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The paper describes the nmnethod used for investigations of the tail
rotor blade loads in hovering and the results obtained. The developed
analytical methcd is specific as 1its single algorithm covers all known
types 0f blade~to-head attachments, and, when analysing loads, the tall
rotor as a whole is considered. This allows to determine loads applied to
gimballed rotors, two-bladed teetering rotors and their combinations in the
form of four-bladed rotors consisting of two pairs of two-bladed teetering
rotors with due account of attachment elastic properties of each two-bladed
module.

SUBJECT OF INVESTIGATIONS. COORDINATE SYSTEMS

The helicopter making a turn in the horizontal plane relative to the
centre of gravity position in hovering is investigated. The helicopter
rotates at an angular velocity, @ ,and with an angular acceleration €, . The
tail rotor rotates steadily at an angular velocity o. The following
counterclockwise coordinate systems are introduced (Figure 1):

~ O X, Y2 fixed earth axes;
- 0,8, ¥,z - helicopter centre of mnass coordinate

system: the Xgaxis runs in the fiight
direction, and the Ygaxis, along the
main rotor shaft;
-04&rz , tail rotor head coordinate system:; the
Z;axis runs along the tail rotor shaft,
the Yraxis, along the proiection of one
of the head sleeves on the plane of ro-
tation.
The triads of the single vectors ésfé
centre of each system.
The matrix of <transition from the earth axes to the helicopter axes

6and Eiare connected with the

is:
cosd 0 ~siny
Co=f 0 0 | (1)
sing ] cosf

The matrix of transition from the helicopter axes to the tail rotor
axes is:

cost  sind 0
C =1 ~siny cosdr 0
15 L o3 R (2)
: 0 { 1

BLADE ELEMENT VELOCITIES

The radius-vector of a blade point is:

r“=-F3-:—rB-"Fl. (3)

The absolute velocity of a blade point is an absolute time derivative
of the radius-vector of this particular point:

ar dr. JF dr

l_ v 3 B i i (4)

R at dt dt
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The first term in this expression is the velocity of the helicopter
centre of mass, the gecond, the velccity of the tail rotor hub centre, and
the third, the velocity of the relative blade section movement.

ér. _ 4 &r _
With & el — AT+ .7 _.I-0)~7, and , using the transitien
7e B, Mo, H s
matrices Cs, and C,. to change over to the triad axes &,, we can obtain
projections of the absolute velocity of the blade points.

20

cost(cost 1. - . 2a -0l -co8G 1. — '
[ i G X, 2, Y- D [H.U cosy Ty Teny T Qrz COSy
X H 1 1
- i .
[ : =2l —sindlcosfi, — 1. 5108 = Q/ .sind -r. = - ind
lu ) l},l € cosf " 'z, singl = Q1 asing r}l ‘ A,rxl Qrzlsmu {(5)
I .
z si A ;.0 - - Y - ind
. Ing ix -} z Cos7 - O e g r, ﬂrxlco.au Qr}_.lsmu

B N s

AIR FLOW VELOCITIES IN BLADE SECTICNS

Let wus place the 0O, X;Y;Z, counterclockwise ccordinate system in. some
i-th blade section so that the Xraxis could run along the blade chord to-
wards the trailing edge, and the Y-axis, at a tangent to the blade rigid
axis of this section, and the Z~axis, normal to the O; X.Y, plane (Figure 2).

During blade deformation, each section turns by an angle By, in the 2,0, VY,
plane of thrust, and by an angle £, in the X,0, Y, plane of rotation.

We can get the C; transition matrix from the 0,X, Y, 2,coordinate system
having the &, triad to the O;X;¥; Z;coordinate system by assunming that the
angles g, and B, are small:

i -3, 90
G50 A& L e (6)
0 -ﬁx 1
The f%, angle comprises the ‘o, design coning angle if it is
available in the rotor, i.e.
Py = o0, = By (7)

where By is the elastic conmponent of the blade secticon angle in

the plane of thrust.

Having the air flow velocity projections in the &, triad axes that are
equal in magnitude but opposite in sign to expressions (5), and the Cy,
transition matrix from the &, triads connected to the rotor centre to the &;
triad axes, Wwe can get air flow velocity projections in each blade section
with due account of its deformation in two planes:

i -+ I
Yy - - ’ 2 :
PawGl g | - Ak AR (o)
i =
"Izl B)} z,
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TAIL ROTOR INDUCED VELOCITIES

The calculaticon of taill rotor induced velocities in hovering turns is
made by using the vortex theory [1j which allows to take into account
radial and azimuth variability of the air flow velocity normzl to the roter
disc that occurs 1in hovering turns. The initial eqguations used for
calculations of induced velocities are the following:

- equation used for calculation of the circulation at

each disc point _ 1 _
FEg = — CLRull (9)

-~ egquation used for «calculation of the circulaticn
distributed along the blade radius

Z.I(Fu) Uy
A — ——————
v{r,) T (10)
In the axial flow condition
Y (7,0) = 2 (F). {11)
Using equations (9) and (10) with due account of eguaticn (11), we

can get the equation required to calculate the induced velocity at each

point of the rotor disc.
i
K ¥ Cryglo.r
vi{T,d) = - ’ -e-;/---—D 1-"—"'““--“—-“—'y . (12)

2 4 3

This eguation coincides with that used in the momentum transfer theory
to calculate the induced velocity, but here V, denotes the magnitude of the
air flow speed at each point of the rotor:

I; = -—Q[xé"' Qr).SEnd'.

In making turns where the tail yrotor operates in the conditions
similar to that of the main rotor in vertical descent, the magnitude of the
induced velocity should be corrected with due account of the induced
velocity value dependence of the helicopter rate of descent based on
experimental data [2, 3}. This dependence reflects changes in the rotor
disc air flow pattern in conditiens of the vortex ring, as well as those
close to it. The wvalues of the induced velocity in this paper are corrected
for the value of the axial velocity V, corresponding to the tail rotor disc
centre.

ACCELERATION OF BLADE ELEMENTS

Equations expressing the projecticons of absoclute blade element
accelerations reguired for calculation of inertia loading have been
optained as time derivatives of the absolute blade section velocity

a4 o . L _
w =“—=——-(If,3+[".1-[;,+(L:,‘-+Q)>:‘F)_ {13)

[

and they take the form:

B 1 i
, I T ! N7 - L _
e = 20“)ﬂ+ 5 Q [5151n'u rxl(1+ COS“V)}“{QQ(E&O*'er + Q1 g+ 2Qrzjcos¢,
X, 2 <
Q' +2wry = Le Ul : 207 L 0% sin : %
e m— s . = - - -+ 20 1AL e 20 -
wcv 5 ry1+ mrxl EQ .6 rzli VR PFE Q.z‘}smu * rxlsm o+ 5 Q r),lcos..,u, (14}
Y, 2
10 =ed, a=-0 U asr V=[-2 r. +20(wr --J:_HcoS{fJ+{e ro v 20 (wr +r‘)]sind;.
Az Q x.0 KL 21 { 'xx ‘1 ’\a Q2 )1 xl i

3 LR Y
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EFFECT OF TAIL ROTOR DRIVE SHAFT VIBRATION ON
BLADE LOADS

The tail rotor loading is scarcely affected by the tail rotor drive
shaft vibration. However, when sone fregquency of the tail rotor drive shaft
end is c¢lose to a freguency of the tail rotor blades the level of the loads
is naturally expected to rise. Thus, for example, a significant tail rotor
loading dependence of the tail rotor gearbox vibratioen level egual to the 9
per main rotor revolution freguency has been registered for the Mi-2 tail
rotor.

To evaluate this phenomenon, it is necessary te add the projections of
the wvibrational acceleration vector of the tail rotor drive shaft end to
the like projections of the absolute acceleration vechtor:

w,. Sing
“p
E-'p= z wy COSY (15)

z
. . . B
Vibrations of the tail rotor drive shaft end occur at several
frequencies, <therefore, the vibrational acceleration wvalues are determined
as a sum of the vibrational acceleraticns occurring at each frequency.

METHOD USED TO CALCULATE BLADE NATURAL OSCILLATICN
FREQUENCIES AND MCDES

To determine frequencies and modes of twisted blade natural
oscillations, use is made of the calculational technigue {4)] which has been
obtained from the familiar three-moment method applied for the first time
by T. Morris and W. Tye to compute forced oscillations of the blade in one
plane 1in the centrifugal field. The calculated modes of the blade lateral
oscillations are characterized by  displacements in two  mutually
perpendicular directionsg  which, in their turn, are perpendicular to the
blade longitudinal line. These directions coincide with the rotor planes of
rotation and thrust, moreover, bending moments corresponding to each mode
of natural oscillations are determined for the same directions. Boundary
conditions characterizing the blade~to-hub attachment type can be different
for the plane of rotation and that of thrust thus allowing to define the
fregquencies and modes of blade oscillations for different combinations of
hup attachment conditions, and the way the initial data are specified
allows to describe rather accurately the mass and flexural rigidity
distribution along the blade radius.

APPLICATION OF THE RUBNOV-GALERKIN METHOD TO SOLVE
THE PROBLEM

Blade motion under external loads is determined by the Bubnov-Galerkin
method; to do this, coupled bplade natural flexural oscillation modes in
the planes of rotation and thrust are used. The oscillation modes are
considered to be vector-functions of the blade radius with two components X
and Z: [_1 (ri,:) = {:i(r), xi(r}IB-l(c). (16)

As a rule, when the Bubnov-Galerkin method is used to solve equations
expressing coupled oscillations, a system of related differential eguations

as to the unknown time functions &) 1is obtained:
.. 1 t R . " )
B P8 s (L 2y - Ly g e 2 (27
1,
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Here, Py - is the freguency of the i~th mode of the
Llade oscillations

- is the reduced mass of the ji-th mode of
the blade oscillations

L, - is the blade external load in the plane
of rotor thrust
Ly - is the blade external load in the plane

of rotation

This approach allows to calculate motion ¢f an isclated blade and its
stresses.

However, there exist types of rotors for which it is impossible to
compute blade stresses by using this method. These are: two-bladed
teetering rotors, three-bladed gimbalied rotors and four-bkladed rotors
consisting of two pairs of two-bladed teetering rotors with due account of
the attachment elastic properties of each twe-bladed module.

The difficulty is that even and odd excitation harmonics result in
roscillations of blades having different types of blade-to-hub attachment.
For example, in the two-bladed teetering rotor odd excitation harmonics
make the blades oscillate flapwise as if they were articulated, and
chordwise as if they were rigidly fixed; whereas even excitation harmonics
make the blades oscillate chordwise as if they were rigidly fixed, and
flapwise as if they were articulated. But it should be borne in mind that
+the in-plane articulated blade 1is rather conventional as the tail rotor
drive shaft torsional stiffness is not equal to zeroc. To determine blade
lcad constant components,it is necessary to consider a third type of blade-
to-hub attachment type, 1i.e. chordwise and flapwise rigidly fixed blade
root. :
The above mentloned problem can be solved by introducing roteor
oscillation modes. The notion about normal modes o©f the elastic blade
motion has been introduced by L.K. Grodko [5].

Figures 3, 4 and 5 show normal oscillation modes of two-, three- and
four-bladed rotors. Blade motion in the K-th rotor oscillaton mode can be
presented by the N, natural oscillation modes of the blade with the
appropriate conditions of the hub attachment. Blade deformation with due
account of motion in all normal modes <can be calculated by wusing the
following eguations:

-~ in the thrust plane
Ny n

T .
- 2 2:5 u;z(, (18)
Ko=) =
- in the plane of rotation

Neooohp
Xroa= 5T sy

K=} j=1]

Here, K - 1is the number ¢f normal rotor oscillation mede;
4~ 1s the numbker of the natural oscillation overtone of
. an isolated blade:
61~ is a coefficlent of blade deformation in respect

to the jth overtone of K-th rotor oscillation mode.

Due to the introduction of the roteor oscillation modes, the system of
equations used for calculating deformation coefficients by the
Bubnov-Gelerkin method will take the form

j } 1 i
B*PK}5}1=,— :‘-B LZJ -rLX )dr j=L2... n
! =

K , K=12..5. {19)
i

T*

mnpx
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Here, N - is the number of normal rotor oscillation modes:

n - 1s the number of natural oscillation overtocnes being
considered;

i - 1s the rotor blade number;
n, - 1s the number of rotor blades.

Having found the time functionssitail rotor blade bending moments are
obtained

Ne oonp .
Motrve 3 D ein).ygux
Bo= l } = }
(20}
N oo .
W e 2 2 sy udi,
h=1 1=1
And now let us consider expressions for the loads L, and L, in
equations (17} and (19).

The aercdynamic loads distributed along the blade radius are defined
from the known values of the blade section air flow velocity projections
{8) with account of the airfoil aerodynamic characteristics.

The 1inertia c¢ompeonents of the in-plane and out-of-plane loads are
determined by expressions (14)., However, if the tail rotor blades are-
rigidly attached to the hub with a design coning angle, the acceleration
projection (14) gives rise to additional blade out-of-plane leoads. For
rotors nhaving the design coning angle in the thrust plane in expressions
{14), the following sum should be taken for the projection of the vector T
onto the axis 2, -7,

1

, = rT -G T,
z "2 T
where r; . 1s the projection caused by blade deformation;
¢ ~ 1is the elevatlon of the blade point at r over

the plane of rotation caused by the design
coning angie.
Let us consider the projection T the absclute acceleration i,
v

—

2 . } 3
. e 07 Jsiay - — 0 inly -
zl) BN -..rzli.\mu - Qg sinly

H

0 r.coslu.

W, = =w'r, ~— r\,-—zwr - [ oy

L 2 ‘1 '\1

EQ “E\.(‘)_ T

The first term is a centripetal acceleration. When the design coning
angle is available, it procduces time constant blade loads in the thrust
plane. Other terms in the expression can be ceonsidered as a variable

A
component of a centripedal acceleration field that will be an external
inertia load.

Let us denote the magnitude of the variable component force N,

RN LY S T TR L0 sing
w _rl'm( o= lwry Lin{lx‘o.er)*Q[x.()*an\,liSan“

(21)

-0 sints - ——0f o
; er;:.ln MV 0 r},l cos 2 Y dr.

The final expressions for additional shearing forces caused by the

design coning angle as well as by the in-plane and out-cf-plane deflections
take the form:

(22)



Here :' and ¥ are in-plane and out-of-plane blade section angles,

Since the tail rotor is in the vertical plane the blade weight causes
blade loading with in-plane 1 per revelution freguencies.

The shearing forces distributed along the radius are:

- in-plane, 9 = ~mgsing;
' (23}
- out-of-plane, qzl=mgdm05”ﬂﬂK?JW

Thus, expressions for calculating external loads applied to the blade,
take the form:

dT 2 a .
Lz1 =gt mug - ome r}}a“xm [:\’w(:' + aDK)] - mg COSY sin(z' + a, ),
' (24)
dQ '
LX; = dr - mwﬂx - mgsindr - E"\‘-m;;,:'] "
. z
CALCULATED STRESSES IN TAIL ROTOR BLADES
IN HOVERING TURNS
When calculating loading, the helicopter +turns 1in hovering are

performed by changing the tail rotor pitch from its trim by a specified
value and at a specified rate. Typical time variation of the tail rotor
pitch is given in Figure 6.

The blade loads and flapping were calculated both for the left- and
right-hand turns. In left-hand hovering turns made by the helicepter by
reducing the tail rotor pitch from its trim the loads obtained are higher
than those obtained in right~hand turns. This is attributed by the fact
that in left-hand turns the helicopter angular velocity of rotation already
attained is reduced by increasing the tail rotor pitch to the maximum
value, and, at the same time, the air flow along the tail rotor axis caused
by the helicopter angular velocity of rotation increases still further the
blade section angles of attack up to stall wvalues,

Figures 7, 8 and 9 show calculated bending moments and flapping moticn
amplitudes for the Mi-8 three-bladed gimballed tail rotor at different
angular velocities of rotation reached during turns. As can be seen from
the figures, the calculated points are within the field of scatter of data
obtained in test measurements, and the maximum values of the bending
moments and flapping motion amplitudes are close to the maximum values
chtained in tests.

Figure 10 shows calculated bending moments in the blade root versus
time of turn.Here one can see time variations of the plade flapping motion,
helicopter angular velocity, angular acceleration and turn angles. The
distribution of the total loads in the planes of maximum and minimum
rigidity as well as their components for 3 harmonics along the blade radius
are glven.

The presented calculation data show that the maximum blade bending
moments act with the 1 per revolution frequency. At the same time it can be
clearly seen that the component of the moment acting with the 2 per
revolution frequency in the total value of the bending moment changes with
the tail rotor pitch. The maximum values of the lcads applied to the tail
rotor during a turn are reached only when the pitch Iincreases from the
minimum value to the maximum one. The maximum values of the blade flapping
are attained during the same period of time.

The Mi-28 tail rotor is two pairs of two-bladed teetering rotors
connected by an elastic member. The elastic member stiffness was chosen
so that it could provide the required blade freguency in the lowest
skew-symmetric rotor oscillation mode.

R21-7



The two-bladed modules are arranged so that the minimum angle between
the two pairs of blades in the plane of rotation is 36 degrees. This
feature makes it impossible to use the pattern of the four-bladed normal
modes given in Figure 5, as the pattern is effective for the roter whose
awial symmetry is characterized by the 90-degree rotor angle.

The axial symmetry of the X-form rotor features the 180-degree rotor
angle, i1.e. 1t is similar to that of the two-bladed rotor. The pattern of
the X-form rotor normal modes assumed in the paper is presented 1in Fiqure
il. It 1is easy to see that the condition of orthogonality is observed for
this pattern of normal modes.

To determine the effect cf mutual azimuthal location of two palrs of
blades on the tail rotor leading, a number of calculaticons in which the
angle between the blade pairs changed from 0 to 90 degreeg have been made.
Figures 12 and 13 show calculations in the form of dependences of bending
moments in the 1st and 2nd harmonics on the angle between two pairs of
plades. The parameter Ya most significantly affects the in-plane bending
moment acting with a 2 per revolution fregquency. When the angle changes
from S0 degrees to 0, the amplitude value becomes almost 4 times lower. But
the value of the total bending moment amplitude changes only by 20%. This
is attributed by the fact that the blade loading occurs mainly in the 1st
harmonic, the component of the bending moment in the 2nd harmonic in the
total value of the bending moment being 33% and 10% for Y, = 90 degrees
and 0 respectively.

Figures 14 and 15 compare the in-plane and out-of-plane bending moment
values obtained for the Mi-24 X-form tail rotor in calculations and in
tests.

As can be seen from the presented data, the calculated values of the
in-plane bending moments show a good agreement with those measured in
flights. The out-cf-plane bending moment wvalues measured 1n tests were
higher than the calculated ones. It is explained by the fact that, as the
test have shown, a significant part of the blade out-of-plane bending
moment is made up by the moment acting with a 4 per revolution freguency,
which, in its turn, is attributable to the proximity of the blade
freguencies te the 4th harmonic resonance. The calculations have not taken
inte account the 4th harmcenic excitation, as a result, the level of
calculated loads was almost twice as low as that obtained in flight tests.

CONCLUSIONS

1. A method for calculating blade 1loading in gimballed, two-bladed
teetering tall rotors and their combinations in hovering <turns by using
normal rotor oscillation modes has been developed.

2. A geod agreement of calculated loads and flapping mction amplitudes
with flight test results for the Mi-2, Mi-8 and Mi-24 tail rotors has been
obtained.

3. The Mi-28 X-form tail rotor loading has been investigated, and a
significant effect of the azimuth angle between twe pairs of blades on the
2 per revolution bending moment amplitude has been shown.
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