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Abstract 

Due to high complexity and development costs, implementations of fly-by-wire systems are rarely found in 
class CS27/CS29-helicopters. This paper presents an approach which is aimed at reducing the development 
effort and hence allows more cost-effective system realizations. The proposed design process is based on 
the Flexible Platform technology developed by the University of Stuttgart. This technology is characterized by 
the following features: 1) The software architecture provides a clear separation between system 
management (i.e. platform management) and the applications (i.e. flight control laws). 2) The platform 
management provides transparency of distribution, redundancy, fault tolerance etc. for the applications. 3) It 
is composed of a generic middleware and model-based upper management layers, both offering a high 
degree of specialization capability. Consequently, the system management of any fly-by-wire system to be 
developed can be realized by specialization of the platform management. 4) At implementation level, this 
specialization appears in form of software components that allow extensive parameterization. Appropriate 
binding of these implementation-level parameters is performed automatically via a dedicated tool-suite using 
the system-level input of a systems engineer. The content of this paper is the introduction to the technology 
of the Flexible Platform, previously developed for the fixed-wing aircraft usage domain. Furthermore, it 
presents the extension of the Flexible Platform approach to the rotorcraft usage domain. This approach has 
been validated by the instantiation of a helicopter fly-by-wire system (CS27/29). In doing so, a representative 
hardware-in-the-loop fly-by-wire demonstrator was realized. 

1. Introduction 

The complexity of avionics systems in general and 
of fly-by-wire systems in particular, results from a 
variety of functional and non-functional reasons. 

First of all, there is the complexity of the system 
functions itself, e.g. flight control or autopilot, 
interacting with many other systems. 

Furthermore, non-functional requirements like safety 
requirements and the aspect of dissimilarity lead to 
highly redundant system structures, driving 
complexity as well. 

Finally, the systems have to be operated in several 
modes such as: 

 In-flight mode, pre-flight/aft-flight mode incl.  
BIT

1
 mode, 

 Interactive modes for failure reporting, 
debugging, maintenance, autorigging,  

 Simulator modes etc. 

It is worth mentioning the increasing degree of 
functional integration concerning modern system 
design. In order to reduce costs, more and more 
system functions will be integrated. 

1.1. Avionics Architectures 

FIG. 1 shows the classic configuration of a FBW
2
 

system based on a redundant centralized computer 
architecture. This structure can be considered 
representative for many avionics systems. 
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 BIT: built-in test 
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FIG. 1. Classic fly-by-wire system structure (as in [8]) 

Up until the 1990s, each system respective system 
function was allocated to a dedicated (simplex or 
redundant) computer system. The results were 
federated avionics architectures [1] as depicted in 
FIG. 2. 
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FIG. 2. Federated avionics architecture (as in [8]) 

Increasing system functionality (more functions, 
more complexity, more functional co-operation) led 
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to integrated avionics architectures like IMA
3
 [2], as 

applied in the Boeing 777 or the Airbus A380. As 
shown in FIG. 3, IMA integrates several system 
functions as applications on common avionic 
resources (modules). Partitioning means [4] 
provided by each resource prevent operational 
interference between different system-functions and 
allow incremental certification [7]. 
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FIG. 3. Integrated avionics architecture – IMA (as in [8]) 

As a central part of the integrated approach, a 
uniform API (typically based on the ARINC 653 
standard) is provided for all applications. For the 
applications, the operating system provides 
abstraction of the underlying hardware, the I/O-
interfacing and the communication between avionics 
resources. These abstraction functionalities are 
realized in a generic way, so that when an IMA-
module is used in a new system, the abstraction 
layers are specialized to fulfill the given 
requirements. This form of reusability is a central 
feature of a platform (as of the Flexible Platform [8]) 
which benefits cost, development risks and flexibility 
of the life cycle.  

1.2. Flexible Platform 
An aspect contributing massively to the complexity 
of aircraft systems is fault tolerance based on 
redundancy (replica). This requires a 
failure/redundancy management with respect to 
avionics resources, system functions and system 
aggregates (sensors, actuators). No abstraction 
layers are provided by integrated avionics 
architectures like IMA for the failure/redundancy 
management of the system and its aggregates, and 
therefore are completely left to the applications. 
Especially in highly redundant systems, these 
aspects significantly contribute to complexity, 
development cost and risk. 

The focus of this paper is a platform approach with 
an advanced integrated avionics architecture. It 
provides additional abstraction layers (as depicted in 
FIG. 4) which manage all resources of the avionics 
architecture in a fault tolerant way without burdening 
the applications. These abstraction functionalities 
are part of the Flexible Platform and implemented in 
the generic platform management. 
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 IMA: Integrated Modular Avionics 
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FIG. 4. Integrated avionics architecture based on the 

Flexible Platform (adapted from [8]) 

The approach of the Flexible Platform is applicable 
to even highly safety critical systems such as FBW 
systems. It is applicable to centralized hardware 
structures as well as to distributed ones. Key 
aspects of the Flexible Platform are: 

1) System respective platform instance 
transparency 
The platform management comprises all 
management functions necessary to operate 
the realized system in a fault tolerant way. It is 
clearly separated from the laws, i.e. core 
applications such as flight control laws. 
Complexity, distribution, fault tolerance and 
redundancy are fully transparent to the laws. 
Consequently, the laws can be designed in a 
“simplex minded” way. 

2) Flexibility of the platform management  
The platform management software is realized 
in a widely generic way. Adaption to system-
individual requirements is done by 
specialization, which translates to the 
parameterization of configurable software 
components for the predominant share of the 
platform management. A smaller part of the 
specialization is achieved by model scaling. 

3) Tool based configuration  
The more complex a system gets, the more 
challenging is the task of the platform 
specialization. Somehow, any application-
relevant information has to be reflected in the 
specialization data. To reduce the effort of the 
specialization process for the system developer, 
the implementation-level parameter data is 
automatically generated. A manually created 
system description, defining the system’s 
properties at a very high level of abstraction, 
serves as input for this process. Using this 
description, a tool-suite performs the 
instantiation of the parameter data in a multi-
step refinement process. Each refinement step 
is based on a set of meta-models and 
transformation rules. Together they represent 
the system- and software-architectural 
knowledge required for the respective 
specialization step. 



 

This paper is organized as follows: Section 2 
introduces basic definitions as used within the 
context of the Flexible Platform, the hardware 
architecture and gives a basic overview on the 
platform management’s functionality. Section 3 
covers the software architecture and the internal 
design of the platform management as previously 
developed for fixed-wing aircraft applications. 
Section 4 describes the automatic platform 
specialization part of the system design process. 
Finally, sections 5 and 6 cover the extension of the 
Flexible Platform approach for the rotorcraft usage 
domain.  

2. Platform Architecture Introduction 

2.1. Definitions 

The basic system design process utilizing a platform 
approach is depicted in the figure below (FIG. 5). 
This provides a complement overview for the 
subsequent terms as they are applied in the context 
of this paper: 
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FIG. 5. Platform-based system design process 

 platform 
The Flexible Platform can be understood as a 
library of hardware and software components. 
The focus of the Flexible Platform is on the 
software domain: drivers, OS

4
 and the platform 

management are part of the platform. All these 
generic software components have to be 
specialized for a system realization. 

 platform instance (pfi) 
A platform instance consists of 1) a specific 
arrangement of network-connected hardware 
modules (cpm, acm, iom, net – see subsection 
2.2) for a given system realization and 2) its 
individually specialized platform management 
software. The independently developed 
application software (laws) is not considered as 
part of the instance, but integrated into it. 

 system 
A system realized as one platform instance 
consists of 1) its system-function, e.g. a flight 
control law 2) the platform instance to which 
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 OS: Operating System 

the system-function is allocated 3) its 
aggregates. 

 system-function 
It is the functional core of the system. It does 
not contain any system management functions. 

 law (application) 
A law represents a system-function instantiated 
as single software component and allocated to 
one (or more) hardware modules of a pfi. 

 system-function path (sfp) 
A set of pfi-modules and aggregates, including 
a suitable subset of the pfi-network, is called a 
system-function path, as long as it ensures 
correct operation of the system function at least 
at minimum performance level. Generally, a pfi 
with redundant modules and aggregates will 
comprise a set of system-function paths, each 
having the capability to run the system-function 
correctly, though possibly at different degrees 
of performance. 

 mapp 
Several laws (apps) can be grouped into a 
mega-application called mapp. In case of 
failure during flight, mapps can be dynamically 
reallocated among the modules of a pfi. This 
paper’s scope is restricted to a single mapp, 
and dynamic reallocation of multiple mapps is 
not covered in the following. 

 quality of service
5
 (qos) 

In the context of this paper, qos represents 
avionics specific metadata characterizing the 
quality of data (sensor data, output data of a 
module etc.), quality of performance of 
aggregates, degree of performance of a 
system-function path etc. Qos is a fundamental 
part in the generalization of platform 
management tasks. 

 aggregates 
Aggregates are sensors, actuators or simply 
external systems communicating with the 
platform instance. Aggregates are not part of 
the platform instance. 

Generally, the Flexible Platform approach allows 
allocation of several systems on one and the same 
platform instance. As the laboratory FBW 
demonstrator presented in this paper (section 6) is 
restricted to a single system, i.e. the flight control 
system, the presentation in this paper is restricted to 
single system applications as well. 

2.2. Hardware Architecture 

To explain the core philosophy of the hardware 
architecture, a simplified FBW platform-instance and 
its aggregates are depicted below (FIG. 6) to give an 
overview for the described terms. The key hardware 
components of the Flexible Platform are cpms (core 
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processing modules), ioms (input output modules), 
acms (actuator control modules) and net (platform 
network).  
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FIG. 6. Platform-instance example with aggregates 

cpm (core processing module): 

 A cpm is built up as a dual lane module. 

 The lanes run their software replica in parallel 
and apply cross-comparison mechanisms in 
order to achieve fail/passive behavior to a very 
high degree. 

 A cpm performs basically the main laws of a 
system (i.e. flight control laws etc.) and the key 
services of the platform management.  

 A cpm is the only module of the platform where 
every lane has full access to all channels of the 
platform network. Segregation means are 
implemented to prevent single point faults. 

 A cpm has no I/O-interfacing (except the 
interface to the platform network). 

iom (input/output module): 

 Ioms considered in this paper are single lane 
ioms (one lane per iom). 

 An iom runs parts of the platform management 
and contributes to the overall platform 
management. 

 An iom has only partial access to the platform 
network. In the demonstrator (section 6) it has 
access to one dual channel bus. 

 An iom has the capability to run complex 
applications. 

 The basic services of an iom are: 

a) Data acquisition of aggregates (sensors or 
actuators). 

b) Unification of data representation. 
c) Determination of meta-data, including qos. 
d) Metadata representation is unified with 

respect to syntax and semantics. 
e) Output of data to other systems or 

aggregates and the corresponding 
monitoring (e.g. data wrap-around checks). 

acm (actuator control module): 

 An acm is basically a duplex iom. It is 
optimized with respect to actuator control and 
monitors the actuator(s) and itself in order to 
provide fail/passive characteristics.  

 Input-/output data as well as metadata will be 
unified with respect to their presentation. This 
is done analogously to ioms.  

 An acm runs parts of the platform management 
and contributes to the overall platform 
management. 

 An acm has only partial access to the platform 
network. In the demonstrator (section 6) it has 
access to one dual channel bus. 

 An acm has the capability to run complex 
applications such as actuator control loops, 
analytical models of actuators. etc. 

net (network): 

 Each platform instance consists of (at least) 
two separate networks. For recent applications, 
the flexray

6
 bus technology was chosen. In this 

case, each network consists of two redundantly 
operated communication channels. 

 Only cpms are allowed to have access to both 
networks. 

 In the laboratory demonstrator (section 6), an 
additional (third) network has been added to 
perform the communication with the less safety 
critical part of the avionics suite. 

Assignment to sides: 

 The system can be structured according to the 
two networks, i.e. into side(B) and side(R)

7
. 

 Ioms and acms are linked to only one network. 
Their side-assignment will be accordingly. 

 Although a cpm is linked to both networks, 
each cpm is assigned to one side as well. 

 In a flexray-based platform instance, modules 
assigned to one side will be synchronized with 
the corresponding flexray bus.  

2.3. Platform Management 

The major task of the platform management is to 
ensure a correct active system-function path in spite 
of faults or failures in aggregates or the platform 
instance. This requires services at different levels of 
system platform operation: 

 Management of redundant sensors or 
redundant data sources, respectively. 

 Management of redundant actuators or 
redundant actuator valves, respectively. 
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 Management of pfi-modules with respect to 
detection of faulty modules and passivation of 
them. 

 Redundancy management of all cpms of the 
so-called pfi-core. 

As many decisions are made in the pfi-core this 
aspect will be the focus of this section.  

Concerning an effective realization of dissimilarity, it 
was decided to rely on an active/standby replica 
control philosophy for cpms. All cpms run basically 
the same tasks but the commands of only two cpms 
are transmitted to the acms. One cpm obtains the 
“active” or “master” state, denoted as cpm(m). 
Another cpm of the opposite side will be selected as 
cpm(sl) representing the “standby” or “slave” state. 
All cpms not selected as cpm(m) or cpm(sl) will 
become “shadow” cpm, denoted as cpm(sh). They 
operate in “standby” similar to the slave but without 
transmitting commands to the actuators. 

For cpm(m) and cpm(sl), the acms monitor the 
received commands and return the corresponding 
evaluated status to the cpms. Concerning local 
control, only the cpm(m) commands are used by the 
acms further on. 

Cpm(m) and cpm(sl) evaluate by means of the 
status feedback of ioms and acms in combination 
with further qos data the degree of performance for 
their individual system-function path (sfp), 
represented by qos(sfp). In fault-free condition, the 
following shall be true: 

   (   )          (   )      

As long as this condition holds, no reconfiguration 
will be done. Consequently, the main rules for cpm-
replica control can be derived: 

 There must be a single cpm in status master 
providing the maximum qos(sfp) compared to 
cpm(sl). 

 If a master is established and there is a correct 
cpm available on the other side, this cpm has 
to switch into the slave status. 

 All other cpm have to switch into the shadow 
status. 

 If cpm(m) is lost due to a fault or if 

   (   )          (   )      holds, then 
cpm(sl) initiates transition to become cpm(m). 

 If cpm(m) is lost and there is no cpm(sl), a 
cpm(sh) of the same side will initiate transition 
to become cpm(m). 

With respect to the master/slave/shadow-
reconfiguration, FIG. 7 and FIG. 8 depict two 
different reconfiguration scenarios. The first scenario 
shows the platform reaction on module failures, the 
second scenario concerns inconsistent 
communication failures between cpm(m) and acms 
or cpm(sl) and acms, respectively.  
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FIG. 7. Master reconfiguration due to cpm faults 
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FIG. 8. Master reconfiguration due to an inconsistent 

failure between cpm(m) and acm 

The end-to-end communication within a platform 
instance is based on so-called virtual links. With 
respect to the cpms, these virtual links are not 
related to the modules but rather to the respective 
state as “master” or “slave” (FIG. 7 and FIG. 8). This 
grants the capability to reconfigure the virtual links 
during flight from a set of preconfigured links. 

Decisions such as the determination of the status 
master/slave/shadow cannot be done by a single 
cpm. They have to be achieved by all cpms 



 

together, denoted as “distributed replica control”. 
This requires consensus [9] properties between the 
cpms under the constraint that cpms are not 
synchronized

8
. Basically, consensus is achieved as 

follows: 

1. The application of broadcast and data 
evaluation mechanisms in all cpms featuring 
reliable broadcast (according to [3] & [9]) 
between all cpms. 

2. Implementation of consensus mechanisms 
relying on item 1. and taking the 
“asynchronism” between the cpms into 
account. 

In this way, consensus is provided for all pfi-relevant 
decisions and ensures consistent and correct pfi-
operations. 

In summary, these platform management 
mechanisms have the following significant impacts 
on the platform characteristics: 

 Due to the utilization of dynamic virtual links, 
the complexity of the pfi-core, i.e. the number 
of cpms and the arrangement of cpms, is fully 
transparent to acms and ioms. This supports 
the scalability of the system and simplifies the 
design of acms and ioms. 

 The master/slave/shadow replica control 
facilitates the implementation of highly credible 
dissimilarity. In particular, it enables the use of 
two different types of cpms, type(A) providing 
the maximum qos(sfp), type(B) providing only a 
reduced qos(sfp), without any changes in 
platform management mechanisms.  

3. Software Architecture 

FIG. 9 gives an overview of the layered software 
architecture of a module lane as described in the 
following sections.  

3.1. OS and Drivers 
As part of the OS, the driver infrastructure and 
communication stacks provide means for module 
hardware access out of the platform management 
middleware, i.e. an implementation of the OSI-
Layers 2, 3 and 4. This covers: 

 X-lane
9
-communication within a redundant 

module.  

 Network communication between modules. 

 Data bus interfacing of other avionics domains 
or complex sensors (e.g. IRUs

10
). 
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 Access to plain aggregate hardware such as 
position pick-offs or electro-mechanical 
switches.  
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FIG. 9. Overview of the software architecture (as in [8]) 

3.2. Platform Communication Middle-
ware (placom) 

A specific platform communication layer (placom) is 
placed on top of OSI layer 4. It represents the major 
part of the platform management in the pfi and 
basically covers three communication domains: 

 modcom 
This function realizes x-lane-related tasks 
within an internally redundant module, i.e. cpm 
or acm. Basically, it comprises mechanisms for 
cross-comparing the lanes’ data and ensuring 
their consistency.  

 netcom 
This domain covers the management of inter-
module communication within a pfi on top of 
OSI-layer 4 (see FIG. 9). The main tasks of 
netcom are: 



 

a) Communication failures or failures of the 
data sources must not contaminate the 
receiving module. 

b) Reliable broadcast [9] is achieved 
between cpms. 

c) Metadata for each network and each 
module are generated in unified 
representation with respect to syntax and 
semantics. 

 sigcom 
This function performs the acquisition of data 
and metadata of aggregates and their 
transformation to simplex data with qos in a 
fault tolerant way.  The specific tasks are: 

a) Evaluation of operating status and failure 
messages provided by the aggregate (e.g. 
sensor) or by components involved in the 
signal transfer path beginning at the 
original source up to each particular signal 
sink (e.g. pfi-core). 

b) Using voting functions to generate a single 
signal from redundant signals. 

c) Monitoring the signals and adapting the 
voting/monitoring mechanisms. 

d) Providing all metadata in order to prepare 
reconfiguration decisions, i.e. permanent 
passivation, intermediate passivation with 
reacceptance in the membership, BIT 
control, etc. 

e) Providing qos information for each signal 
or signal group, respectively. 

f) Unification of data with respect to syntax 
and metadata with respect to syntax and 
semantics. 

g) Routing of data including qos information 
to each designated application and its 
API, respectively. 

The design of sigcom turned out to be a very 
challenging task. The major challenge is that the 
semantics of metadata has to be interpreted in order 
to meet this task in a very generic way with a high 
degree of flexibility for specialization. This has to be 
done against a background of high degrees of 
diversity of sensor types and signal transport paths 
between aggregates and pfi-core.  

3.3. High Level Platform Management 
(plamah) 

Based on the placom-middleware and the respective 
API, plamah establishes the following properties: 

 Activation of system-function paths 
By determining the master/slave/shadow status 
for each module, plamah contributes to the 
selection of the active system-function paths 
within the pfi. 
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FIG. 10. Layers and their contribution to consistency 

(taken from [8]) 



 

 module membership management 
The middleware provides for all modules of the 
pfi (independent of their membership status) 
qos information at the placom API (see last 
section and FIG. 9). Based on this information 
and the properties of the reliable broadcast 
between cpms, plamah establishes consensus 
between all correct cpms concerning the 
membership of all pfi-modules.  

 mapp activation 
Each cpm can load several mapps, but only 
one specific mapp is executed per cpm. Based 
on membership consensus, plamah provides 
consensus concerning mapp activation 
between all correct cpms. 

The relationship between the different software 
layers with respect to reliable broadcast and the 
different consensus properties is shown in FIG. 10. 
The tasks mentioned above establish a consistent 
operating status in the pfi. Based hereon, 
management decisions are executed concerning 
global operating modes (e.g. BIT mode) by the 
operating management (opma). 

3.4. System management (sysma) 
The key tasks of the system management sysma 
are as follows: 

 It acts as the interface between the highly 
generic plamah and the highly application 
specific system aspects. 

 It performs the final decisions about long-term 
membership of redundant aggregates 
concerning the related system. 

 As system-functions are basically run in a semi 
active way (master/slave/shadow), sysma 
performs the adaption of the slave and shadow 
replica with respect to the master replica. 

 It transforms respectively supplements 
operating mode commands of plamah for the 
system level. 

4. Platform Specialization 

With platform-based design approaches, system 
development basically translates to tailoring the 
platform components to the system-specific 
requirements. Consequently, this specialization task 
represents the pivotal development effort.  

4.1. Introduction to Specialization 

Resulting from fundamental differences in design, 
the individual parts of the Flexible Platform software 
are specialized in three different ways (see FIG. 11): 

 model adaption 

 model scaling 

 parameterization 

law law
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FIG. 11. Specialization types within the Flexible Platform 

software (as in [8]) 

Specialization of the model-based plamah/sysma-
part is mainly achieved by model-scaling. 

In contrast to this, the placom-layer is specialized by 
generation and composition of configuration data 
(parameterization). This comprehends in detail:  

 Composition of modules.  

 Definition of module functionality.  

 Scheduling of communication between SW-
modules and between HW-modules (for 
distributed systems). 

Generation of the placom-layer is a challenging task 
with respect to parameter-quantity. Instantiation of a 
large avionics system typically means defining 
several hundred thousand partly cross-dependable 
middleware parameters. Manual handling seems 
unfeasible in practice.  

Automation of the middleware-instantiation process 
offers a solution to this issue.  

In order to reduce the effort of defining input data by 
the systems engineer, the input specification is 
performed on system level. This was achieved by 
the development of a tool-suite offering a high level 
of abstraction for input data. 

The tool-suite applies a multi-step refinement 
process using the input specification to derive the 
desired output data at source code level. Starting 
with these highly abstract data, any further 
instantiation is conducted automatically by 
algorithmic rules. 

4.2. Instantiation Process 

The following figure (FIG. 12) is an overview for the 
following sections, showing the instantiation 
process, characterized by four individual steps. 

4.2.1. Input Specification 

The input for the instantiation process is manually 
created by a systems engineer. For this specification 
task, a dedicated domain-specific language (DSL) 
was defined using a meta-modeling approach. 
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FIG. 12. Instantiation of the placom-middleware (as in [8]) 

Domain-specific means that the language provides 
description elements well-known to the systems 
engineer. Hence, the abstraction level focuses on a 
system-engineering perspective, not a software-
engineering view. Basically, this DSL provides 
means to describe the following aspects: 

 The structure of the system instance hardware 
(modules, sensors, actuators, networks). 

 Aggregates can be split into or composed of so 
called granulates, which are the smallest units 
managed separately by the platform 
management. 

 All sensor and actuator interfaces, all API of all 
modules (iom, acm, cpm). 

 Virtual links.  

 The allocation of interfaces, laws, part of 
management mechanisms onto the hardware 
modules respectively structure. 

The following figure (FIG. 13) depicts as an 
example, a simple input specification being 
progressively transformed to parameter source code 
as described in the further instantiation process 
steps. 

4.2.2. First Auto-Instantiation Step  

The first auto-instantiation step has the manually 
created specification as its input. Basically, the 
synthesis rule set of this first stage augments this 
input with structural knowledge of the placom-
internal architecture. This interim transformation 
process generates artifacts with an instance-wide 
scope. 

These artifacts belong to a dedicated DSL which is 
designed for describing placom-internal processing 
as a sequence of functional black-boxes comprising:  

 Sigcom “segments” distributed on the modules 

 Interconnecting netcom “segments” 
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FIG. 13. Systems engineer inputs to the tool-suite for a 

very simplified system example 

The artifacts also contain: 

 All inter-module communication messages 

 All sensor / actuator messages 

One example is the automatic insertion of netcom-
functionality, whenever a system-function path 
crosses from one module to another (FIG. 14). 
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FIG. 14. Automatic placom structure instance generation 

(according to example in FIG. 13) 

4.2.3. Second Auto-Instantiation Step 
The second auto-instantiation step comprises rules 
which transform the black-boxes created in the 
preceding step. The black-boxes are decomposed to 
software components and they in turn are 
specialized by defining their parameterization. Some 
parameters are mapped unaltered from the initial 
input, but the majority is deduced from user 
specifications or architectural relations. The results 
of the transformation are stored as an instance of a 
third DSL (FIG. 15): 



 

 SW-components and parameterization for 
modcom, sigcom, netcom 

 Derived parameter data (e.g. memory layout) 

This language formally specifies the degrees of 
freedom for each software component with a per-
lane scope. 
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FIG. 15. Automatic software component instance 

generation (example from FIG. 13) 

4.2.4. Code Generation 

The last transformation step translates instances of 
the software component DSL into source code 
representing the component parameterization (FIG. 
16). Practically, this is a one-to-one conversion 
which merely alters their representation. 
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netcomsigcom netcom sigcom

 
FIG. 16. Automatic parameter data generation (example) 

5. Flexibility Frame 

Originally, the usage domain of the Flexible Platform 
covers fixed-wing aircraft applications. In order to 
make the Flexible Platform applicable to rotorcraft 
applications, the usage domain has to be extended 
appropriately. The major extensions are driven by: 

FC-Laws 

 Basic flight control laws mainly comprising 
basic stabilization, axes decoupling and partly 
“command & hold” functionality. 

 Enhanced flight control laws including full 
“command & hold” functionality.  

 Conventional autopilot modes as well as 
specific SAR modes (e.g. hover, ground speed 
mode). 

The frame of FC-laws fixes the set of sensors to be 
applied to a flight control system as well. 

Actuator arrangement 

Each of the actuators – three for the main rotor and 
one for the tail rotor – is a hydraulic actuator 
controlled by means of four direct drive motors in “all 
active mode”. 

Safety and Dispatchability 

 P(loss of basic flight control) < 10
-9

 per flight 
hour 

 P(loss of enhanced flight control) < 10
-5

..10
-9

 
per flight hour 

 System extensions shall be possible in order to 
allow dispatch in case of any single fault in the 
electronics. 

 Robustness against generic faults shall be 
based on dissimilarity. 

System Aspects 

The system architecture can be considered to be 
covered widely by the fixed-wing aircraft usage 
domain of the Flexible Platform – except the 
actuation area. This specific area will be considered 
in more detail in the following chapter. 

6. Helicopter FBW Demonstrator 

6.1. System Structure 
A laboratory helicopter FBW demonstrator (as 
described in detail in [10]) is realized as an instance 
of the Flexible Platform. Compared with the 
exemplary platform instance shown in FIG. 6, an 
additional flexray bus (side(G)) as well as additional 
ioms are added (FIG. 17).  

All actuators of the main rotor are controlled by an 
actuator electronics consisting of a quad-duplex acm 
arrangement. The four acms communicate with each 
other via a separate x-acm communication bus

11
. 

The actuator of the tail rotor is controlled by another 
quad-duplex acm arrangement. 

6.2. Specific operating Aspects 

This chapter shall provide insight into selected 
platform management aspects as applied in the 
demonstrator. 

6.2.1. Sensor Management 

In the demonstrator, sensor data as well as data 
from other systems are handled by the ioms. 
Relating to sigcom functionality as in section 3.2, 
this comprises data acquisition, unification of data 

                                                      
11

 The inter-acm communication is a separate flexray bus. 

For real applications this approach will not meet the safety 
requirements. Its substitution by another communication 
means will only marginally affect the platform 
management mechanisms. 



 

representation and monitoring of non-redundant 
data. 

Concerning Voting/Monitoring of redundant data, the 
main share is performed by the cpms, covering the 
sensor domain, and a smaller share by acms, 
covering actuator-specific data. 
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FIG. 17. Platform instance of laboratory demonstrator [10]. 

6.2.2. pfi-Core Management 
As described in chapter 2.3 the control of cpm-
replica is based on a master/slave/shadow 
philosophy.  

FIG. 18 shows a reconfiguration of cpms with 
respect to cpm-faults, applying the reconfiguration 
rules of chapter 2.3. FIG. 19 shows a scenario with 
respect to an inconsistent failure, such that the 
commands of cpm(m) are not received correctly any 
more by some acms of one actuation core but 
cpm(sl) is still operating without any failure in its 
system-function-path. 

Once this failure scenario happens, the overall qos 
of cpm(m) is reduced resulting in    (   )       
   (   )     . 

Consequently, the reconfiguration according to FIG. 
19 restores the maximum possible qos in the 
system. 
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FIG. 18. Cpm-reconfiguration with respect to cpm-faults 
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FIG. 19. Cpm-reconfiguration with respect to performance 

degradation in the active system-function-path 



 

6.2.3. Operation of quad-duplex acms 
Contrarily to cpms, replica control of the quad-
duplex acms is performed “all active”. In order to 
allow for efficient acm monitoring and to prevent any 
force-fighting in the actuator, the four redundant acm 
actuator commands have to agree to a very high 
degree. In order not to overburden the x-acm 
communication or the cpu-performance in the acms 
the following strategy has been selected: 

 The control loop is split into a high frequency 
inner loop and a low frequency outer loop. 

 All acms are synchronized via the x-acm 
communication bus. 

 With respect to outer loops, consensus 
mechanisms are implemented in the acms 
such that exact agreement of reference and 
command values is ensured between the lanes 
of each acm and between the acms even in 
case of byzantine (inconsistent) failures 
between acms or inconsistent failures between 
cpm(m) and acms, respectively.  

 With respect to inner loops, x-acm data are 
exchanged at outer loop frequency as well. 
Consequently, additional x-acm mechanisms 
are implemented to ensure precise (not exact) 
agreement of output commands generated by 
the inner loops. 

 In case of an acm-fault, the affected acm 
passivates itself. Basically, the passivation of 
an acm can be initiated by itself or by the 
majority of the other (not passive) acms.  

 In case of an inconsistent failure between 
cpm(m) and the acms, all acms continue 
operation but the system might react with a 
reconfiguration of the master status in the pfi-
core (see FIG. 19). 

7. Conclusion 

The approach of the Flexible Platform is based on 
the powerful middleware, allowing specialization by 
parameterization, and the model-based upper 
management layers, allowing specialization by 
model scaling. In particular, the specialization of the 
comprehensive middleware has revealed to be an 
extraordinary complex task. Automation of the 
middleware-instantiation process offers a solution to 
this issue. This is achieved by the development of a 
tool-suite offering a high level of abstraction for input 
data at system level. The tool-suite applies a multi-
step refinement process using the high level input 
specification to derive the desired specialization 
output data at source code level. This is done for the 
middleware as well as the OS and all SW-drivers of 
the complete platform instance, i.e. all cpms, ioms 
and acms. 

Through years of research, the Flexible Platform 
approach has been applied to different 

demonstrators of fixed-wing aircraft applications 
(laboratory and inflight demonstrators) and even 
automotive applications (x-by-wire systems 
implemented in prototype cars and trucks tested on 
test circuits). All these demonstrators show a degree 
of complexity close to real product applications. 
Thereby, it has proven that the instantiation of a new 
platform management instance can be achieved to a 
high degree simply by specialization, i.e. in a very 
efficient way. 

The paper extends the fixed-wing aircraft usage 
domain of the Flexible Platform to a rotorcraft usage 
domain. This required one-time modifications of the 
upper management layers, the middleware and the 
tool-suite. In spite of this particular additional one-
time effort, the approach of the Flexible Platform has 
reconfirmed its efficiency in installing a new FBW 
system. 

Abbreviations 
acm – actuator control module 

API – application programming interface 

BIT – built-in test 

cpm – core processing module 

FBW – fly-by-wire 

HMI – human machine interface 

i/o – input/output 

iom – input/output module 

mapp – mega applicaton 

opma – operation management 

OS – operating system 

pf – platform 

pfc – primary flight control 

pfi – platform instance 

placom – platform communication layer 

plamah – high-level platform management part 

QoS – quality of service 

sfp - system function path 

SW – software 

sysma – system management 
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