get the equation 
point of the rotor disc. 

and (10) with due account of equation (11) , we 
required to calculate the induced velocity at each 

(12) 
4 8 

This equation coincides with that used in the momentum transfer theory 
to calculate the induced velocity, but here V 0 denotes the magnitude of the 
air flow speed at each point of the rotor: 

J~ =-lUx_- r.rvsin0. 
0 • 

In making turns V..1here the tail rotor operates in the conditions 
similar to that of the main rotor in vertical descent, the magnitude of the 
induced velocity should be corrected with due account of the induced 
velocity value dependence of the helicopter rate of descent based on 
experimental data [2, 3). This dependence reflects changes in the rotor 
disc air flow pattern in conditions of the vortex ring, as well as those 
close to it. The values of the induced velocity in this paper are corrected 
for the value of the axial velocity V0 corresponding to the tail rotor disc 
centre. 

ACCELERATION OF BLADE ELEt1ENTS 

Equations expressing the projections of absolute blade element 
accelerations required for calculation of inertia loading have been 
obtained as time derivatives of the absolute blade section velocity 

d"' 'a d - - - -u-0 "' -. - o; + v ... r~ ... (<7 ... n) x r1. 
dt dt 0 (13) 

and they take the form: 
. 1 ~ ). 

w -2wrv + -0 [rv sin2V- 'x (1 + cos21/t)J ... [e: Ur:..o+ 'z) + n lx. 6 + 20rzJcost/J, 
Q X

1 
'~ 2 'I 1 f2 1 1 

I , 1 l 

+- n 'x sin20 + -{1 ')' cos2rjr, 
2 1 2 l 

( 14) 

w e: lx.o-Ol(ix. 6 .,...r2 )-[-t:n'x -;-20(wr.-~\)]cos0+[e: r.,. +20(wrx +;)]sin0. 
Qzl fl l ., l \ '1 [2 'I 'I y

1 
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EFFECT OF TAIL ROTOR DRIVE SHAFT VIBRATION ON 
BLADE LOADS 

The tail rotor loading is scarcely affected by the tail rotor drive 
shaft vibration. However, when sone frequency of the tail rotor drive shaft 
end is close to a frequency of the tail rotor blades the level of the loads 
is naturally expected to rise. Thus, for example, a significant tail rotor 
loading dependence of the tail rotor gearbox vibration level equal to the 9 
per main rotor revolution fre~wency has been registered for the Mi-2 tail 
rotor. 

To evaluate this phenomenon, it is necessary to add the projections of 
the vibrational acceleration vector of the tail rotor drive shaft end to 
the like projection~ of the absolute acceleration vector: 

w • < r:~·P::::) ( 1s J 
p \ w:p 

Vibrations of the tail rotor 
0
drive shaft end occur at several 

frequencies, therefore, the vibrational acceleration values are determined 
as a sum of the vibrational accelerations occurring at each frequency. 

METHOD USED TO CALCULATE BLADE NATURAL OSCILLATION 
FREQUENCIES AND MODES 

To determine frequencies and modes of twisted blade natural 
oscillations, use is made of the calculational technique [4] which has been 
obtained from the familiar three-moment method applied for the first time 
by T. Morris and W. Tye to compute forced oscillations of the blade in one 
plane in the centrifugal field. The calculated modes of the blade lateral 
oscillations are characterized by displacements in two mutually 
perpendicular directions which, in their turn, are perpendicular to the 
blade longitudinal line. These directions coincide with the rotor planes of 
rotation and thrust, moreover, bending moments corresponding to each mode 
of natural oscillations are determined for the same directions. Boundary 
conditions characterizing the blade-to-hub attachment type can be different 
for the plane of rotation and that of thrust thus allowing to define the 
frequencies and modes of blade oscillations for different combinations of 
hub attachment conditions, and the way the initial data are specified 
allows to describe rather accurately the mass and flexural rigidity 
distribution along the blade radius. 

APPLICATION OF THE BUBNOV-GALERKIN METHOD TO SOLVE 
THE PROBLEM 

Blade motion under external loads is determined by the Bubnov-Galerkin 
method; to do this, coupled blade natural flexural oscillation modes in 
the planes of rotation and thrust are used. The oscillation modes are 
considered to be vector-functions of the blade radius with two components X 
and Z: 

(16) 
As a rule, when the Bubnov-Galerkin method is used to solve equations 

expressing coupled oscillations, a system of related differential equations 
as to the unknown time functions a,r,) is obtained: 

dr; i "' I,:! ... n. (17) 
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Here, r; is the frequency of the i-th mode of the 
blade oscillations 
is the reduced mass of the i-th mode of 
the blade oscillations 

Lz plane is t:.he blade external load in the 
of rotor thrust 

L1 plane is the blade external load in the 
of rotation 

This approach allows to calculate motion of an isolated blade and its 
stresses. 

However, there exist types of rotors for which it is impossible to 
compute blade stresses by us1ng this method. These are: two-bladed 
teetering rotors, three-bladed gimballed rotors and four-bladed rotors 
consisting of two pairs of two-bladed teetering rotors with due account of 
the attachment elastic properties of each two-bladed module. 

The difficulty is that even and odd excitation harmonics result in 
oscillations of blades having different types of blade-to-hub attachment. 
For example, in the two-bladed teetering rotor odd excitation harmonics 
make the blades oscillate flapwise as if they were articulated, and 
chordwise as if they were rigidly fixed; whereas even excitation harmonics 
make the blades oscillate chordwise as if they were rigidly fixed, and 
flapwise as if they were articulated. But it should be borne in mind that 

·the in-plane articulated blade is rather conventional as the tail rotor 
drive shaft torsional stiffness is not equal to zero. To determine blade 
load constant components,it is necessary to consider a third type of blade
to-hub attachment type, i.e. chordwise and flapwise rigidly fixed blade 
root. 

The above mentioned problem can be solved 
oscillation modes. The notion about normal modes 
motion has been introduced by L.N. Grodko (5]. 

by 
of 

introducing 
the elastic 

rotor 
blade 

Figures 3, 4: and 5 sholn' normal oscillation modes of two-, three- and 
four-bladed rotors. Blade motion in the K-th rotor oscillaton mode can be 
presented by theN, natural oscillation modes of the blade with the 
appropriate conditions of the hub attachment. Blade deformation with due 
account of motion in all normal modes can be calculated by using the 
following equations: 

- in the thrust plane 
\ 
. ' 

z(.·,:)" L: 
1\= 

- in the plane of rotation 
\I\ liT . . 

X(c,t)= L L &~(t)X 1 (c), 
K" J j = I 

( 18) 

Here, K - is the number of normal rotor oscillation mode; 
j - is the number of the natural oscillation overtone of 

an isolated blade; 
5~- is a coefficient of blade deformation in respect 

to the jth overtone of K-th rotor oscillation mode. 
Due to the introduction of the rotor oscillation modes, the system of 

equations used for calculating deformation coefficients by the 
Bubnov-Gelerkin method will take the form 

j = 1,2.,, nT, K"' 1,2 ... .\'K" ( 19) 
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Here, ~K- is the number of normal rotor oscillation modes; 
nr - lS the number of natural oscillation overtones being 

considered; 
i - is the rotor blade number; 
n8 - is the number of rotor blades. 

Having found the time 
obtained 

functions~~tail rotor blade bending 

\i\ nT 

1!4 1,,,,~ I L o~lt)-JI~(,): 
, ~ I j = I 

\, 
\fxl',t\~ I 

1\.:: l 

(20) 

moments are 

And now let us consider expressions for the loads L z. and L x in 
equations (17) and (19). 

The aerodynamic loads distributed along the blade radius are defined 
from the known values of the blade section air flow velocity projections 
(8) with account of the airfoil aerodynamic characteristics. 

The inertia components of the in-plane and out-of-plane loads are 
determined by expressions (14). However, if the tail rotor blades are 
rigidly attached to the hub with a design coning angle, the acceleration 
projection (14) gives rise to additional blade out-of-plane loads. For 
rotors having the design coning angle in the thrust plane in expressions 
(14), the following sum should be taken for the projection of the vector r 
onto th.e a:xis z:l. - 'zl 

where 

Let us 

,. 
z is the projection caused by blade deformation; 

o·r is the elevation of the 01\ - blade point at r over 
caused by the design the plane of rotation 

coning angle. 
consider the projection : the absolute acceleration 

: • l ; 1 l ' 1 ~ • 
u: "'-w·rv- -;;--D 'v -~wr_._. 
a\ '1 .!. ·t .~1 

[I on I' n ··)· n -'1·· 
- E:

0 
( r..,6- 'z)-.. 0 ft-:.6"' -·.rz :::1n0--::;- .. r'X Sln-u- -:-_'1 .• ryCOS-U. 

•• 1 1 

The first term is a centripetal acceleration. When the design coning 
angle is available, it produces time constant blade loads in the thrust 
plane. Other terms in the expression /( can be considered as a variable a, . 

. , 
component of a centripedal acceleration field that will be an external 
inertia load. 

Let us denote the magnitude of the variable component force Nw : 

R I 
\.(' ""jm(-0- n 'y - 2w~x 

[ w 'I 1 

( 21) 
I ~ _. 

0 
, 1 

0 
1 

- - 0- r2 'x. ::-ln NV - - -- 'v Cos 20) dr. 
'" I 2 •1 

The final expressions for additional shearing forces caused by the 
design coning angle as well as by the in-plane and out-of-plane deflections 
take the form: 

Q , . I 

·x = -( \ u· x') , 
' 
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Here :' and x' are in-plane and out-of-plane blade section angles. 
Since the tail rotor is in the vertical plane the blade weight causes 

blade loading with in-plane 1 per revolution frequencies. 
The shearing forces distributed along the radius are: 

- in-plane, qx "'-mfsint.:f; 

' ( 2 3) 
- out-of-plane, 

Thus, expressions for calculating external loads applied to the blade, 
take the form: 

CALCULATED STRESSES IN TAIL ROTOR BLADES 
IN HOVERING TURNS 

When calculating loading, the helicopter turns 
performed by changing the tail rotor pitch from its trim 
value and at a specified rate. Typical time variation 
pitch is given in Figure 6. 

( 2 4) 

in hovering are 
by a specified 

of the tail rotor 

The blade loads and flapping were calculated both for the left- and 
right-hand turns. In left-hand hovering turns made by the helicopter by 
reducing the tail rotor pitch from its trim the loads obtained are higher 
than those obtained in right-hand turns. This is attributed by the fact 
that in left-hand turns the helicopter angular velocity of rotation already 
attained is reduced by increasing the tail rotor pitch to the maximum 
value, and, at the same time, the air flow along the tail rotor axis caused 
by the helicopter angular velocity of rotation increases still further the 
blade section angles of attack up to stall values. 

Figures 7, 8 and 9 show calculated bending moments and flapping motion 
amplitudes for the Mi-8 three-bladed gimballed tail rotor at different 
angular velocities of rotation reached during turns. As can be seen from 
the figures, the calculated points are within the field of scatter of data 
obtained in test measurements, and the maximum values of the bending 
moments and flapping motion amplitudes are close to the maximum values 
obtained in tests. 

Figure 10 shows calculated bending moments in the blade root versus 
time of turn.Here one can see time variations of the blade flapping motion, 
helicopter angular velocity, angular acceleration and turn angles. The 
distribution of the total loads in the planes of maximum and minimum 
rigidity as well as their components for 3 harmonics along the blade radius 
are given. 

The presented calculation data show that the maximum blade bending 
moments act with the 1 per revolution frequency. At the same time it can be 
clearly seen that the component of the moment acting with the 2 per 
revolution frequency in the total value of the bending moment changes with 
the tail rotor pitch. The maximum values of the loads applied to the tail 
rotor during a turn are reached only "'hen the pitch increases from the 
minimum value to the maximum one. The maximum values of the blade flapping 
are attained during the same period of time. 

The Mi-28 tail rotor is two pairs of two-bladed teetering rotors 
connected by an elastic member. The elastic member stiffness was chosen 
so that it could provide the required blade frequency in the lowest 
skew-symmetric rotor oscillation mode. 
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The two-bladed modules are arranged so that the minimum angle between 
the two pairs of blades in the plane of rotation is J6 degrees. This 
feature makes it impossible ~o use the pattern of the four-bladed normal 
modes given in Figure 5, as the pattern is effective for the rotor whose 
axial symmetry is characterized by the 90-degree rotor angle. 

The axial symmetry of the X-form rotor features the 180-degree rotor 
angle, i.e. it is similar to ~hat of the two-bladed rotor. The pattern of 
the X-form rotor normal modes assumed in the paper is presented in Figure 
11. It is easy to see that the condition of orthogonality is observed for 
this pattern of normal modes. 

To determine the effect of mutual azimuthal location of two pairs of 
blades on the tail rotor loading, a number of calculations in which the 
angle between the blade pairs changed from 0 to 90 degrees have been made. 
Figures 12 and 13 show calculations in the form of dependences of bending 
moments in the 1st and 2nd harmonics on the angle between two pairs of 
blades. The parameter ~a most significantly affects the in-plane bending 
moment acting with a 2 per revolution frequency. When the angle changes 
from 90 degrees to 0, the amplitude value becomes almost 4 times lower. But 
the value of the total bending moment amplitude changes only by 20%. This 
is attributed by the fact that the blade loading occurs mainly in the lst 
harmonic, the component of the bending moment in the 2nd harmonic in the 
total value of the bending moment being 33% and 10% for ~a = 90 degrees 
and 0 respectively. 

Figures 14 and 15 compare the in-plane and out-of-plane bending moment 
values obtained for the Mi-24 X-form tail rotor in calculations and in 
tests. 

As can be seen from the presented data, the calculated values of the 
in-plane bending moments show a good agreement with those measured in 
flights. The out-of-plane bending moment values measured in tests were 
higher than the calculated ones. It is explained by the fact that, as the 
test have shown, a significant part of the blade out-of-plane bending 
moment is made up by the moment acting with a 4 per revolution frequency, 
which, in its turn, is attributable to the proximity of the blade 
frequencies to the 4th harmonic resonance. The calculations have not taken 
into account the 4th harmonic excitation, as a result, the level of 
calculated loads was almost twice as low as that obtained in flight tests. 

CONCLUSIONS 

1. A method for calculating blade loading in gimballed, 
teetering tail rotors and their combinations in hovering turns 
normal rotor oscillation modes has been developed. 

two-bladed 
by using 

2. A good agreement of calculated loads and flapping motion amplitudes 
with flight test results for the Mi-2, Mi-8 and Mi-24 tail rotors has been 
obtained. 

3. The Mi~2B X-form tail rotor loading has been investigated, and a 
significant effect of the azimuth angle between two pairs of blades on the 
2 per revolution bending moment amplitude has been shown. 
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ft-" the tE-O gimballed tail rotor. 

fig:,:rE 9. /:'.'llplit~de of blade rla?/}irtg rnot!on 
for tht HH1 an:! Hi·24 gir.;:;alled tail rotors. 
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