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Abstract 

This paper presents an analytical-cum-experimental study of the structural response of composite 
rotor blades with elastic couplings. Vlasov theory is expanded to analyze two-cell composite rotor 
blades made out of general composite laminates including the transverse shear deformation of the cross­
section. Variation of shear stiffness along the contour of the section is included in the warping function. 
In order to validate this analysis, two-cell graphite-epoxy composite blades with extension-torsion 
coupling were fabricated using matched-die molding technique. These blades were tested under tip 
bending and torsional loads, and their structural response in terms of bending slope and twist was 
measured with a laser optical system. Good correlation between theory and experiment is achieved. 
Axial force induced twist rate of the order of 0.2 degree per inch length can be realized in extension­
torsion coupled blades with a hygrothermally stable [20/-70]2s layup for potential applications in the 

design of tilt rotors. 

Notation Ns,Nz, Nsz Stress resultants referring to 
plate segment 

c, t Chord and thickness of blade Ms,Mz,Msz Moment resultants referring to 

l Length of blade plate segment 

n,s,z Coordinate system for plate N Axial force referring to blade 

segment Mx,My Bending moments referring to 

x, y, z Coordinate system for blade blade 

u,v,w Displacements in n, s, z Vx, Vy Shear forces in x, y directions, 

directions, referring to plate referring to blade 
segment T Torsion moment referring to blade 

U, V, W Displacements in x, y, z Mro Bimoment (or warping moment) 

directions, referring to blade referring to blade 

Es, ez, Esz Membrane strains referring to Kij Stiffness matrix for blade 

plate segment T Applied torsion at tip of blade 
ks, kz, ksz Bending curvature referring to p Applied force at tip of blade 

plate segment F Axial force at the tip of blade 

ci>x, cj>y, ci>z Rotations about x, y, z axes, Et, Et Young's moduli of plies in 
referring to blade principal directions 

exz, eyz Transverse shear strains for the µlt Poisson's ratio of plies in 
blade in xz & yz planes, principal plane 
respectively 

Gtt Shear modulus of plies in cp Warping function 
I. constraint warping parameter 

principal plane 

C>s, crz, crsz Stress field referring to plate 
()' Differentiation with respect to z 

segment coordinate of blade 
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Introduction 

With the application of high performance 
composite materials, the design feasibility of 
advanced rotor systems such as hingeless and 
bearingless rotors is becoming a reality. 
Superior fatigue characteristics and flexibility 
to tailor structural characteristics are the key 
factors for the growing application of 
composites in the rotorcraft industry. Because 
of the non-availability of validated composite 
analytical models, an extreme level of 
conservatism is used in rotorcraft design, and 
the potential benefits of structural couplings 
due to composites are not exploited at this time. 
Analyses of composite blade structures are more 
involved because nonclassical phenomena such 
as section warping and transverse shear related 
coupling become significant. For the full 
exploration of composites to improve the 
performance of current helicopters and also to 
meet many challenging missions of future 
helicopters, it is necessary to develop and 
validate analyses of composite blades with 
elastic couplings. 

Helicopter rotor blades are slender and are 
normally modeled as elastic beams. Research 
studies on the modeling of coupled composite 
beams can be classified into four categories: 
solid rectangular cross-section, open section, 
single-cell closed section, and multi-cell 
aerofoil section. 

References [1] -[4] investigated solid cross­
section composite beams. Johnson [1] presented 
bending-torsion behavior of anisotropic beams 
in the small deflection regime under static 
loads. In that investigation, a variational 
method was used to predict the effective 
bending stiffness of bending-torsion coupled 
beams. Minguet and Dugundji [2, 3] presented an 
analytical-experimental study of composite 
beams in the larg·e deflection regime under 
static and dynamic loading conditions. The 
large deflection analysis used Euler angles to 
include arbitrarily large deformation without 
the need for ordering scheme. For their 
dynamic analysis, small amplitude vibrations 
about the static deflected position of the beam 
were calculated using an influence coefficient 
method together with a finite difference 
solution. Calculated results were correlated 
satisi:actorily with measured values for several 

2 

composite coupled beams. Laulusa [4] conducted 
a theoretical and experimental investigation of 
composite beams under large deflection regime 
and rotating conditions. The analysis was 
based upon a finite element technique. The 
influence of pretwist and warping deformation 
was included. Fair correlation between theory 
and experiment for isotropic beams with initial 
twist was observed. 

Under the category of open-section composite 
beams, Chandra and Chopra [5, 6, 7] presented 
a theoretical-cum-experimental study on static 
and dynamic behavior of composite I-beams. 
Such open-section composite beams are 
routinely used in the construction of flexbeams 
of a bearingless rotor. Their basic analysis was 
an extension of Vlasov theory [8, 9] for beams 
made out of general composite laminates, 
including transverse shear deformation. In the 
dynamic analysis, the Galerkin method was 
used to predict rotating free vibration 
characteristics of coupled composite I-beams. 
An in-vacuo rotor test facility was used to 
provide rotating vibration data for correlation 
to the analytical predictions. Graphite-epoxy 
and Kevlar-epoxy beams were built and tested 
for static and vibration characteristics. 
Modeling of constrained warping effects and 
general layered composite lamination of wall 
of composite open-section beams was considered 
mandatory to predict their structural response. 
Rehfield and Atilgan (10] presented a buckling 
analysis of composite open-section beams. They 
included transverse shear deformation, but 
neglected the bending stiffness of the wall. 

Hong and Chopra [11] studied the aeroelastic 
stability of hingeless rotor blades where the 
blade was modeled as a single-cell, thin wall, 
rectangular section composite beam. That 
investigation showed a significant influence of 
elastic couplings caused by layered composites 
on blade dynamics. Chandra et al [12] 
evaluated the composite structural model of 
Ref [11] by finite-element and experimental 
techniques for bending-torsion and extension­
torsion coupled composite box beams. The poor 
correlation was attributed to inadequate 
modeling of nonclassical effects. Smith and 
Chopra [13] introduced transverse shear effects 
into the structural model of Ref [11]. Also, the 



variation of shear stiffness along the contour of 
the section was incorporated in the warping 
function. These refinements helped improve 
the correlation of predicted static response 
results with measured values. Chandra and 
Chopra [14] presented theoretical and 
experimental vibration characteristics of 
composite box beams under rotation. In that 
study the analysis was based upon the 
structural model of Ref [13] and the Galerkin 
method was used to predict natural frequencies 
and mode shapes of composite box beams with 
couplings. Predicted frequencies and mode 
shapes correlated satisfactorily with measured 
values for several composite box beams. 

Rehfield et al [15] presented a beam theory for 
composite single-cell box beams with extension­
twist couplings. The analytical model used 
contour analysis and neglected the local 
bending stiffness of the thin-walled beams. 
Experimental correlation was provided for 
extension-torsion coupled beams. That study 
showed the importance of transverse shear 
deformation for composite box beam analysis. 
Hodges et al [16] presented a theoretical study 
on free-vibration characteristics of composite 
beams without rotation. The analysis was 
based upon the structural model of Ref (15). The 
equations of motion were solved by exact 
integration and mixed finite element methods. 
Rehfield et al [17] extended their earlier 
structural modeling to multi-cell composite 
beams. 

Kosmatka [18] presented the static structural 
behavior of thin-walled composite beams with 
initial twist. Single-cell D-section beams with 
initial twist were analyzed. Importance of 
initial twist in modeling of rotor blades was 
pointed out. Nixon [19] examined the elastic 
twist requirements for full-scale extension­
twist coupled tilt-rotor blades. He used the 
beam theory of Ref [15] to predict the elastic 
twist of circular composite tubes representative 
of tilt rotor blades under torsion and axial 
loads. The potential of elastic couplings due to 
composites was shown to improve tilt rotor 
performance. 

The above mentioned studies show that the 
important nonclassical effects in the analysis of 
thin-walled composite beams are: cross-section 
warping, and transverse shear related elastic 
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couplings. Most analyses are confined to single­
cell, thin-walled, box bea~. The objective cif 
the present investigation is to formulate a 
structural analysis of a two-cell composite rotor 
blade in the regime of small deflection theory 
including these nonclassical effects, and then to 
validate the analysis by experiments. The 
present analysis is an extension of the authors' 
earlier work [5] related to open-section 
composite beams. 

Analysis 

In this paper, Vlasov theory is expanded to 
analyze a two-cell spar-skin rotor blade made 
out of general composite laminates. Transverse 
shear effects are also included. The essence of 
this theory is the reduction of two-dimensional 
stress and displacement fields (associated with 
plate/shell segments of the blade) to one­
dimensional stresses and displacements 
identified with the blade. The six generalized 
blade displacements are determined from the 
plate/shell displacements through geometric 
considerations, whereas, the generalized blade 
forces and their equilibrium equations are 
obtained by invoking the principle of virtual 
work. 

The present analysis uses three coordinate 
systems: an orthogonal right-handed 
Cartesian coordinate system (x, y, z) for the 
blade, Fig. la; an orthogonal coordinate system 
(n, s, z), for any plate segment of the blade, Fig. 
lb where then-axis is normal to the mid surface 
of any plate segment, the s-axis is tangential to 
the mid surface and is along the contour line of 
the blade cross-section, and the z-axis is along 
the longitudinal axis of blade; and a contour 
coordinate systems, where's' is measured along 
the contour line of the cross-section from a 
judiciously selected origin, Fig. ld. The seven 
generalized blade forces Vx, Vy, Vz, Mx, My, T 
and Mw are shown in Fig. le. The torsional 
moment T consists of unconstrained warping 
torsion (Saint Venant torsion), and constrained 
warping torsion (Vlasov torsion). As shown 
later, the Vlasov torsion and bimoment Mw are 
related to each other. The stress resultants, 
moment resultants and transverse shear forces 
acting on any general plate segment of blade are 
shown in Fig. 1 b. The plate stress and 
displacement fields are functions of s and z. 



L-~~,_.General 
. Plate 
Segment 

Fig. 1a. Cartesian coordinates in rotor blade 

Fig. 1b. Stress and moment resultants acting on 
any general plate segment of rotor 
blade. 

My 

Fig. 1c. Generalized forces for rotor blade. 

Fundamental Assumptions 

Three basic assumptions used in the present 
theory are: · 

(1) The contour (mid-line of the plate 
segments) of a cross section does not deform in its 
plane. This means that the inplane warping of 
the cross-section is neglected and the normal 
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strain es in the contour direction is neglected in 

comparison with the normal axial strain ez. 
This assumption was introduced by Vlasov [8]. 

(2) The normal stress O' s is neglected in 

. comparison with O'z . 
(3) Any general plate/shell segment of the 
blade behaves as a thin plate. This implies 
that the transverse shear deformation of the 
plate/shell segment is not accounted for, 
though the transverse shear deformation-of the 
blade is considered. 
(4) A general plate/ shell segment of the blade 
is governed by linear classical laminated plate 
theory. 

These assumptions imply that the nonzero 
membrane strains and bending curvatures for 

the plate segment are ez, egz, kz and ksz, 

y 

X 
OL-------------~ 

. Fig. 1d. Pictorial definitions of blade displace­
ments and rotations. 

Kinematics 

In the present formulation each blade segment 
is idealized as a thin laminated composite 
plate. 

From geometric considerations. Fig. ld, the 
plate displacements u(s,z) and v(s,z) are 



related to the blade displacements U,V and <1>
2 

as: 

u(s,z) = U(z)sin0(s)- V(z)cos0(s) 

- q(s)cj>z(z) 

v(s,z) = U(z)cos0(s) + V(z)sin0(s) 

+r(s)cl>z(z) 

(1) 

(2) 

where, r, q and 0 are shown in Fig. ld. w(s,z) is 
obtained using the following shear strain­
displacement relation: 

(3) 

The shear strain E
52 

consists of two components; 

one due to transverse shear effects and the 

other due to torsion. Hence, E
52 

is given by: 

- e . e (s) 
Esz - Exz COS + Eyz SIIl + Esz (4) 

I · d th h · cCs) d. "b · t 1s assume at s ear stram c.5z 1stn ution 
in the contour direction is similar to the one 
corresponding to the St. Venant torsion. 

From Ref. [9], E~~) is given by: 

y 

-h,O 

® 
0.35 C 

E(s)(s z) = F(s) lh' (z} 
sz ' t(s) 't'z 

F(s) controls the variation of this shear strain 
along the contour of the blade cross-section. In 
order to account for variation of shear modulus 
G along the contour, equation (5) is rewritten as: 

E~(s,z) = GGs(s) cp~(z) 
t . 

where, G/s) = F(s)G(s) 

(6) 

0 5 (s) is determined using compatibility 
condition for warping deformation [9]. Figure 2 
shows a two-cell blade section. It has two 
circuits for shear flow with five branches. 
Invoking the condition of net- warping 
deformation over each circuit to be zero, the 
following equation is obtained: 

.Cdw =.( aw ds = 0 i = 1 2 
ji ~ dS , , (7) 

Using equations (2), (3) and (4) in equation (7), 

.(~s=2A 
1 Gt 1 

@ 

- ----..;;-

X Gs1 A1 
__.. ~__,..... 

® 

(8) 

14---------------c---------------------
Fig. 2. Schematic of two-cell blade section. 
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where, Ai = £r ds 

For a single-cell section, Gs is obtained from 

relation (8) as follows: 

2A 
Gs = ,(_l_ds 

1Gt 

Equation (8) is used to compute Gs(s). G5tand 

0 52 are the values of Gs associated with 
circuits and Gsl to Gss are the values of Gs 
associated with branches. From Figure 2, 

(9) 

Using relation (8) for two circuits, 

(10) 

(11) 

ic 10.35c 

where, Pt = ds , p 2 = ds 
0.35c 0 
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ic 10.35c 
A1 = 2 y dx, A 2 = 2 y dx 

0.35c 0 

Solving equations (10) and (11), 

(12) 

A --+-- +A --( 
h Pt J h 

2 A (w) A (sk) t A (w) 

G - 66 66 66 
52 

- ( h Pt J ( h p2 J ( h J
2 

A~) + A~) A~) + A~) - A~) 

(13) 

Using relations (2), (3), (4) and (6), w is 
obtained as: 

where the warping function, cp, is equal to: 

i s G 
cp = (r--5 )ds 

0 Gt 

(14) 

(15) 

It is important to note that the second term in 
the parenthesis of the integral is zero for an 
open section. 

<l>x = Exz - U' 

<l>y = Eyz - V' 
(16) 

Plate strain ez is related by the following 
equation: 

Ez= w,z (17) 

Using relations (14) and (17), ez is obtained as: 

W I ,h I ,h I t"'1\ II 
Ez = + x'f'x + Y'f'y - 't"l'Z (18) 



Similarly kz and kzs are obtained as: 

kz = -sin 8 <l>x' + cos 8 <l>y' - q<l>z" 

+ Exz' sin 8 - Eyz' COS 8 

kzs = -2<1>z' 

(19) 

(20) 

Thus the non-zero membrane strains and 
bending curvatures in the plate segment are 
given by relations (18), (4), "(19) and (20). 

Plate Stress Field 

Using classical laminated plate theory, the 
stress resultants and moment resultants are: 

Nzs = A16Ez + A66Ezs + B1iµcz + B66kzs 
(21) 

Mz = BuEz + B16Ezs + Dukz + D1iµ(zs 

Mzs = B16Ez + B66Ezs + D16kz + D6iµczs 

where [A], [B] and [D] are defined in Appendix 
A. 

Here, the flanges and web of D-spar and blade 
skin are treated as general composite 
laminates. 

Blade Forces and Their 
Equilibrium Equations 

The generalized forces of blade and their 
equilibrium equations are derived by applying 
the principle of virtual work. This approach is 
similar to the one used by Gjelsvik [9) except 
now the transverse shear deformation of the 
blade is taken into account. The external work 
done by the plate forces during a displacement 
of the cross-section, is: 

We = 1 £Nzw + M2 u' + N 2 ,v -

Qzu - Mzs<l>J ds + (22) 

L (Mls ui - Mis ui) 
branches 
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Using relations (1), (2), and (14) and taking the 
variation of We, 

oWe = NoW + VxoU + VyoV + 

TO<l>z + McoO<l>z' + Myo<j>x + (23) 

MxO<l>y + FxOExz + Fy&yz 

where N = 1 N, ds 

V x = 1 (Nz,COS 8 - Qzsin 8) ds + 

L, (MJs sin 8i - M~s sin 8) 
branches 

(24) 

(25) 

Vy= 1 (Nz,Sin 8 + Q,cos 8) ds + 
s . . ~~ 

" ( Mi . 81 Mi . 81
) £. - zs sin + zs sin 

branches 

T = 1 (N z,r + Qzq - Mzsl ds + 

L, (-MJs qi+ Mis qi) 
branches 

M., = -1 (N,tp + M,q) ds 

Mx = 1 (NzY + M,cos 8) ds 

My= 1 (N2x - M,sin 8) ds 

F, = 1 M, sin 8 ds 

Fy = -1 M, cos 8 ds 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 



It is difficult to compute the generalized blade 
forces Vx, Vy and T from relations (25), (26) and 
(27) because of the contributions from different 
branches. These are simplified by using 
equilibrium equations of plate forces [9]: 

(33) 

Vy=Mx' (34) 

(35) 

where Ts is Saint Venant Torsion (free 
warping) and T ro is Vlasov Torsion (constrained 
warping). These are defined as: 

Ts = -2f Msz ds+J Nsz Gs ds (36) 
s s Gt 

It .is to be noted that the second term in the 
equation of St. Venant torsion is zero for an open 
section. 

Tro = f. (N~ r + M2 'q) ds (37) 

By using the plate equilibrium equation, 
relation (37) is simplified to: 

(38) 

This gives the relationship between Vlasov 
torsion and warping moment (or bimoment). 

The external virtual work done by the applied 
loadings on the plate is: 

now + VxOU + VyOV + toq>z + mco04>z'' 
(39) 

+ myo<l>x + mxo<l>y + f xOExz + f yOEyz 
where n, Vx, vy, t, mro, my, mx, fx and fy are 
generalized load intensities on the blade, 
derived from the loadings on shell [9]. 

The strain energy, IL is given as 
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I ( . 
TI= 21 (Nz Ez + Nzs Ezs + Mz kz . 

(40) 

+ 'Mzs kzs) ds 

Using the relations between blade forces and 
shell forces, the strain energy becomes 

The internal virtual work, Wi, is obtained from 
the strain energy as: 

-Wi = NW' + My<l>x' + Mx<I>/ + T<j>z' + Mco<l>z'' 

+ FxExz' + FyEyz' + GxExz + GyEyz 

where Gx = f. Nz, cos 8 ds 

Gy = [ Nz, sin 8 ds 

(42) 

(43) 

(44) 

Equilibrium equations for blade forces are 
obtained by considering a blade element and 
equating the external work to internal work for 
any virtual displacement. Thus these equations 
are: 

Vx' + Vx = 0 (45) 

Vy'+vy=O (46) 

N' + n = 0 (47) 

T'+t=O (48) 

Meo' + T - Ts + mco = 0 (49) 

My' + V x + my = 0 (50) 



Mx'- Vy + mx = 0 (51) 

Fx' - Gx + f x = 0 (52) 

Fy' - Gy + f y = 0 (53) 

· By eliminating Vx, Vy and T, the equations are 
reduced to six equations: 

N' + n =0 (54) 

M II I 0 y + my - Vx = (55) 

M" ' 0 x +mx +Vy= (56) 

Mm" - Ts' + mw' - t' = 0 (57) 

Fx' - Gx + f x = 0 (58) 

Fy' - Gy + f y = 0 (59) 

Blade Force - Displacement Relations 

There are 9 generalized blade forces namely N, 
My, Mx, Meo, T s, Fx, Fy, Gx and Gy appearing in 
the above equations. These 9 generalized forces 
are related to 6 generalizeq displacements. 
Using plate stress-strain relations (21) and 
plate strain-beam displacement relations (18), 
(4), (19) and (20), the following relations 
between the generalized bar forces and 
displacement are obtained: 

N Kn K12 K13 K14 K1s K16 K11 K1s K19 W' 

Mx K12 Kzi. K23 K:24 K25 K26 Kzi K23 K29 Qy 

•My K13 KZ3 K33 K34 K35 K36 K37 K38 K39 Q{ 

M., Kt4 K:24 K34 K.44 K4s K46 K47 K4s K49 Qzw 

T, - Kts K25 K35 K.is Kss Ks6 Ks1 Kss Ks9 ~ 

Gx Kt6 K26 K36 K46 Ks6 K66 K67 K6s K69 E,cz 

Gy K17 Kzi K37 K.i1 Ks, K67 K11 K78 K79 £,z 

Fx K1s K23 K38 K4s Kss K6s K78 K.ss Ks9 Ed 
Fy K19 K29 K39 K49 Ks9 K69 K79 Ks9 K99 &p 

(60) 

where Kij coefficients are given in Appendix A. 
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It is interesting to note that for flanges and 
webs made out of general laminates, the [K] 
matrix is fully populated, implying the 
existence of such couplings as extension-bending, 
extension-twist,· extension-shear, bending­
twist, bending-shear, etc. 

Extension-Torsion Coupled Blades 
Under Bending and Torsional Loads 

Figure 3 shows the lay-up details for extension­
torsion coupled blades. Note that the spar has 
[0/8] lay-up whereas the skin has [+8/-8] lay­
up. The 8 layer in the spar causes 
antisymmetry with respect to the mid-plane 
and hence creates extension-torsion coupling in 
the blade. For these blades, the relations (60) 
are simplified to: 

n [K" Ts = K1s 

t}[K22 
Gx K26 

rMy }=[K33 
Gy K37 

K15 Jr} 
Kss <1>; 

K26] ty} 
K66 Exz 

K37] r} 
K77 Eyz 

(61) 

(62) 

(63) 

0 0 

&1 - e 
E:J +9 

Figure 3. Lay-up of Extension-Torsion Coupled 
Blades 

For blades subjected to tip torsional load T, the 
twist is given by: 



K11 T-z 
«l>z = 2 

Kn Kss -K1s 
(64) 

For blades subjected to axial force F, the 
induced twist rate is given by: 

(65) 

For blades subjected to tip bending load P, the 
bending slope «l>y is obtained from relation (62). 

p (z2 ) 
«l>y = ( z ) T- tz 

K22 1- K26 
(66) 

K22 K66 

From equation (66), the influence of bending­
transverse shear coupling K26 is seen to 

decrease the bending stiffness, Kn· 

Experiments 

In order to validate the analysis, two-cell 
composite rotor blades with foam core were 
fabricated using a matched-die molding 
technique. The schematic of the fabrication 
process is given in Figure 4. 

Rohacell Foam 

Drum Sander 

Blade core (oversized) 

Hot pressing -------. Blade core 
Cutting and sanding ------Core for spar 

Spar Layup and curing 

Composite spar with foam 

Skin Layup and curing 
.-----........ ------, 
Composite rotor blade 

Fig. 4. Schematic of fabrication of rotor blade. 

There are three important aspects of this 
process. These are: making of rigid foam core, 
making of foam filled spar and finally making 
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of spar-skin-foam rotor blade. The. rigid foam 
core is oversized by about 10-15 percent so that 
the required pressure could be applied to the 
composite layers while curing. The foam core in 
the required airfoil shape is built using 
compression molding technique. In this method, 
rough-machined ROHACELL blank foam is 
placed in a heated mold (350 F) and formed to 
the desired geometry by means of compression 
provided by fastening the mold. Figure 5 shows 
the schematic of this process. 

a 

a) Heated mold 
b) Rough-machined ROHACELL blank 

c) Finished ROHACELL core 

Fig. 5. Fabrication of ROHACELL foam core. 

This foam core is cut into two pieces to provide 
cores for D spar and trailing edge separately. 
First, a composite D spar is built using 
matched-die molding technique. For this, the 
desired number of composite prepreg layers are 
laid on to the foam core and each layer is 
compacted by means. of a vacuum pump. The 
lay-up with foam is placed in the mold and the 
assembly is kept in an oven for curing. Thus, a D 
spar is fabricated. Figure 6 shows the 
schematic of this process. In order to make a 
two-cell blade, the cured spar and trailing edge 
are wrapped by [+9/-9) layers as skin, and 
vacuum compacted. This lay-up is kept in the 
mold and cured in oven. Figure 7 shows the 
schematic diagram of this process. 



Molds 
Dummy Trailing Edge 

Fig. 6. Schematic of fabrication of D-spar. 

Skin Molds 
Fig. 7. Fabrication of rotor blade. 



Several graphite-epoxy rotor blades of 28 in. 
length, 3 in. width and 0.36 in. thickness were 
fabricated in this manner. These were tested 
for their structural response under tip bending 
and torsional loads using a simple test set-up 
[12]. The structural response in terms of bending 
slope and twist was measured by using a laser 
optics system. Table 1 gives the details of the 
blades which were fabricated and tested. 
Figure 8 shows the details of clamped and 
loading ends of the blade. In order to simulate 
the clamped condition accurately, the clamped 
end was reinforced with additional composite 
layers . 

Steel Plates 
Low melting alloy 

Fig. Ba. Details of clamped end of rotor blade. 

Bending Load Shear Center 

-LO.SSC 
Fig. Bb. Details of loading end of rotor blade. 

Results and Discussion 

The present analysis is evaluated first for 
single-cell composite box beams and then 
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validation studies are carried out for two-cell 
composite blade models. 

0.0020 i-r====:==::;::::;::::::;:::::;=;;:;;===:===;::::;, 
ill PreM!l'II Analyaia (Vlaaov Theory) 

0 Analyaia, Ref [13) 
0.0015 • Experlmen_t._R_er .... [_121 ..... __ ___, 

Reaponaa 
rad. 0.0010 

0.0005 

0.0000 
Tip bmlding alope Tiptwiat 

Fig. 9. Response of graphite-epoxy [0/90]3 box 

beam under unit tip bending and 
torsional loads. 

0.006 r;:::;;:::;::==;::;:::;::::;:::;;;::==;;;:::=.:~ 
1!11 Preaent Analyaia (Vlaaov Theory) -

o.oos 

0.004 
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Figure 10. Tip twist of graphite-epoxy box 
beams under unit tip torsional load. 

Single-cell Box Beams: Figure 9 shows the 
static structural response of graphite-epoxy box 
beams under unit tip bending and unit tip 
torsional loads. Predicted values are 
correlated with measured values reported in 
Ref. [12] and the calculated values of Ref. [13]. 
It represents a thin-walled cross-ply box beam 
of length 30 in. Present analysis predicts the 
tip bending slope and twist accurately. Figure 
10 shows the tip twist of graphite-epoxy [15]6 
and [0/30]3 box beams under unit tip torsional 

load. These beams have antisymmetry with 
respect to their mid-planes and have extension­
torsion couplings. The results of the present 
analysis correlate better with experimental 
data for [0/30]3 beams. Thus, the performance 



of the present analysis in predicting the static 
structural response of single-cell · graphite­
epoxy box beams under bending and torsional 
loads is very good. 

Two-cell Blades with Extension-Torsion 
Couplings: Figure 11 shows the influence of 
fiber orientation on the induced twist rate of 
extension-torsion coupled blades. Blade 1 
consists of unidirectional spar and ±15 skin. 
Blade 2 consists of [0/1512 spar and ±15 skin. 

Blade 3 consists of [0/3012 spar and ±30 skin. 

Blade 4 has [0/4512 spar and ±45 skin. Note the 

existence of small extension-torsion coupling in 
Blade 1 due to extension-twist coupling stiffness 
(B16) of the skin. This blade will not show this 

coupling if the skin is modeled as a membrane. 
The maximum twist rate at an axial force of 
1000 lbs. is about 0.040 deg.fin. for Blade 2. 

0.040 

Twist rate o.o3o 
degJln. 

0.020 

0.010 

BladC11 B1ade2 B1ade3 BladM 

Fig. 11. Twist rate of extension-torsion coupled 
rotor blades under axial force. 

Figure 12 shows the tip bending slope and twist 
of extension-torsion coupled blade (Blade 1) 
under tip bending and torsional loads. It is seen 
from this figure that the bending flexibility of 
this blade is about three times the torsional 
flexibility. Results corresponding to single-cell 
theory are obtained by neglecting the web and 
treating the blade section as a single cell. As 
expected, the two-cell analysis predicts higher 
stiffnesses as compared to single cell analysis, 
and experimental results are closer to two-cell 
analysis. Good correlation between two-cell 
analysis and experiment is noted. 
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Figure 12. Response of extension-torsion coupled 
blade under unit bending and 

torsional loads (Blade 1). 

Figure 13 shows similar results for Blade 2. 
This blade has ±15 skin and [0/15)2 spar. 

Hence, the extension-twist coupling for this 
blade is due to B16 of skin and A16 and B16 of 

spar. Good correlation between two-cell 
analysis and experiment is achieved for this 
blade, also. 

0.012 

Ruponae o.oos 
rad. 

0.004 

0.000 
Top bending slope Top twilll 

Figure 13. Response of extension-torsion coupled 
rotor blade under unit bending and 
torsional loads (Blade 2). 

Figure 14 presents the response of Blade 3 under 
tip bending and torsional loads. This blade has 
±30 skin and [0/3012 spar. Note the increase in 

torsional stiffness of this blade due to higher 
angle of fiber orientation. Satisfactory 
correlation of two-cell analysis with 
experimental data is observed for this blade. 
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Figure 14. Response of extension-torsion coupled 
rotor blade under unit bending and 
torsional loads (Blade 3). 

Figure 15 shows the response of Blade 4 under 
tip loadings. This blade has ±45 skin and 
[0/45)2 spar. It is to be noted that the torsional 

· stiffness in comparison with the bending 
stiffness is increased very substantially due to 
the higher angle of fiber orientation. Again, 
good correlation between two-cell analysis and 
experiment is achieved for this blade. 
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Figure 15. Response of extension-torsion coupled 
rotor blade under unit bending and 
torsional loads (Blade 4). 

Figure 16 shows the influence of bending­
transverse shear: (BS) and extension-torsion 
(ET) couplings on tip bending slope and tip twist 
of extension-torsion coupled blades subjected to 
unit tip bending and torsional loads. Blade 5 
consists of [(20/-70)2]s spar and [20/-701 skin. It 

is to be noted that for Blade 5, tip bending slope 
is increased by 36% by bending-shear coupling 
and tip twist is increased by 26% by extension­
torsion coupling. However, for Blade 1 to 
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Blade 4, these couplings do not influence their 
structural response. 
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Figure 16. Influence of elastic couplings on 
response of extension-torsion coupled 
rotor blades. 

As noticed from Figure 11, the maximum value 
of extension-induced twist at 1000 lbs. is not 
suitable for tilt-rotor application. The 
extension-torsion coupling stiffness could be 
enhanced by increasing the number of layers. 
Hence, the subsequent blade configurations are 
examined. Figure 17a shows the twist rate of 
blades 6 to 8 under axial force. Blade 6 consists 
of [0/1514 spar and ±15 skin. Blade 7 consists _of 

(0/3014 spar and ±30 skin. Blade 8 has (0/4514 
spar and ±45 skin. 0 • layers are introduced in 
the spar lay-ups to reduce the initial twist due 
to high temperatures during the curing process. 
Note that the induced twist rate decreases 
with an increase in fiber orientation from 15 • to 
45°. 

Twist rale 
degJin. 

Blade (0/15)4 Blade (0/30]. Blade [0/45]. 

Fig. 17a. Twist rate of extension-torsion coupled 
rotor blades under axial force. 



Figure 17b shows the induced twist rate of 
blades 9, 10, 11 and 5 under axial force. Blade 9 
consists of [15]8 spar and ±15 skin. Blade 10 

consists of [30]8 spar and ±30 skin. Blade 11 has 

[45]8 spar and ±45 skin. It is important to note 

that the· induced twist rate for these blades 
increases with an increase in fiber orientation 
from 15" to 45". However, these lay-up designs 
are not acceptable as the blades develop large 
twist due to high curing temperatures. The 
hygrothermally stable lay-up [20,-70] Ref. [20] 
provides the induced twist rate of 0.217 deg./in 
at axial force of 1000 lbs. This value may be 
useful in satisfying the requirement for the 
design of extension-twist coupled tilt rotor 
blades JVX and XV-15 rotors [Ref 19]. 
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degJin. 0.180 

0.090 

0.000 
Blade 
(15). 

Blade 
(30], 

Blade Blade 
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Fig. 17b. Twist rate of extension-torsion coupled 
rotor blades under axial force. 

Conclusions 

Two-cell rotor blades made out of general 
composite laminates were analyzed using 
Vlasov theory. Transverse shear deformation 
of the cross-section of the blade was included in 
the analysis. In order to provide the 
experimental correlation to the analysis, 
graphite-epoxy rotor blades with D-spar and 
skin were fabricated using a matched-die 
molding technique. These blades were tested 
for elastic response under bending and torsion 
loads. Good correlation between analysis and 
experiment was achieved. Based on this study, 
the following conclusions are made: 

1. The influence of bending-transverse shear 
and extension-torsion coupling on the structural 
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behavior of coupled blades is controlled by lay­
up. 

2. The induced twist rate of the order of 0.217 
degree per inch length in blade [20/-70)2scan be 

created by an axial load of 1000 lbs. This 
makes these coupled blades suitable for tilt­
rotor design . 

3. The two-cell analysis predicts higher 
bending and torsional stiffnesses in comparison 
with the single-cell analysis. 
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Appendix A: Stiffness Matrix K of Blade 

# of layers 

Aij = L Qi/k) (hk+ 1 - hk) 
k=l 

# of layers 

Bij = t L Qi/k) (h2k+l - h2k) 
k=l 

# of layers 

Dij = l L Qi/k) (h\+1 - h\) 
3 k=l 

(Al) 

(A2) 

(A3) 



where Qii'k) refers to stiffness matrix of kth 
layer or web in sz plane. hk+l and hk are 
coordinates of kth layer in 'n' direction from 
mid plane of laminates as reference surface. 

K11 = f. An ds (A4) 

K12 = I [yAn + cos 0 Bn] ds 

K13 = f. [xA11 - sin 0 Bn] ds 

K14 = -f. [q>An + qBu] ds 

K17 = 1 A16Sin 0 ds 

K18 = f. Busin 0 ds 

(AS) 

(A6) 

(A7) 

(A8) 

(A9) 

(AIO) 

(Al 1) 

(A12) 

K22 = f [ Au y
2 

+ 2 Bu y cos0 + Du cos20] ds 

(A13) 
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K23 = f[A11 xy+2Buxcos0 .· 

- B11 y sine - D11 cosS sinS] ds 

(A14) 

K,. = fr-(Bu q.y)-Au q,y 

-D11 q cosS- Bi1 cp cosS] ds 

(Al5) 

Kzs = f [-2 B16 y + _A_16_G_s_Y 
Gt 

s 

2 D e B16 G5 cos8Jd 
- 16 cos + S 

Gt 

(A16) 

(A17) 

K21 = f. [ysin 0 A16 + sin 20 B1o/ 2] ds 

(A18) 

K2s = f. [yBu + cos 0 Du] sin 0 ds 

(A19) 

K29 = -f. [(yBu + cos 0 Du) cos 0] ds 

(A20) 

K,, = f [Au x
2 

-2 B11x sin0+Dn sin
2
0]ds 

(A21) 



K34 = f.[-B1rqx-An cpx 

+ D11 q sine+ B11 <p sine] ds 

(A22) 

K,6 = J. [xcos 0 A16 - sin 20 Bio/ 2] ds 

(A24) 

K37 = J. [xsin 0 A1• - sin2 0 B16l ds 

(A25) 

K3s = J. [(xBn - sin 0 Dn) sin 0] ds 

(A26) 

K39 = -f. [ (xB11 - sin 0 D11) cos 0] ds 

(A27) 

K44 = f. [Dn q
2 

+2 Bn q cp+ An cp
2

] ds 

(A28) 

K45 = f. [2 D16 q +2 B16 cp 

- B16 GS q - A,6 Gs<p] ds 
G t G t 

(A29) 
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K,6 = -1 ((q>A16 + q B16) cos 0] ds (A30) 

1(,7 = -I [(cpA,. + q B16) sin 0] ds (A31) 

K,s = -I ((Buq> + Duq) sin 0] ds (A32) 

l{,9 = J. [(B11q> + Dnq) cos 0] ds (A33) 

K = J[4 D + A66 Gs2 - 4 B66 Gs]ds 
55 66 ( G t )2 . G t 

s 
(A34) 

f [ A66 G cose] 
K 56 = s -2 B66 cose + G\ ds 

(A35) 

K -J[ 2 B . e A66 GS sine] d 57 - - 66 SID + S 
Gt 

s 
(A36) 

J[ . B16 Gs sin0] 
K 58 = s -2 D 16 sme + G t ds 

(A37) 

f.[ B16 Gssine] 
K 59 = s -2 D 16 cos0- G t ds 

(A38) 

K•• = i A•, cos2 8 ds (A39) 



K,1 = tf. Ao, sin 20 ds (A40) 

K68 = if. B1, sin 20 ds (A41) 

K., = -i B16 cos2 0 ds (A42) 

K11 = i A66 sin2 0 ds (A43) 

K1, = J. B1, sin2 e ds (A44) 

K19 = -ti B1, sin 20 ds (A45) 

K88 = i [ D11 cos0 sine] ds 

(A46) 

K89 = J[-011 cos
2
0]ds 

(A47) 

K99 = i [-D11 cos0 sin0] ds 

(A48) 

For computation of 45 coefficients of [K] matrix 
for a general situation, the contour integration 
for airfoil section needs to be carried out. 
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Table 1: Details of Composite Blades 

Length= 28 in.; Width= 3 in.; Thickness= 0.36 in. 
NACA 0012 aerofoil 
Material: Graphite-epoxy 

Et= 19x106 psi; Et = 1.35x106 psi; Gtt = 0.85x106 psi; µt1 = 0.40 
Ply thickness=0.005 in. 

D-spar 
Cases Top flange Bottom Flange Web Skin Coupling 

Blade 1 [0}4 [0}4 [0}4 [ 15 / -15} E-T 

Blade 2 [0/15}2 [ 0 / 15}2 [ 0 / 15]2 [ 15 / -15} E-T 

Blade 3 [ 0/ 30}2 [O / 30]
2 [ 0 / 3012 [ 30 / -30] E-T 

Blade 4 [ 0 / 4512 [ 0 / 4512 [ 0 / 4512 [ 45 / -45] E-T 

Blade 5 [20/-70l2s [20/-70l2s [20/-70]2s [20/-701 E-T 

Blade 6 [0/1514 [0/1514 [0/1514 [ 15 / -151 E-T 

Blade 7 (0/3014 [0/3014 (0/3014 [ 30 / -301 E-T 

Blade 8 [ 0 / 4514 [ 0 / 4514 [ 0 / 4514 [ 45 / -45] E-T 

Blade 9 [1518 [15lg (1518 [ 15 / -151 E-T 

Blade 10 (30}8 (30]8 (30}8 [ 30 / -30] E-T 

Blade 11 [4518 [4518 (4518 [ 45 / -45] E-T 

E-T = Extension-twist 


