A FARAMETFIC INVESTIGATION OF A FREE WAKE ANALYSIS OF HOVERING FOTORS
A. Gr-aber arrd A. Fosen

Department of Aeronautical Engineering Technion - Israel Institute of Technology Haifa, Israel

September 22-25, 1986

Garmi sch-Fartenkirchen
Federal Fepublic of Germany

Deutsche Gesellschaft fur Luft- und Fiaunfahrt e. V. (DGLR) Godesberger Allee 70, D-5SOO Bonn 2, F.F.G

A FAFAMETRIC INVESTIGATION OF A FFEE WAKE ANALYSIS OF HOUERING ROTORS

A. Graber* and A. Fosen**
Department of Aeronautical Engineering Technion-Israel Institute of Technology Haifa, Istael

ABSTFACT

A recently developed free wake model of a hovering rotor is used in order to perform a study of the influence of different paraneters on the accuracy and efficiency of the calculations. The parameters that will be investigated include: the spanwise and chordwise distribution of cells over the blade, the length of the near wake, the length of the straight vortex elements of which the near watee is assembled, the vortex core size, relaxation factors and the influence of including a cor-rection for the self induction in the mear wake due to the curvature of the real trailing vortex elements. This parametric investigation is aimed at giving future users of free wake analyses guidelines on how to arrive at a numerical model which is accurate and still efficient. The last part of the paper will include a free wake analysis of a rotor having swept blades in order to learn about the influence of the sweep back on the aerodynamic behavior.

1. Introduction

Free wake analysis of helicopters' rotors is a very important tool to investigate their aerodynamic behavior. While prescribed wate models usually give satisfactory results in forward flight, this is not true for hovering rotors. In this case the wake stays close to the rotor and large distances of wate have a significant influence on the aerodynamic behavior. This is especially true in the case of heavily loaded rotors where the use of prescribed wake models may yield poor predictions of the aerodynamic behavior. References $1-5$ are representative examples of free wate investigations of rotors. A more detailed $1 i s t$ of references may be found in Fief. 4.

While being a useful tool, free wake analyses on the other hand are very demanding when computer resources are considered. This includes both: computing time and memory size. The computing time required for a converged solution of one case is usually measured in CFU hours. The required computer resources is of course a function of the details of the model. Fefimement of the blade or the wake description leads to a significant increase of the required computing time and memory size. Therefore it is not surprising that aerodynamicists are always trying to find the delicate balance between accuracy and efficiency.

The purpose of the present paper is to present a parametric study of the influences of different parameters (that define the numerical model details) on the accuracy of the results on one hand, and the

[^0]computing time on the other. These results may assist future users of free watee analyses of rotors in deciding what will be the parameters they are going to use.

The models that have been developed in the pasts by different investigators, present many differences among themselves. This may lead someone to wonder if a parametric study, using a certain model, maybe of any help to somebody who is going to use a different model. Fortunately the answer is positive. Although there may be differences between the models, they usually have important basic features in common. These common features include for example: the lifting surface is divided into cells in the spanwise and chordwise directions, the wate behind the blades is divided into different regions (near wate, far wake etc.), the accuracy of the wake description is determined by the number of trailing vorter filaments behind the blade and the length of the vortex elements along these filaments and other common features. This paper will present a study of the influence of the basic features whith are common to most of the free wate analyses that have been reported previously.

The model that will be used for the present parametric study is described in detail in Fefs. 4, 5. In the next section a brief description of the model will be presented for the readers' convenience.

The parmateric study will include three different rotors having straight blades (Fiefs. b-8). In all cases the rotors are relatively heavily loaded and thus presenting the region where a free wake analysis is especially important. Moreover, one of the cases includes a four bladed rotor (most of the cases that have been reported in the past included two bladed rotors). Since most of the modern rotors include four or more blades - this four bladed rotar is interesting from a practical point of view.

The rotors that will be analysed have been chosen because experimental data already exist for them. This data includes in most of the cases the spanwise distribution of the aerodynamic loads along the blade and the geometry of the tip vortex. Thus almost a complete comparison between theory and experiment will be available. This comparison will help in assessing the quality of the theoretical results.

The present numerical model is capable of dealing with any geometry of the blade. This is very important nowadays since modern rotors have swept tips or different nonumiform planforms of the tips. The last part of the paper will present a free-wake analysis of the influence of sweep bact: on the aerodynamic behavior of the blade. This will include both: the distribution of aerodynamic loads along the blade and the geametry of the wake.

2. Erief Description of the Model and Solution Frocedure

As already mentioned above, the model and solution procedure are described in detail in Fefs. 4, 5. Here only a brief description for the readers convenience is presented.

The model is based on the Vortex Lattice Method (VLM) which is widely used in the free wate analysis of fixed wings. Each blade is divided into cells, as shown in Fig. 1. Since the largest aerodynamic loads appear at the tip region, and since very drastic variations of these loads occur there, the number of cells is usually increased towards the tip. As can be seen in Fig. 1 this increase in the number of cells includes both: reducing the width of the cells and increasing the number of cells in the chordwise direction. The geometry of the cells will be described by the blades cross sections that define their left and right boundaries, and by indicating the chordwise division of cells at each column of cells.

The vorticity over the cell is concentrated on a horseshoe line vortex. This horseshoe is composed of a line vortex along the cell's quarter chord points and two bound trailing vortex filaments on both sides. At the mid span of the cell, at the three quarters chord point, a control point is located. At this point the condition of nonpenetration of the flow (tangency to the surface of the resultant velocity) is applied.

Trailing vortex filaments leave the blades and form the wake. The number of the trailing vortex filaments behind every blade is n, where (n-1) is the number of columns of colls along the blade. The vortex filaments are numbered from left (root) to right (tip). The circulation of these vortex filaments is constant and denoted $\Gamma(1)$, $\Gamma(2) \ldots, \Gamma(n)$ (see Fig. 1). Any point along the inne is defined by its polar coordinates: r, φ, z (see Fig. 2). The azimuthal location, φ, is the only independent variable that doesn't change during the solution procedure. The radial distance r and the axial distance z are calculated during the solution procedure. x, y, r and z are nondimensiomal coordinates. The appropriate dimensional coordinates are obteimed after multiplication by the total length of the blade. This length is equal to F (the rip radius) in the case of straight blades.

The wake is divided into near and far wake regions. The near wate starts at the trailing edge of all the blades and ends at a certain azimuthal distance behind it. In Fig. 2 the jth vortex filament is shown. In the near wake region this filament is composed of straight vortex elements. The boundary points of these elements are denoted $(1, j)$, $(2, j) \ldots(m(j), j)$. $m(j)$ is the 1 ast point in the near wake region. As indicated previously, while the azimuthal location of every point does not change during the solution procedure, the radial and axial locations (r(i,j) and $z(i, j)$, respectively) are calculated during the solution procedure.

It is known that curved vortex filaments induce velocities on themselves. A very important contribution to the self induction at a certain point of the curved element comes from other points in the neighborhood. This contribution disappears when the curved vortex filaments are approximated as a chain of straight elements. Therefore a correction is introduced in order to take account of the last contribution. This correction is similar to the one suggested in Fef. 9. A circular arc is fitted to every consecutive triad of points along the trailing vortex filaments. The vortex filament segment that includes the three points is approximated as a segment of a
ring. The self induced velocity at the mid-point is obtained by subtracting from the self induced velocity of the ring the contribution of the part of the ring that does not include the segment itself.

The far wake starts at the end of the near wake and is composed of semi-infinite helical vortex lines. The radius of this helix is equal to the radial location of the last point in the near wate, $r(m(j), j)$. The pitch of the helix, $p(j), i s$ determined by the axial velocity which is induced at the last point of the vortex filament, at the near wake region. Thus it is clear that changes in the geometry of the near wate result in changes in the geometry of the far wate. The velocity which is induced by the semi-infinite helical vortex filaments along the blades and at all the points of the mear wate, is calculated by applying a recently developed efficient method which is described in detail in Fef. 10. This method is a combination of numerical and analytical integrations.

In order to avoid singularity problems a vorten core model is used. Two vortex core models have been applied in Fiefs. 4, 5. Dne is the $f l a s s i c a l$ model of Fantime and the other is a contimuous model that has been suggested by Sully ${ }^{9}$. It should be pointed out that besides solving the singularity problem, the vortex core model is not intended to present additional physical phenomena like vortex core bursting ${ }^{11}$ or a non-penetration condition at the lifting surface ${ }^{12}$.

The solution procedure is presented in the block diagram shown in Fig. 3.

First, all the data concerning thes rotor geometry, angular velocity, air-density, cell distribution over the blade, the length of the near wake, number of vortex elements in the near wabe, vortex core-size, and relaxation factors is read. Then initial values of the circulation distribution are obtained. These values may be obtained by using other theories (for example a prescribed wate model or a blade - element/momentum model), or using empirical data. Similarily an initial geometry of the wake is assumed. This geometry may consist of semi-infinite helical vortex filaments that start at the trailing edge of the blade, or a deformed helical structure based on empirical data.

Now the velocities which are induced at the near wake points, by all the elements of the flow field, are calculated. Knowing these velocities, a new near wake geometry is obtained by applying the condition that the wate is force-free. After the geometry of the near wake $i s$ updated, the geometry of the far wake is also updated based on the conditions at the end points of the near wake.

Eased on the new geometry, the boundary conditions of non-penetration of the flow at the control points are applied. This yields a system of linear equations in the circulation strength of every cell. Solution of these equations yields the new vortex distribution.

At this stage the convergence of the solution is checked. This check may include the vortex distribution and geometry of the wate.

It may be either an automatic check or interactive. If convergence is not satisfied, a new iteration is started up by computing the induced velocities over the rear watse.

In order to avoid oscillations during the iterative solution procedure, relaxation factors are applied. This means that the new geometry is chosen at some point between the "old" geometry and the one which is obtained by direect application of the condition of a forcefree wate (for more details see Fefs. 4,5). After convergence, the aerodynamic loads are calculated by applying the kutta-Jukowski law.

The parametric study will include investigation of the influence of:

- the length of the near wake
- the number of cells and their distribution over the blade
* the angular length of the elements in near wake
- the vortex core size
- the relasation factor
- self induced velocities due to curvature.

3. Details of the Farametric Investigation

3. 1 Fotors Analysed in the Investigation

As indicated above three different rotors are treated during the investigation. The details of the rokors are given in Table 1. These rotors are identical to those reported in Fiefs. $5-7$, where experimental data is also provided.

Table 1: Details of the Three Fotors

```
rotor No.
reference number
number of blades
radius [m]
chord [m]
solidity }
aspect r"atio
root cut ouk/radius
the pitch angle at the root
[degrees]
washout angle (pretwist)
[degrees]
coning [degrees]
CT/\sigma
tip velocity [m/sec]
```

1	2	3
5	6	7
2	4	2
1.14 .50	0.75	1.05
0.1905	0.05	0.0762
0.106	0.0849	0.0462
6	15	13.78
$N A$	0.22	0.134
8	16.2	17.8
0	-8.3	-10.7
$N A$	2.5	1.5
0.0433	0.0919	0.099
150	107	76.6

The rotors will be referred to in what follows according to their number - $1,2,3 . \quad U n l k e$ the others, rotor 2 has four blades, which is the number of blades in many of the modern rotors. This rotor (No. 2) also presents a solidity typical of modern rotors while the -
solidity of rotor No. 1 is relatively high and that of rotor No. 3 relatively low. The aspect ratio shows similar trends to the solidity. The root cut out of rotor No. 1 is not available and will be estimated as 0.2 of the rotor radius in the calculations. Error in this parameter should not have any important influence on the results. Fotors 2 and 3 have a linear washout (pretwist). The coning angle of rotor No. 1 is not available and therefore will be taken as zero in the calculations.

The thrust coefficients are relatively high, while rotor No. 2 exhibits the highest. The thrust coefficient of rotor 2 is calculated by using the data of Fief. 13.

The tip velocity in all three cases is relatively 1 ow so that compressibility effect are not important and can be neglected.

3. 2 The Numericel Investigation

The numerical investigation includes a total of twenty-one numerical configurations - $5 i x$ configurations of rotor No. 1, eleven configurations of rotor No. 2 and four configurations of rotor No. 3. The
configurations details are given in Table 2.
Each of the numerical configurations will be referred to in what follows according to its number as it appears in the first column. The number of columns of cells is equal to (n-1) where (as indicated above) n is the number of trailing vortices behind each blade. The present investigation includes only two different divisions into columns of cells. The first one includes eight columns which are defined by the following cross sections: $x=x_{r}, 0.4,0.6,0.7,0.8$, $0.85,0.9,0.95,1.0$ (\%r is the root cut out cross section). The second division includes twelve columns, defined by the following cross sections: $x=x_{r}, 0.55,0.45,0.55,0.65,0.75,0.8,0.85,0.9$, $0.925,0.95,0.975,1.0$. Each column may have a different number of cells in the chordwise direction. In the present investigation the chordwise division of any column is uniform. The number of chordwise cells runs between a single cell and up to four cells. There are four different kinds of distributions of cells which are denoted I, II, III and IV and are defined in Table 3 . Configurations I and II have only one cell in every column (they have eight and twelve colums, respectively). Configurations II and IV exhibit an increasing number of cells per collmn, toward the tip.

The length of the near watee should be related to the number of blades. Frevious investigations have indicated as an appropriate length an azimuthal length of two and a half times the azimuthal distance between neighboring blades. This means a near wake length of 4500 and 2250 for two and four bladed rotors, respectively. For rotors No. 1 and 2 the influence of using half or twice these distances, will be investigated.

Of prime interest is the azimuthal distance of the straight vortex elements that assemble the trailing vortices in the near wake region. This distance, while constant along a certain filament, may vary from one filament to the other. In Table 4 details of the six different combinations of elements' length are presented.

Table 2 - Details of the Numerical Configurations.

Config. No.	rotor No.	No. of cell columns	chord- wise div. of cells*	total No. of cells	near wake length [degrees]	near wake config.**	vortex core radius (\% of rotor radius)	relax- ation factor	aver age CFU time per iter- ation [sec]
1 A	1	8	II I	17	450	α	0.8	0.5	210
1 B	1	E	III	17	900	α	0.8	0.5	420
1 C	1	$日$	III	17	225	α	0.8	0.5	160
1 D	1	8	I	8	450	α	0.8	0.5	200
1 E	1	12	11	12	450	τ	0.8	0.5	430
$1 F$	1	8	III	17	450	α	0.8	0.8	200
2 A	2	12	11	12	225	B	0.8	0.5	560
2B	2	12	IV	27	225	\boldsymbol{B}	0.8	9.5	590
2 C	2	12	II	12	225	\boldsymbol{F}	0.4	0.5	560
2D	2	12	II	12	225	E	1.6	0.8	570
2 E	2	8	I	8	225	γ	0.8	0.5	230
2 F	2	θ	I	8	112.5	γ	0.8	0.5	180
26	2	8	I	8	225	γ	0.8	0.8	240
211	2	8	I	8	450	γ	0.8	0.5	410
21	2	12	I I	12	223	δ	0.8	0.5	310
2 J	2	12	II	12	225	ε	0.8	0.5	1000
2K.	2	12	II	12	315	$\boldsymbol{\beta}$	0.8	0.5	720
3 A	3	8	1	8	450	$\boldsymbol{\gamma}$	a. 8	0.5	230
3 B	3	8	1	8	450	γ	1.6	0.5	230
3 C	3	E	I	8	450	γ	0.8	0.8	230
3D***	3	8	I	8	450	γ	0.8	0.5	220

 \$I.E.M. 3081D

Table 3 - The Chordwise Distribution of Cells.

	1.	2	3	4	5	6	7	8	7	10	11	12
1	1	1	1	1	1	1	1	1	-	-	-	\cdots
II	1	1	1	1	1	1	1	1	1	1	1	1
III	1	1	1	2	2	3	3	4	-	-	-	-
IV		1			2	2		3	3	3	4	4

Table 4 - The Azimuthal Length of Vortey Elements in the Near Wake [degrees].

	1	2	3	4	5	6	7	8	9	10	11	12	13
$\boldsymbol{\alpha}$	32	32	28	25	22, 5	20	19	17	16	-	-	-	-
B	25	25	22. 5	20	19	17	16	15	15	14	14	13	13
T	25	22.5	20	19	17	16	15	14	13	-	-	-	-
δ	56	56	45	45	37.5	37.5	32	32	28	28	29	25	25
ε	12.5	12.5	11	10	7	日. 5	8	7.5	7.5	7	7	6. 5	6.5
τ	32	32	32	28	25	22.5	20	19	19	17	17	16	16

The vortex core model which will be used in the investigation is the classical Rankine model. In most of the cases (see Table 2) the vortex core radius is taken as 0.8% of the rotor radius. In order to check the influence of this parameter, results of taking values of 0.4% and 1.6% will also be presented.

The relaxation factor refers to the way in which the geometry of the new wake is determined. A relanation factor of 0.5 indicates that the position of every point of the near wake is taken as the average between its "old" location and the location which is obtained by applying the condition that the wake should be free of forces (for more details see Fefs. 4, 5). A value of 0.5 will be chosen in most of the cases. Few cases will have a relaxation factor of o. 8 which means that the new geometry is closer to that obtained by the free wake condition (the contributions to the new geometry include 80% of the geometry obtained by the free wake condition and 20% of the "old" geometry). All the configurations, except 3 D , include corrections for self induction.

3. 3 The Methad of Fresenting the Results

The calculations of the different configurations were carried out until convergence of the load distribution was obtained. In all the cases, except configurations 1 B and $2 H$ (long near wake), convergence of the wake geometry is also achieved. The average time per iteration is given in Table 2. Few improvements in the numerical procedures have helped in reducing the time compared to what had been reported in Fiefs. 4, 5.

The results that will be presented and discussed are of two kinds: the aerodynamic load distribution along the blade and the wake geometry.

The aerodynamic load distribution will be given as: lift coefficient, circulation or section loading distribution. Usually the same parameter that was measured experimentally, will be presented.

The wate geometry will specifically deal with the tip vortex geometry. In the calculations, in order to account for the wake rollup, the "rolled-up" tip vortex location is defined as the "center of mass" of the three outer trailing vortices. Thus the equations describing this location are:

$$
r_{t u}=\frac{\sum_{j=(n-2)}^{n} r_{j} \Gamma_{j}}{\sum_{j=(n-2)}^{n} i \Gamma_{j} i} ; z_{t u}=\frac{\sum_{j=(n-2)}^{n} z_{j} \Gamma_{j}}{\sum_{j=(n-2)}^{n} i \Gamma_{j} ;}
$$

$r_{t u} z_{t u}$ are the radial and axial nondimensional coordinates of the rolled-up tip vortex, respectively.

Usually the circulation Γ_{n} is much greater than $\Gamma_{(n-1)}$ and $\Gamma_{(n-2)}$. Therefore the "rolled-up" tip vorten location is mainly determined by the geometry of the nth vortex line.

Experimental results for the tip vortex geometry exist for rotors Nos. 1 and 2, but not for rotor No. 3.

4. Fesults and Discussion of the Farametric Study

The parametric study will be presented according to the different parameters which are investigated. While discussing a specific parameter, results of different rotors will be compared. Since experimental results of the wake geometry are not available for rotor no. s, in most of the cases the comparison will be restricted to rotors nos. 1 and 2.

4.1 The Near Wake Length

The influence of the length of the near wake, in the case of rotor no. 1, is shown in Figs. 4a,b. The standard near wake length (a length of two and a half spacings between blades) is 450° (configuration 1A). It is compared with a longer near wake (900°, configuration 1B) and a shorter one (225°, configuration 1C). It is shown in Fig. 4a that the spanwise lift coefficient distributions of the standard and long wake are very close. The short wake exhibits lower lift coefficients at the inner sections of the blade and thus shows better agreement with the experimental results.

The geometry of the tip vortex is shown in Fig. 4b. The standard wake exhibits nice agreement with the experimental results. The influence of the passage of the follower blade (after 180\%) is clearly seen in the theoretical and experimental results. The short wake exhibits nice agreement in its axial position, but the contraction is too strong. The long wake is very problematic from a numerical point of view. Not only that each iteration requires a longer computing time (approximately twice the standard model), but the convergence of the wake is slow and problematic and therefore will require a large number of iterations. The calculations of configuration 1E started from an initial cylindrical geometry. The results presented in the figure are those of the twenty-fifth iteration. The wavy nature of the tip vortex location indicates that convergence has not been reached yet, and more iterations will be required for proper convergence.

Figures 5a,b present the influence of the near wake length on rotor no. 2. Again, there is the standard length (configuration $2 E$, 225°), longer near wake (configuration $2 \mathrm{H}, 450^{\circ}$) and a shorter one (configuration $2 F$, 112.5°). The spanwise distribution of the circulation is presented in Fig. Sa. At the tip region the standard and short wake practically give identical results, while the long wake results are higher. At the inner sections the results of the short and long near wakes are higher than the standard model. The shorter near wake gives better agreement with the exper-iment at the inner cross-sections, while the longer near wake agrees better with the experimental results throughout the whole length. It should be noted that in the present calculations the pitch angle of the blades is taken as the value given in the experimental data. There is no increase of the pitch angle during the calculations in order to match the theoretical thrust coefficient with the experimental value (as was done for example in the calculations of Ref. 13).

The tip vortex geometry is described in Fig. Sb. The agreement with the experimental results of the axial location is good for all the configurations. The sudden increase in the axial induced velocity as a result of the passage of the follower blade (at an azimuth of ninety degrees) is clearly seen. In the case of the long near wake, a much smaller influence of the passage of the second follower blade (one hundred and eighty degrees) can also be seen. The main difference between the configurations appear in the radial location of the tip vortex. The short near wake is too short to predict the actual contraction (recall that the radius of the last point of the near wake becomes the radius of the semi-infinite helical vor-tex line). The standard wake seems to be the best in describing the contraction. After the passage of the follower blade the experimental results exhibit a significant decrease in the rate of contraction and the last points show a tendency to approach asymptotically a constant value of contraction. The standard model presents a decrease in the rate of contraction, similar to the experimental results, but still the theoretical rate is larger than that shown by the experimental points. The long near wake also shows a reduction in the contraction rate as a result of the passage of the follower blade. But this r-educed rate is much higher than the experimental rate, and does not show a tendency to approach asymptotically a constant value of contraction during the first revolution. Therefore, because of the longer near wake, the contraction of the wake is much larger than in the case of the other configur ations. This is probably the reason for the increase in the aerodynamic loads (of this configuration) at the tipregion of the blade (see Fig. 5a). Similar. to the case of rotor no. 1 the long near wake has not converged yet (at the twentyfifth iteration) and the convergence procedure is slow and tends to be unstable. The results of rotor no. 2 indicate that it is possible that a near wake of $225 \circ$ for a four bladed rotor may be too short to yield the correct contraction. Dn the other hand a wake of 450° fails to predict correctly the asymptotic approach to a constant contraction after the passage of the follower blade. In addition a near wake of 450° is very unstable and exhibits convergence difficulties. In order to clarify this point, further numerical investigation is required together with experimental measurements of the tip vortex geometry along longer distances (see additional results in the conclusions).

4.2 The Number of Cells in the Chordwise Direction

Figure 6 shows the influence of increasing the number of chordwise cells in the tip region, on the lift coefficient distribution along the blades of rotor no. 1. The standard configuration (1A) has a total of seventeen cells increasing from one chordwise cell at the root region to four chordwise cells at the tip. The standard configuration is compared with configuration 10 having only one cell in the chordwise direction (over the whole length). As can be seen, the differences between both cases are negligible. The wake geometry is not presented since practically both configurations yield identical r esults. It should be noted that the blades of rotor no. 1 have a low aspect ratio and therefore these results are not fully expected.

Experimental results for the tip vortex geometry enist for rotors Nos. 1 and 2 , but not for rotor No. 5 .

4. Fesults and Discussion of the Farametric Study

The parametric study will be presented according to the different parameters which are investigated. While discussing a specific parameter, results of different rotors will be compared. Since experimental results of the wate geometry are not available for rotor no. ت, in most of the cases the comparison will be restricted to rotors nos. 1 and 2.

4.1 The Near Wake Lenath

The influence of the length of the mear wake, in the case of rotor no. 1, is shown in Figs. 4a,b. The standard near wake length (a length of two and a half spacings between bledes) is 450° (configuration 1A). It is compared with a longer near wake (900°, configuration 1B) and a shorter one (225°, configuration 1C). It is shown in Fig. 4a that the spanwise lift coefficient distributions of the standard and long wake are very close. The short wake exhibits lower lift coefficients at the inner sections of the blade and thus shows better agreement with the experimental results.

The geometry of the tip vortex is shown in Fig. 4b. The standard wake exhibits nice agreement with the experimental results. The influence of the passage of the follower blade (after 180ㅇ is clearly seen in the theoretical and experimental results. The short wake exhibits nice agreement in its axial position, but the contraction is too strong. The long wake is very problematic from a numerical point of view. Not only that each iteration requires a longer computing time \{approximately twice the standard model), but the convergence of the wake is slow and problematic and therefore will require a large number of iterations. The calculations of configuration 1 B started from an initial cylindrical geometry. The results presented in the figure are those of the twenty-fifth iteration. The wavy nature of the tip vortex location indicates that convergence has not been reached yet, and more iterations will be required for proper comvergence.

Figures Fa,b present the influence of the near wake length on rotor no. 2. Again, there is the standard length (configuration $2 E$, 225°), longer mear wake (configuration $2 H, 450^{\circ}$) and a shorter one (configuration 2F, 112.50). The spanwise distribution of the circulation is presented in Fig. Fa. At the tip region the standard and short wake practically give identical results, while the long wake results are higher. At the inmer sections the results of the short and long near wates are higher than the standard model. The shorter near wake gives better agreement with the experiment at the inner cross-sections, while the longer near wake agrees better with the experimental results throughout the whole length. It should be noted that in the present calculations the pitch angle of the blades is taken as the value given in the experimental data. Theme is no increase of the pitch angle during the calculations in order to match the theoretical thrust coefficient with the experimental value (as was done for example in the calculations of Fief. 13).

The tip vortex geometry is described in Fig. 5b. The agreement with the experimental results of the axial location is good for all the configurations. The sudden increase in the axial induced velocity as a result of the passage of the follower blade (at an azimuth of ninety degrees) is clearly seen. In the case of the long near wake, a much smaller influence of the passage of the second follower blade (one hundred and eighty degrees) can also be seen. The main difference between the configurations appear in the radial location of the tip vorte\%. The short near wake is too short to predict the actual contraction (recall that the radius of the last point of the near wate becomes the radius of the semi-infinite helical vortex line). The standard wate seems to be the best in describing the contraction. After the passage of the follower blade the experimental results exhibit a significant decrease in the rate of contraction and the last points show a tendency to approach asymptotically a constant value of contraction. The standard model presents a decrease in the rate of contraction, similar to the experimental results, but still the theoretical rate $i s l a r g e r$ than that shown by the experimental points. The long near wake also shows a reduction in the contraction rate as a result of the passage of the follower blade. But this reduced rate is much migher than the experimental rate, and does not show a tendency to approach asymptotically a constant value of contraction during the first revolution. Therefore, because of the longer near walke, the contraction of the wake is much larger than in the case of the other configurations. This is probably the reason for the increase in the aerodynamic loads (of this configuration) at the tip region of the blade (see Fig. Sa). Similar to the case of rotor no. 1 the long near wake has not converged yet (at the twentyfifth iteration) and the convergence procedure is $510 w$ and tends to be unstable. The results of rotor no. 2 indicate that it is possible that a near wake of 225° for a four bladed rotor may be too short to yield the correct contraction. On the other hand a wake of 450° fails to predict correctiy the asymptotic approach to a constant contraction after the passage of the follower blade. In addition a near wake of 450° is very unstable and exhibits convergence difficulties. In order to clarify this point, further numerical investigation is required together with experimental measurements of the tip vortex geometry along longer distances (see additional results in the conclusions).

4.2 The Number of Cells in the Chordwise Direction

Figure 6 shows the influence of increasing the number of chordwise cells in the tip region, on the lift coefficient distribution along the blades of rotor no. 1 . The standard configuration (iA) has a total of seventeen cells increasing from one chordwise cell at the root region to four chordwise cells at the tip. The standard configuration is compared with configuration $1 D$ having only one cell in the chordwise direction (over the whole length). As can be seen, the differences between both cases are negligible. The wake geometry is not presented since practically both configurations yield identical results. It should be noted that the blades of rotor no. 1 have a low aspect ratio and therefore these results are not fully expected.

Similar results are shown in Fig. 7 for rotor no. 2. The Etandard configuration $2 A$ (with a single chordwise cell) is compared with configuration 2 B having a total of twenty-seven cells. Only negligible differences appear at the tip region. Again the tip vortex geometry is identical in both cases and is not presented here.

In fig. 8 the build up of the circulation, in the last column of cells of comfiguration 2 B , $\mathrm{i} s$ compared with the constant circulation of configuration $2 A$. As expected from Fig. 7 the value of the circulation leaving the trailing edge is practically identical in both cases.

As shown in Table 2 , increasing the number of chordwise cells results in an insignificant increase of the average CPU time per iteration. This is due to the fact that the calculation of the new wake geametry (which consumes most of the computing time) is only very slightly influenced by an increase in the number of cells.

On the other hand it has been found in different ceses that increasing the chordwise number of cells tends to stabilize the convergence procedure.

4.3 The Spanwise Distribution of Columne of Cells

The spanwise distribution of columns of cells is important since it not only affects the accuracy of modelling the lifting surfaces, but it also determines the number of trailing vorten filaments. While investigating this point, configurations that include eight and twelve columns will be compared. The increase of "columns density" occurs mainly at the tip region.

In the case of rotor no. 1 configuration 1 D includes eight columns while configuration $1 E$ has twelve columns. Figure 9a shows that as a result of increasing the mumber of columns the lift coefficient is decreased, especially towards the root region. As a result the agreement with the experimental results is improved.

As shown in Fig. Ob the axial location of the tip vortex is only very slightly changed as a result of increasing the number of columns. The contraction on the other hand is decreased and the agreement with the experimental results is improved.

Similar trends also appear in the case of rotor no. 2. Figure loa shows that as a result of increasing the number of columns, the circulation at the inner cross-sections is decreased and the peals at the tip becomes more pronounced. Concerning the tip vortex geometry, the configuration with twelve columns (2A) exhibits very nice agreement with the experimental results, while the configuration having only eight columns (2E) shows greater deviations.

The results of both rotors indicate that having twelve colums of cells seems to give good results. Eut at the same time the CPU time per iteration is inoreased significantly compared to eight columns.

4.4 The Azimuthal Length of the Vortex Elements Composing the Near Wake

The azimuthal length of the elements in the near wake is considered as a very important parameter. Since small elements require a lot of computing time (see Table 2) the investigation will include only rotor no. 2. For the case of thirteen trailing vortex lines behind every blade, and a near wake length of 2255°, three different configurations are compared. Configuration $2 A$ is the standard one, having elements ranging from an azimuthal length of 250 at the root to $1 \underset{3}{ }$ at the tip. Configuration $2 I$ presents a coarser near wake where the length ranges between 50° and 26°. Configuration 2J includes the largest number of elements in the near wake, the length of which ranges between 12.55° and 6.5°.

Figure 11a presents the circulation distribution. Configurations $2 A$ and 21 show similar behaviour where the coarser near wake (2I) exhibits slightly higher peak at the tip, and a lower minimum at the O. 85 spanwise station. Configuration $2 J$ shows the smallest peak at the tip, and from the tip to the root (unlike the other configurations) there is a smooth decrease. It should be noted that this smooth decrease is in contrast to the experimentel results that exhibit an increase in the circulation while going from crosssection 0.85 towards crosswsection 0.75. This trend is also shown in the numerical results of configurations 2 A and 21.

The tip vortex geometry is presented in Fig. 11b. Concerning the axial location, configuretions 2 A and $2 I$ agree very well between themselves and with the experimental results. Configuration $2 J$ exhibits a larger axial velocity of the tip vortex. Concerning the radial location of the tip vortex the trends are different. In this case configurations $2 A$ and $2 J$ show nice agreement between themselves and with the experimental results. The coarse near wake (configuration $2 I$) yields a rate of contraction which is too large towards the end of the near wake. Thus it can be concluded that the standard near wake yields the best results concerning the tip vortex geometry.

It is also worth pointing out that configuration 2J, besides requiring a lot of computing time per iteration, also exhibits convergence and stability problems which makes it unattractive to use.

4.5 The Vorte\% Core Fadius

Figure 12 presents the influence of the vortex core radius on the spanwise circulation distribution, in the investigation of rotor no. 2. The standard configuration (2A) has a core radius of 0.8 percent of the rotor radius. Configuration 2 C has a smaller core with a radius of 0.4 percent, while configuration 2 D has a core radius of 1.6 percent of the rotor radius. It should be noted that all the vortex filaments, bound and free, have the same vortex core size.

The configurations having the standard core and the smaller one yield identical restuts. The configuration having the larger core (2D) gives higher circulation values at the tip region. The reason for this increase is that in this case the control points of the
cells at the tip are within the core region. Therefore the induced velocities at these points are decreased, causing an increase of the aerodynamic 1 oads.

The tip vorte\% geometry is identical for the three configurations and therefore not presented here.

Similar results have also been obtained for rotor no. 3 (configurations $3 A, 3 B$).

The present results indicate that if a vortex core model is used in order to avoid singularity problems (and not to model physical phenomena as, for example, vortex bursting), then one should keep the core radius small enough in order to prevent influences of the core size on the results. Dn the other hand a too small radius may cause difficulties during the calculations.

4.6 The Felexation Factor

As indicated above, the relaxation factor is introduced in order to avoid instabilities during the iterative solution procedure. In order to investigate the influence of the magnitude of the relaxation factor, results for two values (0.5 and 0.8) will be presented.

Figure 13 presents the variation of the thrust coefficient with the iteration number, for rotor no. 2. Configuration $2 E$ incorporates a relaxation factor of 0.5 while in configuration $2 G$ the factor is O.日. The initial wake geometry in all the present calculations is composed of semi-infinite helical vortex lines.

The case of using a higher relavation factor exhibits a faster asymptotic convergence towards a value which is practically constant. After a small overshoot the tenth iteration presents in fact a converged solution. The convergence $i s$ much slower when a relaxation factor of 0.5 is used. Although the results in this case practically converge to the same value as in corfiguration 2 g , they still show small oscillations after twenty-five iterations. As expected from the results of the spanwise distribution of loads, the value of the calculated thrust coefficient is lower than the experimental result (see the comment in subsection 4.1).

Figure 14 presents results for rotor no. 3 . In this case the trends are completely different. Use of a relasation factor of o. 5 exhibits a relatively nice convergence. From the second to the seventeenth iteration there is a very slow monotonic increase of the thrust coefficient. From the eighteenth to the twenty-third iterawion there is a faster rate of increase, and then the calculated values remain almost constant and agree very well with the experimental value. Using a relaxation factor of 0.8 exhibits an increasing instability without a satisfactory convergence.

In Fig. 15 results for rotor no. 1 are presented. The trends are similar to the case of rotor no. 3. While the use of a relaxation factor of 0.5 shows relatively nice convergence, increasing instability is presented while applying a relanation factor of o. B.

The difference in the behavior while using a relaxation factor of 0.8 , betwen rotor no. 2 and rotors nos. 1 and 3 , may be a result of the differences in the near wake length. In the case of rotor no. 2 this length is 225° while in the two other cases it is 450°. This is also related to the number of blades. Further investigation is mecessary in order to obtain a better insight into the nature of the influence of the relaxation factor. In the meantime it seems that a value of 0.5 is appropriate in most of the cases. Higher values of relaxation factors may give faster convergence, but they should be used with caution.

4.7 Correction for Self Induction

The correction has been explained in the previous section. In Fig. 16 results for rotor no. 3 , with (configuration 3 A) and without (configuration 3 D) self induction correction, are presented.

Figure 1Ga presents the spanwise circulation distribution. It is seen that the influence of the self induction is very small and practically negligible. The theoretical results agree very well with the experimental results.

The tip vortex geometry of both configurations is presented in Fig. 16b. Again the differences are very small.

5. The Influence of Sweep Eack

As indicated above the present model can deal with lifting surfaces having any planform. This capability will be used in order to investigate sweep influences. This investigetion will include a comparison between a swept blade and a similar straight blade.

Fotor no. 3 is the basic rotor having straight blades. The swept blades are obtained (see Fig. 17a) by "cutting" the outer thirty percent of the blade and sweeping them back by 30°, relative to the other seventy percent. The planform of the swept part is identical to the same part of the straight blade (excluding for the sweep) except for the tip which is parallel to the y axis (the area of the straight and swept blade are identical). It is clear that crosssections perpendicular to the axis of the swept poition will "see" a different flow field, even when induced velocities are not considered. Therefore in order to try and compare two rotors which are "similar to the maximum", the pitch angle of the cross-sections of the swept portion (the angle is measured about the swept axis) is changed. This angle is obtained by multiplying the pitch angle of the same cross-section of the straight blade by the factor f defined as:

$$
f=\left[\frac{\rho}{\left(\rho-f_{5}\right)} \frac{\sin \gamma}{\sin A} \frac{1}{\cos (A-\gamma)}\right]^{2}
$$

where

$$
\gamma=\operatorname{arctg} \frac{\left(\rho-\rho_{5}\right) \sin A}{\rho_{5}+\left(\rho-\rho_{5}\right) \cos \Lambda}
$$

f is a nondimensional coordinate along the blade asis, equal to aro at the root an unit at the tip. f_{s} is the coordinate of the crosssection where the sweep back takes place and Λ the sweep angle there. It has been shown in Fef. 14 that based on a blade element theory, assuming identical induced velocity and neglecting small terms, both rotors will give identical aerodynamic loads. The division into cells is identical to the straight blade (configuration $3 A$) and shown in Fig. 17a as configuration SWi.

As can be seen from the circulation distribution along the blade (Fig. 17a), the load at the tip region is similar in both cases. On the other hand, at the sweep bact: region there is a significant influence which indicates that as a result of a sweep a trailing vorter filament appears which is much stronger than the trailing vortex leaving the same region of the straight blade. Eecause of this behavior it seems that at the sweep back region, a refinement of division of cells is desired. Configuration SW2 presents such a refinement (see Fig. 17a). It is seen that as a result of this refinement, shape change of the circulation at the sweep point is obtained. The intensity of the trailing vortex filament at this point is thirty percent of the strong tip vortex. Investigation of the wake (not seen here) reveals a roll-up phenomenon associated with this filament, similar to what happens in the case of the tip vortex.

The geometry of the tip vortex in the case of the three configurations is shown in Fig. 17b. The axial location is very similar in all the cases. There are some differences in the radial location. The decrease in the initial point is due to the fact that the radial location is normalized by the length of the blade ffrom rotor center to tip). In the case of the swept blade the length is larger than the radius of the tip. Besides these geometrical differences, it can be concluded that the radial location of the tip vorten is also similar in all the cases.

The present results indicate that sweep back introduces interesting phenomena in the aerodynamic behaviour of blades. Further investigation is required in order to get better insight into this influence.

6. Conclusions

Based on the parametric investigation presented in this paper, the following conclusions are drawn:

- Near wake length - for a two-bladed rotor a near wake length of 450° is appropriate. This length requires long computing time and tends to instability if appropriate relaxation factors are not applied. For a four-bladed rotor a near wake of 225° (or slightly longer) seems to give fair results. It has been shown that taking very long near wake increases the computing time significantly and introduces convergence difficulties.
- Number of cells in the chordwise direction - increasing the number of cells in the chordwise direction does not seem to change the results. On the other hand such an increase may
introduce better stability of the iterative computing procedure. Increasing the number of chordwise cells has only a mild influence on the required computing time.
- The spanwise distribution of columns of cells - twelve columns of cells, with increased number of columns at the tip region, seems to give good results for two and four-bladed rotors. On the other hand it requires much more computing time compared to eight columns that offer results which in certain cases may be of sufficient quality.
- The azimuthal length of the vortex element of the near wake - a near wake composed of vortex elements ranging from an azimuthal length of 25° at the root to 13° at the tip, gives good results for two and four-bladed rotors.
- The radius of the vortex core - in cases where the vortex core is introduced in order to avoid singularity problems, if it is kept small enough then it does not have influence on the results themsel ves.
- The relaxation factor - the relaxation factor is very important to the stability of the iterative procedure. A relaxation factor of 0.5 seems to be appropriate for a wide range of configurations. Higher relaxation factors may accelerate the convergence procedure, but on the other hand, they may cause instability of the iterative procedure. Therefore the use of higher relaxation factors requires special caution. The question of the optimal combination of relaration factors (one may apply different relaxation factors to different parameters) still remains open and requires further investigation.
- Correction for self induction - has only a negligible influence on the results.
- Sweep back - as a result of sweep back of part of the blade, a relatively strong trailing vortex filament is formed at the sweep back region and the aerodymamic loads at this region are significantly changed, relative to a similar straight blade. A further investigation is required in order to get a better insight into the influences of sweep back.

The present study offers guidelines on how to choose a proper configuration for a free wake analysis of a certain rotor. Thus, for example, configuration no. IE seems to be a good choice for a two-bladed rotor (see Figs. 9a,b). For a four-bladed rotor, configuration $2 A$ seems appropriate. But based on the results of the present study, examination of a longer near wake is appealing. Thus configuration 2k has been calculated. The results are shown in Figs. 18a,b. As can be seen the longer near wake (31°) presents an improvement in the agreement with the experimental results. It is still up to the user to decide if the slight increase in the quality of the results are worth the 1 arge increase in CPU time. By examining the present results the aerodynamist has important information which helps him to find the delicate balance between accurancy and efficiency.

It is also worth mentioning, as indicated in fiefs. 4, 5 , that the total required computing time may be dramatically reduced by starting the cialculations from an initial wake geometry which is better than that composed of semi-infinite helical vorten filaments. This initial geometry may be obtained from calculationsusing simpler (and therefore cheaper to run) confiquration, or using existing empirical data.

Acknowl edqement

The authors would like to thank Mrs. A. Goodman-Finto and Mrs. B. Hirsch for typing the paper and Mrs. E. Nitzan for the preparation of the figures.

Fieferences

1. D.F. Clark, A.C. Leiper
2. H.F. Chou
3. L. Morino, Z. Kaprielian, S.F. Sipcic
4. A. Fosen, A. Graber
S. A. Fosen, A. Graber
5. F.X. Caradonna, C. Tung

The Free Wake Analysis - a Method for the Frediction of Helicopter Rotor Hovering Ferformance J. of the American Helicopter Society (1970) 15 (1) उ-11.

Helicopter Lifting Surface Theory with Force Free Wake West Virginia University Dept. of Aerospace Eng. Ph.D. Dissertation January 1975

Free Wake Analysis of Helicopter Fotors
Fraper No. J Ninth European Fotorcraft Forum Stresa Italy September 1983

Free Wake Model of Hovering Fotors Having Straight or Curved Blades Proceedings of the International Conference on Fotorcraft Basic Fesearch Fiesearch Triangle Fark North Carolina February 1985

Free Wake Model of Hovering Rotors Having Straight or Curved Blades Has been accepted for publication in the Journal of the American Helicopter Society (condensed version of Ref. 4)

Experimental and Analytical Studies of a Model Helicopter Rotor in Hover Vertica (1981) 5 149-161
7. D. Favier, M. Nsi Mba,
C. Barbi, C. Maresca
8. J.D. Eallard, K.L. Orloff, A. Luebs
9. M.F. Scully
10. A. Graber, A. Fiosen
11. R.H. Miller
12. H.A. Saberi
13.
M. Nsi Mba, C. Meylan,
C. Maresca, D. Favier
14. O. Fand and A. Rosen

A Free Wake Analysis for Hovering Fotors and Advancing Fropellers Faper No. 21 Eleventh European Fotoreraft Forum London England September 1985

Effect of Tip Shape on Blade Loading Characteristics and Wake Geometry for a Two Elades Rotor in Hover
J. of the American Helicopter Society (1980) $25 \quad 30-35$

Computation of Helicopter Fotor Wake Geometry and Its Influence on Rotor Harmonic Airloads
M.I.T. Dept. of Aeronautical Eng. Fh. D. Dissertation February 1975

Calculating the Axial and Radial Velocities Induced by SemiInfinite Helical Vortex Lines Has been submitted for publication

Rotor Hovering Ferformance Using the Method of Fast Free Wake Analysis
Journal of Aircraft (1983) 20 257-261

Analytical Model of Fotor Wake Aerodyamics in Ground Effect NASA CR 1665SS December 1783

Fadial Distribution Circulation of a Rotor in Hover Measured by Laser Velocimeter
Faper No. 12 Tenth European Fotorcraft Forum The Hague Netherlands August 1984

An Unsteady Frescribed Wake Model of the Aerodynamic Eehaviour of a Helicopter Rotor Having Curved Blades
TAE Feport No. 544 November 1985 See also: A. Fosen and D. Fiand A Model of a Curved Helicopter Blade in Forward Flight
to appear in Vertica

Fig. 1 - A vortex lattice model of
a blade

Fig. 2 - A typical vortex filament

Fig. 3 - A block diagram of the solution procedure

Fig. 4 - The influence of the near-wake length - rotor no. 1
(a) spanwise distribution of the section lift coefficient
(b) tip vortex geometry

Fig. 5 - The influence of the near-wake length - rotor no. 2
(a) spanwise distribution of the circulation
(b) tip vorter geometry

Fig. 8 - The build-up of circulation in the last column of cells - rotor no. 2

Fig. 9 - The influence of the number of columns of cells - rotor no. 1
(a) spanwise distribution of the section lift coefficient
(b) tip vorte\% geometry

Fig. 10 - The influence of the number of columns of cells - rotor no. 2
(a) spanwise distribution of the circulation
(b) tip vortex geometry

Fig. 1 - A vortex lattice model of a blade

Fig. 2 - A typical vortex filament

Fig. 3 - A block diagram of the solution procedure

(a

Fig. 4 - The influence of the near-wake length - rotor no. 1
(a) spanwise distribution of the section lift coefficient
(b) tip vortex geometry

Fig. 5 - The influence of the near-wake length - rotor no. 2
(a) spanwise distribution of the circulation
(b) tip vortes geometry

Fig. \quad - The build-up of circulation in the last column of cells - rotor no. 2

Fig. 9 - The influence of the number of columns of cells - rotor no.
(a) spanwise distribution of the section lift coefficient
(b) tip vortex geometry

(a

(a) spanwise distribution of the circulation
(b) tip vortex geometry

> Fig. $12-$ The infiuence of the vortex core size rotor no. 2

ITERATION NUMBER
Fig. 14 - The influence of the relaxation factor on the convergence - rotor no. 3

Fig. 13 - The influence of the relaxation factor on the convergence - rotor no. 2

ITERATION NUMBER
Fig. 15-The influence of the
relaxation factor on the convergence - rotor no. 1

VORTEX AGE (DEG)

Fig. 16 - The influence of self induction correction - rotor no. 3
(a) spanwise distribution of the circulation
(b) tip vorter geometry

Fig. 17 - The influence of sweep back on the aerodynamic behavior
(a) spanwise distribution of the circulation
(b) tip vortex geometry

Fig. 18 - Results for an "optimal" configuration of rotor no. 2
(a) spanwise distribution of the circulation
(b) tip vorten geometry

[^0]: *Graduate Student
 **Associate Frofessor

