

FLEXIBLE PLATFORM APPROACH FOR CS27/29 FLY-BY-WIRE SYSTEMS

Stephan Korn, Rolf-Rekke Riebeling, Simon Görke, Reinhard Reichel, stephan.korn@ils.uni-stuttgart.de,
University of Stuttgart, Germany

Abstract

Due to high complexity and development costs, implementations of fly-by-wire systems are rarely found in
class CS27/CS29-helicopters. This paper presents an approach which is aimed at reducing the development
effort and hence allows more cost-effective system realizations. The proposed design process is based on
the Flexible Platform technology developed by the University of Stuttgart. This technology is characterized by
the following features: 1) The software architecture provides a clear separation between system
management (i.e. platform management) and the applications (i.e. flight control laws). 2) The platform
management provides transparency of distribution, redundancy, fault tolerance etc. for the applications. 3) It
is composed of a generic middleware and model-based upper management layers, both offering a high
degree of specialization capability. Consequently, the system management of any fly-by-wire system to be
developed can be realized by specialization of the platform management. 4) At implementation level, this
specialization appears in form of software components that allow extensive parameterization. Appropriate
binding of these implementation-level parameters is performed automatically via a dedicated tool-suite using
the system-level input of a systems engineer. The content of this paper is the introduction to the technology
of the Flexible Platform, previously developed for the fixed-wing aircraft usage domain. Furthermore, it
presents the extension of the Flexible Platform approach to the rotorcraft usage domain. This approach has
been validated by the instantiation of a helicopter fly-by-wire system (CS27/29). In doing so, a representative
hardware-in-the-loop fly-by-wire demonstrator was realized.

1. Introduction

The complexity of avionics systems in general and
of fly-by-wire systems in particular, results from a
variety of functional and non-functional reasons.

First of all, there is the complexity of the system
functions itself, e.g. flight control or autopilot,
interacting with many other systems.

Furthermore, non-functional requirements like safety
requirements and the aspect of dissimilarity lead to
highly redundant system structures, driving
complexity as well.

Finally, the systems have to be operated in several
modes such as:

 In-flight mode, pre-flight/aft-flight mode incl.
BIT

1
 mode,

 Interactive modes for failure reporting,
debugging, maintenance, autorigging,

 Simulator modes etc.

It is worth mentioning the increasing degree of
functional integration concerning modern system
design. In order to reduce costs, more and more
system functions will be integrated.

1.1. Avionics Architectures

FIG. 1 shows the classic configuration of a FBW
2

system based on a redundant centralized computer
architecture. This structure can be considered
representative for many avionics systems.

1
 BIT: built-in test

2
 FBW: fly-by-wire

Flight Control

Computer

Control Surface

Actuator

(incl. power electronics)

Inertial

Sensors

Air Data

Sensors

further

Avionics

aerodynamical

forces and torques

aircraft

motion

position

command

Control Stick

pilot

command

...

Aircraft Dynamics

FIG. 1. Classic fly-by-wire system structure (as in [8])

Up until the 1990s, each system respective system
function was allocated to a dedicated (simplex or
redundant) computer system. The results were
federated avionics architectures [1] as depicted in
FIG. 2.

CPU
IOCPU

IOCPU
IO

sensors,

actuators

sensors,

actuators

sensors,

actuators

Module A Module B Module C

RT-OS

App.

A

Driver

RT-OS

App.

B

Driver

RT-OS

App.

C

Driver

FIG. 2. Federated avionics architecture (as in [8])

Increasing system functionality (more functions,
more complexity, more functional co-operation) led

mailto:stephan.korn@ils.uni-stuttgart.de

to integrated avionics architectures like IMA
3
 [2], as

applied in the Boeing 777 or the Airbus A380. As
shown in FIG. 3, IMA integrates several system
functions as applications on common avionic
resources (modules). Partitioning means [4]
provided by each resource prevent operational
interference between different system-functions and
allow incremental certification [7].

CPU IO
net CPU

net CPU IO
net

I/O-Module
Computing-

Module I/O-Module

App.

A

App.

B

RT-OS

Driver

App.

C

App.

D

RT-OS

Driver

App.

E

App.

F

RT-OS

Driver

network

sensors,

actuators

sensors,

actuators

FIG. 3. Integrated avionics architecture – IMA (as in [8])

As a central part of the integrated approach, a
uniform API (typically based on the ARINC 653
standard) is provided for all applications. For the
applications, the operating system provides
abstraction of the underlying hardware, the I/O-
interfacing and the communication between avionics
resources. These abstraction functionalities are
realized in a generic way, so that when an IMA-
module is used in a new system, the abstraction
layers are specialized to fulfill the given
requirements. This form of reusability is a central
feature of a platform (as of the Flexible Platform [8])
which benefits cost, development risks and flexibility
of the life cycle.

1.2. Flexible Platform
An aspect contributing massively to the complexity
of aircraft systems is fault tolerance based on
redundancy (replica). This requires a
failure/redundancy management with respect to
avionics resources, system functions and system
aggregates (sensors, actuators). No abstraction
layers are provided by integrated avionics
architectures like IMA for the failure/redundancy
management of the system and its aggregates, and
therefore are completely left to the applications.
Especially in highly redundant systems, these
aspects significantly contribute to complexity,
development cost and risk.

The focus of this paper is a platform approach with
an advanced integrated avionics architecture. It
provides additional abstraction layers (as depicted in
FIG. 4) which manage all resources of the avionics
architecture in a fault tolerant way without burdening
the applications. These abstraction functionalities
are part of the Flexible Platform and implemented in
the generic platform management.

3
 IMA: Integrated Modular Avionics

CPU IO
net CPU

net CPU IO
net

network

I/O-Module Computing-

Module I/O-Module

platform management

RT-OS

Driver

Abstr. Lay. 1

Abstr. Lay. 2

App.

A

App.

B

RT-OS

Driver

Abstr. Lay. 1

Abstr. Lay. 2

App.

C

App.

D

RT-OS

Driver

Abstr. Lay. 1

Abstr. Lay. 2

App.

E

App.

F

sensors,

actuators
sensors,

actuators

FIG. 4. Integrated avionics architecture based on the

Flexible Platform (adapted from [8])

The approach of the Flexible Platform is applicable
to even highly safety critical systems such as FBW
systems. It is applicable to centralized hardware
structures as well as to distributed ones. Key
aspects of the Flexible Platform are:

1) System respective platform instance
transparency
The platform management comprises all
management functions necessary to operate
the realized system in a fault tolerant way. It is
clearly separated from the laws, i.e. core
applications such as flight control laws.
Complexity, distribution, fault tolerance and
redundancy are fully transparent to the laws.
Consequently, the laws can be designed in a
“simplex minded” way.

2) Flexibility of the platform management
The platform management software is realized
in a widely generic way. Adaption to system-
individual requirements is done by
specialization, which translates to the
parameterization of configurable software
components for the predominant share of the
platform management. A smaller part of the
specialization is achieved by model scaling.

3) Tool based configuration
The more complex a system gets, the more
challenging is the task of the platform
specialization. Somehow, any application-
relevant information has to be reflected in the
specialization data. To reduce the effort of the
specialization process for the system developer,
the implementation-level parameter data is
automatically generated. A manually created
system description, defining the system’s
properties at a very high level of abstraction,
serves as input for this process. Using this
description, a tool-suite performs the
instantiation of the parameter data in a multi-
step refinement process. Each refinement step
is based on a set of meta-models and
transformation rules. Together they represent
the system- and software-architectural
knowledge required for the respective
specialization step.

This paper is organized as follows: Section 2
introduces basic definitions as used within the
context of the Flexible Platform, the hardware
architecture and gives a basic overview on the
platform management’s functionality. Section 3
covers the software architecture and the internal
design of the platform management as previously
developed for fixed-wing aircraft applications.
Section 4 describes the automatic platform
specialization part of the system design process.
Finally, sections 5 and 6 cover the extension of the
Flexible Platform approach for the rotorcraft usage
domain.

2. Platform Architecture Introduction

2.1. Definitions

The basic system design process utilizing a platform
approach is depicted in the figure below (FIG. 5).
This provides a complement overview for the
subsequent terms as they are applied in the context
of this paper:

platform

System

Systemfunktio

n

system

function

system instance

platform instance

incl. system functions

instantiation

(i.e. specialisation

and composition)

allocation

connection

system

aggregates

FIG. 5. Platform-based system design process

 platform
The Flexible Platform can be understood as a
library of hardware and software components.
The focus of the Flexible Platform is on the
software domain: drivers, OS

4
 and the platform

management are part of the platform. All these
generic software components have to be
specialized for a system realization.

 platform instance (pfi)
A platform instance consists of 1) a specific
arrangement of network-connected hardware
modules (cpm, acm, iom, net – see subsection
2.2) for a given system realization and 2) its
individually specialized platform management
software. The independently developed
application software (laws) is not considered as
part of the instance, but integrated into it.

 system
A system realized as one platform instance
consists of 1) its system-function, e.g. a flight
control law 2) the platform instance to which

4
 OS: Operating System

the system-function is allocated 3) its
aggregates.

 system-function
It is the functional core of the system. It does
not contain any system management functions.

 law (application)
A law represents a system-function instantiated
as single software component and allocated to
one (or more) hardware modules of a pfi.

 system-function path (sfp)
A set of pfi-modules and aggregates, including
a suitable subset of the pfi-network, is called a
system-function path, as long as it ensures
correct operation of the system function at least
at minimum performance level. Generally, a pfi
with redundant modules and aggregates will
comprise a set of system-function paths, each
having the capability to run the system-function
correctly, though possibly at different degrees
of performance.

 mapp
Several laws (apps) can be grouped into a
mega-application called mapp. In case of
failure during flight, mapps can be dynamically
reallocated among the modules of a pfi. This
paper’s scope is restricted to a single mapp,
and dynamic reallocation of multiple mapps is
not covered in the following.

 quality of service
5
 (qos)

In the context of this paper, qos represents
avionics specific metadata characterizing the
quality of data (sensor data, output data of a
module etc.), quality of performance of
aggregates, degree of performance of a
system-function path etc. Qos is a fundamental
part in the generalization of platform
management tasks.

 aggregates
Aggregates are sensors, actuators or simply
external systems communicating with the
platform instance. Aggregates are not part of
the platform instance.

Generally, the Flexible Platform approach allows
allocation of several systems on one and the same
platform instance. As the laboratory FBW
demonstrator presented in this paper (section 6) is
restricted to a single system, i.e. the flight control
system, the presentation in this paper is restricted to
single system applications as well.

2.2. Hardware Architecture

To explain the core philosophy of the hardware
architecture, a simplified FBW platform-instance and
its aggregates are depicted below (FIG. 6) to give an
overview for the described terms. The key hardware
components of the Flexible Platform are cpms (core

5
 QoS as definied in this paper

processing modules), ioms (input output modules),
acms (actuator control modules) and net (platform
network).

ADIRU
IRU

ADU

ADIRU
IRU

ADU

Stick

R
u

d
d

e
r

E
le

v
a

to
r

L
E

le
v

a
to

r
R

Computing

Modules

(Sensor-)

Aggregates

Input/Output

Modules

(Actuator-)

Aggregates

Stick

network side (B)

iom

iom

iom

iom

Actuator

Control

Modules

network side (R)

acm
c

p
m

c
p

m

c
p

m

c
p

m

Act.

Act.

Act.

Act.Act.

ADIRU
IRU

ADU

Stick

Stick

acm

acm

acm

FIG. 6. Platform-instance example with aggregates

cpm (core processing module):

 A cpm is built up as a dual lane module.

 The lanes run their software replica in parallel
and apply cross-comparison mechanisms in
order to achieve fail/passive behavior to a very
high degree.

 A cpm performs basically the main laws of a
system (i.e. flight control laws etc.) and the key
services of the platform management.

 A cpm is the only module of the platform where
every lane has full access to all channels of the
platform network. Segregation means are
implemented to prevent single point faults.

 A cpm has no I/O-interfacing (except the
interface to the platform network).

iom (input/output module):

 Ioms considered in this paper are single lane
ioms (one lane per iom).

 An iom runs parts of the platform management
and contributes to the overall platform
management.

 An iom has only partial access to the platform
network. In the demonstrator (section 6) it has
access to one dual channel bus.

 An iom has the capability to run complex
applications.

 The basic services of an iom are:

a) Data acquisition of aggregates (sensors or
actuators).

b) Unification of data representation.
c) Determination of meta-data, including qos.
d) Metadata representation is unified with

respect to syntax and semantics.
e) Output of data to other systems or

aggregates and the corresponding
monitoring (e.g. data wrap-around checks).

acm (actuator control module):

 An acm is basically a duplex iom. It is
optimized with respect to actuator control and
monitors the actuator(s) and itself in order to
provide fail/passive characteristics.

 Input-/output data as well as metadata will be
unified with respect to their presentation. This
is done analogously to ioms.

 An acm runs parts of the platform management
and contributes to the overall platform
management.

 An acm has only partial access to the platform
network. In the demonstrator (section 6) it has
access to one dual channel bus.

 An acm has the capability to run complex
applications such as actuator control loops,
analytical models of actuators. etc.

net (network):

 Each platform instance consists of (at least)
two separate networks. For recent applications,
the flexray

6
 bus technology was chosen. In this

case, each network consists of two redundantly
operated communication channels.

 Only cpms are allowed to have access to both
networks.

 In the laboratory demonstrator (section 6), an
additional (third) network has been added to
perform the communication with the less safety
critical part of the avionics suite.

Assignment to sides:

 The system can be structured according to the
two networks, i.e. into side(B) and side(R)

7
.

 Ioms and acms are linked to only one network.
Their side-assignment will be accordingly.

 Although a cpm is linked to both networks,
each cpm is assigned to one side as well.

 In a flexray-based platform instance, modules
assigned to one side will be synchronized with
the corresponding flexray bus.

2.3. Platform Management

The major task of the platform management is to
ensure a correct active system-function path in spite
of faults or failures in aggregates or the platform
instance. This requires services at different levels of
system platform operation:

 Management of redundant sensors or
redundant data sources, respectively.

 Management of redundant actuators or
redundant actuator valves, respectively.

6
 The Flexible Platform is generally not limited to time-

triggered bus technology (such as flexray).
7
 B…Blue, R…Red

 Management of pfi-modules with respect to
detection of faulty modules and passivation of
them.

 Redundancy management of all cpms of the
so-called pfi-core.

As many decisions are made in the pfi-core this
aspect will be the focus of this section.

Concerning an effective realization of dissimilarity, it
was decided to rely on an active/standby replica
control philosophy for cpms. All cpms run basically
the same tasks but the commands of only two cpms
are transmitted to the acms. One cpm obtains the
“active” or “master” state, denoted as cpm(m).
Another cpm of the opposite side will be selected as
cpm(sl) representing the “standby” or “slave” state.
All cpms not selected as cpm(m) or cpm(sl) will
become “shadow” cpm, denoted as cpm(sh). They
operate in “standby” similar to the slave but without
transmitting commands to the actuators.

For cpm(m) and cpm(sl), the acms monitor the
received commands and return the corresponding
evaluated status to the cpms. Concerning local
control, only the cpm(m) commands are used by the
acms further on.

Cpm(m) and cpm(sl) evaluate by means of the
status feedback of ioms and acms in combination
with further qos data the degree of performance for
their individual system-function path (sfp),
represented by qos(sfp). In fault-free condition, the
following shall be true:

 () ()

As long as this condition holds, no reconfiguration
will be done. Consequently, the main rules for cpm-
replica control can be derived:

 There must be a single cpm in status master
providing the maximum qos(sfp) compared to
cpm(sl).

 If a master is established and there is a correct
cpm available on the other side, this cpm has
to switch into the slave status.

 All other cpm have to switch into the shadow
status.

 If cpm(m) is lost due to a fault or if

 () () holds, then
cpm(sl) initiates transition to become cpm(m).

 If cpm(m) is lost and there is no cpm(sl), a
cpm(sh) of the same side will initiate transition
to become cpm(m).

With respect to the master/slave/shadow-
reconfiguration, FIG. 7 and FIG. 8 depict two
different reconfiguration scenarios. The first scenario
shows the platform reaction on module failures, the
second scenario concerns inconsistent
communication failures between cpm(m) and acms
or cpm(sl) and acms, respectively.

acm

acm

acm

R
u

d
d

e
r

E
le

v
a

to
r

L
E

le
v

a
to

r
R

network side (B)

network side (R)

acm

c
p

m

c
p

m

c
p

m

m

sl

sh

virtual links

Act.Act.

Act.Act.

Act.Act.

Act.Act.

acm

acm

acm

R
u

d
d

e
r

E
le

v
a

to
r

L
E

le
v

a
to

r
R

network side (B)

network side (R)

acm

c
p

m

c
p

m

c
p

mm

sl

Act.Act.

Act.Act.

Act.Act.

Act.Act.

m:

sl:

sh:

master

slave

shadow

FIG. 7. Master reconfiguration due to cpm faults

acm

acm

acm

R
u

d
d

e
r

E
le

v
a

to
r

L
E

le
v

a
to

r
R

network side (B)

network side (R)

acm

c
p

m

c
p

m

c
p

m

m

sl

sh

virtual links

Act.Act.

Act.Act.

Act.Act.

Act.Act.

acm

acm

acm
R

u
d

d
e

r

E
le

v
a

to
r

L
E

le
v

a
to

r
R

network side (B)

network side (R)

acm

c
p

m

c
p

m

c
p

m

Act.Act.

Act.Act.

Act.Act.

Act.Act.

m:

sl:

sh:

master

slave

shadow

m

sl sh

FIG. 8. Master reconfiguration due to an inconsistent

failure between cpm(m) and acm

The end-to-end communication within a platform
instance is based on so-called virtual links. With
respect to the cpms, these virtual links are not
related to the modules but rather to the respective
state as “master” or “slave” (FIG. 7 and FIG. 8). This
grants the capability to reconfigure the virtual links
during flight from a set of preconfigured links.

Decisions such as the determination of the status
master/slave/shadow cannot be done by a single
cpm. They have to be achieved by all cpms

together, denoted as “distributed replica control”.
This requires consensus [9] properties between the
cpms under the constraint that cpms are not
synchronized

8
. Basically, consensus is achieved as

follows:

1. The application of broadcast and data
evaluation mechanisms in all cpms featuring
reliable broadcast (according to [3] & [9])
between all cpms.

2. Implementation of consensus mechanisms
relying on item 1. and taking the
“asynchronism” between the cpms into
account.

In this way, consensus is provided for all pfi-relevant
decisions and ensures consistent and correct pfi-
operations.

In summary, these platform management
mechanisms have the following significant impacts
on the platform characteristics:

 Due to the utilization of dynamic virtual links,
the complexity of the pfi-core, i.e. the number
of cpms and the arrangement of cpms, is fully
transparent to acms and ioms. This supports
the scalability of the system and simplifies the
design of acms and ioms.

 The master/slave/shadow replica control
facilitates the implementation of highly credible
dissimilarity. In particular, it enables the use of
two different types of cpms, type(A) providing
the maximum qos(sfp), type(B) providing only a
reduced qos(sfp), without any changes in
platform management mechanisms.

3. Software Architecture

FIG. 9 gives an overview of the layered software
architecture of a module lane as described in the
following sections.

3.1. OS and Drivers
As part of the OS, the driver infrastructure and
communication stacks provide means for module
hardware access out of the platform management
middleware, i.e. an implementation of the OSI-
Layers 2, 3 and 4. This covers:

 X-lane
9
-communication within a redundant

module.

 Network communication between modules.

 Data bus interfacing of other avionics domains
or complex sensors (e.g. IRUs

10
).

8
 “Not synchronized” means in this context: The services

of different cpms are not synchronized with each other –
they do not refer to a common global time.
9
 x-lane: Cross-Lane or inter-lane

10
 IRU: Inertial Reference Unit

 Access to plain aggregate hardware such as
position pick-offs or electro-mechanical
switches.

la
w

la
w

s
y

s
m

a

A
P

I

O
S

-k
e

rn
e

l

d
rv

d
rv

(n
e

t)
d

rv

la
w

la
w

la
w

..
.

..
.

c
p

la
tt

fo
rm

-m
a

n
a

g
e

m
e

n
t

d
rv

d
rv

la
w

la
w

..
.

..
.

O
S

-k
e

rn
e

l

l

d
rv

(n
e

t)

c
o

m
m

.-

S
ta

c
k

c
o

m
m

.-

S
ta

c
k

io
m

c
p

m
O

S
I
la

y
e

r
2
..
4

:

d
a

ta
li
n

k
 /
 n

e
tw

o
rk

 /
 t

ra
n

s
p

o
rt

 l
a

y
e

r

O
S

I
la

y
e

r
1
:

p
h

y
s

ic
a

l
la

y
e

r

s
y

s
te

m

d
o

m
a

in

p
la

tf
o

rm

d
o

m
a

in
a

p
p

lic
a

ti
o

n

p
la

m
a

h

re
s
s
o

u
rc

e
-m

a
n

a
g

e
m

e
n

t
(r

e
s
m

a
)

o
p

e
ra

ti
n

g
-m

a
n

a
g

e
m

e
n

t
(o

p
m

a
)

p
la

c
o

m
-

m
id

d
le

w
a

re

s
ig

c
o

m
n

e
tc

o
m

m
o

d
c

o
m

re
p

lic
a

 m
a

n
a

g
.,
 r

e
lia

b
le

 b
ro

a
d

c
a

s
t

FIG. 9. Overview of the software architecture (as in [8])

3.2. Platform Communication Middle-
ware (placom)

A specific platform communication layer (placom) is
placed on top of OSI layer 4. It represents the major
part of the platform management in the pfi and
basically covers three communication domains:

 modcom
This function realizes x-lane-related tasks
within an internally redundant module, i.e. cpm
or acm. Basically, it comprises mechanisms for
cross-comparing the lanes’ data and ensuring
their consistency.

 netcom
This domain covers the management of inter-
module communication within a pfi on top of
OSI-layer 4 (see FIG. 9). The main tasks of
netcom are:

a) Communication failures or failures of the
data sources must not contaminate the
receiving module.

b) Reliable broadcast [9] is achieved
between cpms.

c) Metadata for each network and each
module are generated in unified
representation with respect to syntax and
semantics.

 sigcom
This function performs the acquisition of data
and metadata of aggregates and their
transformation to simplex data with qos in a
fault tolerant way. The specific tasks are:

a) Evaluation of operating status and failure
messages provided by the aggregate (e.g.
sensor) or by components involved in the
signal transfer path beginning at the
original source up to each particular signal
sink (e.g. pfi-core).

b) Using voting functions to generate a single
signal from redundant signals.

c) Monitoring the signals and adapting the
voting/monitoring mechanisms.

d) Providing all metadata in order to prepare
reconfiguration decisions, i.e. permanent
passivation, intermediate passivation with
reacceptance in the membership, BIT
control, etc.

e) Providing qos information for each signal
or signal group, respectively.

f) Unification of data with respect to syntax
and metadata with respect to syntax and
semantics.

g) Routing of data including qos information
to each designated application and its
API, respectively.

The design of sigcom turned out to be a very
challenging task. The major challenge is that the
semantics of metadata has to be interpreted in order
to meet this task in a very generic way with a high
degree of flexibility for specialization. This has to be
done against a background of high degrees of
diversity of sensor types and signal transport paths
between aggregates and pfi-core.

3.3. High Level Platform Management
(plamah)

Based on the placom-middleware and the respective
API, plamah establishes the following properties:

 Activation of system-function paths
By determining the master/slave/shadow status
for each module, plamah contributes to the
selection of the active system-function paths
within the pfi.

la
w

la
w

s
y

s
m

a

A
P

I

s
y

s
te

m

d
o

m
a

in

p
la

tf
o

rm

d
o

m
a

in
a

p
p

lic
a

ti
o

n

p
la

m
a

h

re
s
m

a

o
p

m
a

p
la

c
o

m
-

m
id

d
le

w
a

re

s
ig

c
o

m
n

e
tc

o
m

m
o

d
c

o
m

re
p

lic
a

 m
a

n
a

g
.,

 r
e

lia
b

le
 b

ro
a

d
c
a

s
t

R
e

lia
b

le
 B

ro
a

d
c
a

s
t
b

e
tw

e
e

n
 l
a

n
e

s

o
f
in

te
rn

a
lly

 r
e

d
u

n
d

a
n

t
m

o
d

u
le

s

(e
.g

.
c
p

m
)

M
o

n
it
o

ri
n

g
 o

f
n

o
n

-r
e

p
lic

a
te

d
 a

n
d

 V
o

ti
n

g
/M

o
n

it
o

ri
n

g
 o

f

re
p

lic
a

te
d

 a
c
ti
v
e

 a
g

g
re

g
a

te
s
 (

s
e

n
s
o

rs
,
a

c
tu

a
to

rs
).

o
p

m
a

R
e

lia
b

le
 B

ro
a

d
c
a

s
t
b

e
tw

e
e

n

m
o

d
u

le
s
 (

e
.g

.
c
p

m
)

C
o

n
s
e

n
s
u

s
 c

o
n

c
e

rn
in

g
 r

e
s
o

u
rc

e

m
e

m
b

e
rs

h
ip

,
m

a
p

p
-a

llo
c
a

ti
o

n
,

s
y
s
te

m
-f

u
n

c
ti
o

n
 p

a
th

s
,
e

tc
.

C
o

n
s
e

n
s
u

s
 c

o
n

c
e

rn
in

g
 s

y
s
te

m
-f

u
n

c
ti
o

n
 p

a
th

s
.

C
o

n
s
is

te
n

c
y
 a

t
s
y
s
te

m
 l
e

v
e

l
c
o

n
c
e

rn
in

g
 a

g
g

re
g

a
te

m
e

m
b

e
rs

h
ip

 a
n

d
 a

g
g

re
g

a
te

 o
p

e
ra

ti
n

g
 m

o
d

e
.

C
o

n
s
is

te
n

t
v
ie

w
 o

f

p
la

tf
o

rm
 i
n

s
ta

n
c
e

C
o

n
s
is

te
n

t
v
ie

w
 o

f

p
la

tf
o

rm
 i
n

s
ta

n
c
e

In
h

e
ri
ta

n
c
e

 o
f
b

ro
a

d
c
a

s
t
re

s
p
.
c
o

n
s
e

n
s
u

s
 p

ro
p

e
rt

ie
s

re
s
m

a

FIG. 10. Layers and their contribution to consistency

(taken from [8])

 module membership management
The middleware provides for all modules of the
pfi (independent of their membership status)
qos information at the placom API (see last
section and FIG. 9). Based on this information
and the properties of the reliable broadcast
between cpms, plamah establishes consensus
between all correct cpms concerning the
membership of all pfi-modules.

 mapp activation
Each cpm can load several mapps, but only
one specific mapp is executed per cpm. Based
on membership consensus, plamah provides
consensus concerning mapp activation
between all correct cpms.

The relationship between the different software
layers with respect to reliable broadcast and the
different consensus properties is shown in FIG. 10.
The tasks mentioned above establish a consistent
operating status in the pfi. Based hereon,
management decisions are executed concerning
global operating modes (e.g. BIT mode) by the
operating management (opma).

3.4. System management (sysma)
The key tasks of the system management sysma
are as follows:

 It acts as the interface between the highly
generic plamah and the highly application
specific system aspects.

 It performs the final decisions about long-term
membership of redundant aggregates
concerning the related system.

 As system-functions are basically run in a semi
active way (master/slave/shadow), sysma
performs the adaption of the slave and shadow
replica with respect to the master replica.

 It transforms respectively supplements
operating mode commands of plamah for the
system level.

4. Platform Specialization

With platform-based design approaches, system
development basically translates to tailoring the
platform components to the system-specific
requirements. Consequently, this specialization task
represents the pivotal development effort.

4.1. Introduction to Specialization

Resulting from fundamental differences in design,
the individual parts of the Flexible Platform software
are specialized in three different ways (see FIG. 11):

 model adaption

 model scaling

 parameterization

law law

sysma

API

system

domain

platform

domain
application

plamah

resma

opma

placom-

middleware

sigcomnetcom

modcom

replica manag., reliable broadcast

opma

resma

Flexibility

Reusability

specialization by:

model adaption

model scaling

manual implementation

specialization by:

parameterization

FIG. 11. Specialization types within the Flexible Platform

software (as in [8])

Specialization of the model-based plamah/sysma-
part is mainly achieved by model-scaling.

In contrast to this, the placom-layer is specialized by
generation and composition of configuration data
(parameterization). This comprehends in detail:

 Composition of modules.

 Definition of module functionality.

 Scheduling of communication between SW-
modules and between HW-modules (for
distributed systems).

Generation of the placom-layer is a challenging task
with respect to parameter-quantity. Instantiation of a
large avionics system typically means defining
several hundred thousand partly cross-dependable
middleware parameters. Manual handling seems
unfeasible in practice.

Automation of the middleware-instantiation process
offers a solution to this issue.

In order to reduce the effort of defining input data by
the systems engineer, the input specification is
performed on system level. This was achieved by
the development of a tool-suite offering a high level
of abstraction for input data.

The tool-suite applies a multi-step refinement
process using the input specification to derive the
desired output data at source code level. Starting
with these highly abstract data, any further
instantiation is conducted automatically by
algorithmic rules.

4.2. Instantiation Process

The following figure (FIG. 12) is an overview for the
following sections, showing the instantiation
process, characterized by four individual steps.

4.2.1. Input Specification

The input for the instantiation process is manually
created by a systems engineer. For this specification
task, a dedicated domain-specific language (DSL)
was defined using a meta-modeling approach.

placom-middleware

sigcomnetcom

modcom

Placom

Algorithms

Synthesis Rules

Platform Architecture &

Expanded Data Path Level

Software Component Level

Manual

Instantiation

Auto

Instantiation

Instances

Placom Structure Model

Software Component Model

Platform Architecture &

Data Path Model
Auto

Instantiation

Meta (class-) Models

Placom Structure DSL

Software Component DSL

Platform Architecture &

Data Path DSL

Code Generation Templates
Parameter-Sourcecode

Auto

Instantiation

1

2

3

4

Systems

Engineer

FIG. 12. Instantiation of the placom-middleware (as in [8])

Domain-specific means that the language provides
description elements well-known to the systems
engineer. Hence, the abstraction level focuses on a
system-engineering perspective, not a software-
engineering view. Basically, this DSL provides
means to describe the following aspects:

 The structure of the system instance hardware
(modules, sensors, actuators, networks).

 Aggregates can be split into or composed of so
called granulates, which are the smallest units
managed separately by the platform
management.

 All sensor and actuator interfaces, all API of all
modules (iom, acm, cpm).

 Virtual links.

 The allocation of interfaces, laws, part of
management mechanisms onto the hardware
modules respectively structure.

The following figure (FIG. 13) depicts as an
example, a simple input specification being
progressively transformed to parameter source code
as described in the further instantiation process
steps.

4.2.2. First Auto-Instantiation Step

The first auto-instantiation step has the manually
created specification as its input. Basically, the
synthesis rule set of this first stage augments this
input with structural knowledge of the placom-
internal architecture. This interim transformation
process generates artifacts with an instance-wide
scope.

These artifacts belong to a dedicated DSL which is
designed for describing placom-internal processing
as a sequence of functional black-boxes comprising:

 Sigcom “segments” distributed on the modules

 Interconnecting netcom “segments”

iomsensor

cpm

Law
voting

redundant

signals

sensor signals

iom
sensor

Virtual links

 Hardware Topology

Allocation

Granulates

Dataflow Definition

FIG. 13. Systems engineer inputs to the tool-suite for a

very simplified system example

The artifacts also contain:

 All inter-module communication messages

 All sensor / actuator messages

One example is the automatic insertion of netcom-
functionality, whenever a system-function path
crosses from one module to another (FIG. 14).

iom
cpm

iomSensor

Communication
Messages

Sensor

netcom sigcomsigcom

Sensor
Messages

Inter-module

FIG. 14. Automatic placom structure instance generation

(according to example in FIG. 13)

4.2.3. Second Auto-Instantiation Step
The second auto-instantiation step comprises rules
which transform the black-boxes created in the
preceding step. The black-boxes are decomposed to
software components and they in turn are
specialized by defining their parameterization. Some
parameters are mapped unaltered from the initial
input, but the majority is deduced from user
specifications or architectural relations. The results
of the transformation are stored as an instance of a
third DSL (FIG. 15):

 SW-components and parameterization for
modcom, sigcom, netcom

 Derived parameter data (e.g. memory layout)

This language formally specifies the degrees of
freedom for each software component with a per-
lane scope.

L
a
n
e
 A

L
a
n
e
 B

L
a
n
e
 A

L
a
n
e
 B

Lane A

Lane B

cpm
iom

iom

Sensor

Sensor

netcomsigcom netcom sigcom
FIG. 15. Automatic software component instance

generation (example from FIG. 13)

4.2.4. Code Generation

The last transformation step translates instances of
the software component DSL into source code
representing the component parameterization (FIG.
16). Practically, this is a one-to-one conversion
which merely alters their representation.

Parameter Data

*.c

*.h

...

netcomsigcom netcom sigcom

FIG. 16. Automatic parameter data generation (example)

5. Flexibility Frame

Originally, the usage domain of the Flexible Platform
covers fixed-wing aircraft applications. In order to
make the Flexible Platform applicable to rotorcraft
applications, the usage domain has to be extended
appropriately. The major extensions are driven by:

FC-Laws

 Basic flight control laws mainly comprising
basic stabilization, axes decoupling and partly
“command & hold” functionality.

 Enhanced flight control laws including full
“command & hold” functionality.

 Conventional autopilot modes as well as
specific SAR modes (e.g. hover, ground speed
mode).

The frame of FC-laws fixes the set of sensors to be
applied to a flight control system as well.

Actuator arrangement

Each of the actuators – three for the main rotor and
one for the tail rotor – is a hydraulic actuator
controlled by means of four direct drive motors in “all
active mode”.

Safety and Dispatchability

 P(loss of basic flight control) < 10
-9

 per flight
hour

 P(loss of enhanced flight control) < 10
-5

..10
-9

per flight hour

 System extensions shall be possible in order to
allow dispatch in case of any single fault in the
electronics.

 Robustness against generic faults shall be
based on dissimilarity.

System Aspects

The system architecture can be considered to be
covered widely by the fixed-wing aircraft usage
domain of the Flexible Platform – except the
actuation area. This specific area will be considered
in more detail in the following chapter.

6. Helicopter FBW Demonstrator

6.1. System Structure
A laboratory helicopter FBW demonstrator (as
described in detail in [10]) is realized as an instance
of the Flexible Platform. Compared with the
exemplary platform instance shown in FIG. 6, an
additional flexray bus (side(G)) as well as additional
ioms are added (FIG. 17).

All actuators of the main rotor are controlled by an
actuator electronics consisting of a quad-duplex acm
arrangement. The four acms communicate with each
other via a separate x-acm communication bus

11
.

The actuator of the tail rotor is controlled by another
quad-duplex acm arrangement.

6.2. Specific operating Aspects

This chapter shall provide insight into selected
platform management aspects as applied in the
demonstrator.

6.2.1. Sensor Management

In the demonstrator, sensor data as well as data
from other systems are handled by the ioms.
Relating to sigcom functionality as in section 3.2,
this comprises data acquisition, unification of data

11

 The inter-acm communication is a separate flexray bus.

For real applications this approach will not meet the safety
requirements. Its substitution by another communication
means will only marginally affect the platform
management mechanisms.

representation and monitoring of non-redundant
data.

Concerning Voting/Monitoring of redundant data, the
main share is performed by the cpms, covering the
sensor domain, and a smaller share by acms,
covering actuator-specific data.

io
m

io
m

io
m

io
m

c
p

m
c

p
m

c
p

m

c
p

m
c

p
m

acm acm acm acm

M
a

in
-

R
o

to
r-

A
c

t.

Swash-Plate

M
a

in
-

R
o

to
r-

A
c

t.

Main

Rotor

Act.

Actuator

Electonics

#2

Tail

Rotor

Act.

Spider

Actuator

Electronics

#1

P
la

tf
o

rm

C
o

re

n
e

tw
o

rk
 s

id
e

 (
R

)

x-acm network

n
e

tw
o

rk
 s

id
e

 (
B

)

io
m

io
m

n
e

tw
o

rk
 s

id
e

 (
G

)

avionics

Pilot

controls /

avionics

Pilot

controls /

avionics
FIG. 17. Platform instance of laboratory demonstrator [10].

6.2.2. pfi-Core Management
As described in chapter 2.3 the control of cpm-
replica is based on a master/slave/shadow
philosophy.

FIG. 18 shows a reconfiguration of cpms with
respect to cpm-faults, applying the reconfiguration
rules of chapter 2.3. FIG. 19 shows a scenario with
respect to an inconsistent failure, such that the
commands of cpm(m) are not received correctly any
more by some acms of one actuation core but
cpm(sl) is still operating without any failure in its
system-function-path.

Once this failure scenario happens, the overall qos
of cpm(m) is reduced resulting in ()
 () .

Consequently, the reconfiguration according to FIG.
19 restores the maximum possible qos in the
system.

cpm cpmcpm

cpm cpm

a
c

m
a

c
m

a
c

m
a

c
m

Main-

Rotor-

Act. S
w

a
s

h
-P

la
te

Main-

Rotor-

Act.

Main

Rotor

Act.

Actuator

Electr. #1
Platform

Core

network side (R)

network side (B)

cpm cpmcpm

cpm cpm

a
c

m
a

c
m

a
c

m
a

c
m

Main-

Rotor-

Act. S
w

a
s

h
-P

la
te

Main-

Rotor-

Act.

Main

Rotor

Act.

Actuator

Electr. #1
Platform

Core

network side (R)

network side (B)

sh

sl

m sh

sh

sl

m

sh

sh

virtual

links

virtual

links

virtual

links

virtual

links

x
-a

c
m

 n
e

tw
o

rk
x

-a
c

m
 n

e
tw

o
rk

m:

sl:

sh:

master

slave

shadow

FIG. 18. Cpm-reconfiguration with respect to cpm-faults

cpm cpmcpm

cpm cpm

a
c

m
a

c
m

a
c

m
a

c
m

Main-

Rotor-

Act. S
w

a
s

h
-P

la
te

Main-

Rotor-

Act.

Main

Rotor

Act.

Actuator

Electr. #1
Platform

Core

network side (R)

network side (B)

cpm cpmcpm

cpm cpm

a
c

m
a

c
m

a
c

m
a

c
m

Main-

Rotor-

Act. S
w

a
s

h
-P

la
te

Main-

Rotor-

Act.

Main

Rotor

Act.

Actuator

Electr. #1
Platform

Core

network side (R)

network side (B)

sh

sl

m sh

sh

sh

m

sh

sh

sl

virtual

links

virtual

links

virtual

links

virtual

links

x
-a

c
m

 n
e

tw
o

rk
x

-a
c

m
 n

e
tw

o
rk

m:

sl:

sh:

master

slave

shadow

FIG. 19. Cpm-reconfiguration with respect to performance

degradation in the active system-function-path

6.2.3. Operation of quad-duplex acms
Contrarily to cpms, replica control of the quad-
duplex acms is performed “all active”. In order to
allow for efficient acm monitoring and to prevent any
force-fighting in the actuator, the four redundant acm
actuator commands have to agree to a very high
degree. In order not to overburden the x-acm
communication or the cpu-performance in the acms
the following strategy has been selected:

 The control loop is split into a high frequency
inner loop and a low frequency outer loop.

 All acms are synchronized via the x-acm
communication bus.

 With respect to outer loops, consensus
mechanisms are implemented in the acms
such that exact agreement of reference and
command values is ensured between the lanes
of each acm and between the acms even in
case of byzantine (inconsistent) failures
between acms or inconsistent failures between
cpm(m) and acms, respectively.

 With respect to inner loops, x-acm data are
exchanged at outer loop frequency as well.
Consequently, additional x-acm mechanisms
are implemented to ensure precise (not exact)
agreement of output commands generated by
the inner loops.

 In case of an acm-fault, the affected acm
passivates itself. Basically, the passivation of
an acm can be initiated by itself or by the
majority of the other (not passive) acms.

 In case of an inconsistent failure between
cpm(m) and the acms, all acms continue
operation but the system might react with a
reconfiguration of the master status in the pfi-
core (see FIG. 19).

7. Conclusion

The approach of the Flexible Platform is based on
the powerful middleware, allowing specialization by
parameterization, and the model-based upper
management layers, allowing specialization by
model scaling. In particular, the specialization of the
comprehensive middleware has revealed to be an
extraordinary complex task. Automation of the
middleware-instantiation process offers a solution to
this issue. This is achieved by the development of a
tool-suite offering a high level of abstraction for input
data at system level. The tool-suite applies a multi-
step refinement process using the high level input
specification to derive the desired specialization
output data at source code level. This is done for the
middleware as well as the OS and all SW-drivers of
the complete platform instance, i.e. all cpms, ioms
and acms.

Through years of research, the Flexible Platform
approach has been applied to different

demonstrators of fixed-wing aircraft applications
(laboratory and inflight demonstrators) and even
automotive applications (x-by-wire systems
implemented in prototype cars and trucks tested on
test circuits). All these demonstrators show a degree
of complexity close to real product applications.
Thereby, it has proven that the instantiation of a new
platform management instance can be achieved to a
high degree simply by specialization, i.e. in a very
efficient way.

The paper extends the fixed-wing aircraft usage
domain of the Flexible Platform to a rotorcraft usage
domain. This required one-time modifications of the
upper management layers, the middleware and the
tool-suite. In spite of this particular additional one-
time effort, the approach of the Flexible Platform has
reconfirmed its efficiency in installing a new FBW
system.

Abbreviations
acm – actuator control module

API – application programming interface

BIT – built-in test

cpm – core processing module

FBW – fly-by-wire

HMI – human machine interface

i/o – input/output

iom – input/output module

mapp – mega applicaton

opma – operation management

OS – operating system

pf – platform

pfc – primary flight control

pfi – platform instance

placom – platform communication layer

plamah – high-level platform management part

QoS – quality of service

sfp - system function path

SW – software

sysma – system management

References

[1] C. Watkins, “Integrated Modular Avionics:
Managing the Allocation of Shared Intersystem
Resources“, in 25th Digital Avionics System
Conference, 2006 IEEE/AIAA, 2006, pp. 1-12.

[2] C. Watkins and R. Walter, “Transitioning from
federated avionics architecture to Integrated
Modular Avionics”, in Digital Avionics Systems
Conference, 2007.DASC ’07. IEEE/AIAA 26th,
2007, pp. 2.A.1-1.

[3] V. Hadzilacos and S. Toueg, “A Modular
Approach to Fault-Tolerant Broadcasts and
Related Problems”, Ithaca, NY, USA, 1994.

[4] J. Rushby, “Modular Certification”, SRI
International, Menlo Park, CA, Tech. Rep.
NASA/CR-2002-212130, Dec. 2002.

[5] J. Lewis and L. Rierson, “Certification concerns
with integrated modular avionics (IMA)
projects”, in 22nd Digital Avionics Systems
Conference, DASC ’03, 2003.

[6] G. Bartley and B. Lingberg, “Certification
concerns of Integrated Modular Avionics (IMA)
systems”, in Digital Avionics Systems
Conference, DASC ’08, IEEE/AIAA 27th, 2008.

[7] A. Wilson and T. Preyssler, “Incremental
certification and Integrated Modular Avionics”,
in Digital Avionics Systems Conference, DASC
’08, IEEE/AIAA 27th, 2008.

[8] R. Reichel, S. Görke, F. Cake, S. Polenz, R.
Riebeling, „Flexible Avionics Platform“, in
Proceedings of the 61. German Aerospace
Congress (DGLR), Berlin, 10.-12. September
2012.

[9] G. Coulouris, J. Dollimore, T. Kindberg, G.
Blair, “Distributed Systems - Concepts and
Design”, Addison-Wesley, 5

th
 Edition, 2012.

[10] N. Bickel, J. P. Klaubert, M. Hammerlindl, S.
Korn, R. Reichel, R. Riebeling, “Design
Validation of a new Generic Fly-By-X Flight
Control System for Helicopters”, in Proceedings
of the European Rotorcraft Forum, Moscow,
03.-06. September 2013.

Acknowledgments
This research was funded with support of the
German Federal Ministry of Economics and
Technology.

Copyright Statement

The authors confirm that they, and/or their company
or organization, hold copyright on all of the original
material included in this paper. The authors also
confirm that they have obtained permission, from the
copyright holder of any third party material included
in this paper, to publish it as part of their paper. The
authors confirm that they give permission, or have
obtained permission from the copyright holder of this
paper, for the publication and distribution of this
paper as part of the ERF2013 proceedings or as
individual offprints from the proceedings and for
inclusion in a freely accessible web-based
repository.

	1. Introduction
	1.1. Avionics Architectures
	1.2. Flexible Platform
	2. Platform Architecture Introduction
	2.1. Definitions
	2.2. Hardware Architecture
	2.3. Platform Management
	3. Software Architecture
	3.1. OS and Drivers
	3.2. Platform Communication Middle-ware (placom)
	3.3. High Level Platform Management (plamah)
	3.4. System management (sysma)
	4. Platform Specialization
	4.1. Introduction to Specialization
	4.2. Instantiation Process
	4.2.1. Input Specification
	4.2.2. First Auto-Instantiation Step
	4.2.3. Second Auto-Instantiation Step
	4.2.4. Code Generation

	5. Flexibility Frame
	6. Helicopter FBW Demonstrator
	6.1. System Structure
	6.2. Specific operating Aspects
	6.2.1. Sensor Management
	6.2.2. pfi-Core Management
	6.2.3. Operation of quad-duplex acms

	7. Conclusion
	Abbreviations
	References
	Acknowledgments
	Copyright Statement

