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Abstract 

 
The goal of the present paper is to understand pilot control behaviour during “possible” Rotorcraft Pilot 
Coupling (RPC) events. Two identification experiments were conducted in two simulation facilities with four 
current helicopter test pilots. The experiments used a single loop roll disturbance-rejection hover task, with a 
time delay applied in the pilots control path during the simulation in order to trigger a RPC event. Two linear 
identification methods in frequency and time domain, Fourier Coefficients and Maximum Likelihood 
Estimation respectively, were applied as a part of the cybernetics approach to Phase I (without RPC) and 
Phase II (with possible RPC) partition of each simulation run. Real-Time Oscillation VERifier was used to 
determine whether RPCs occurred during Phase II of each simulation run. Pilots were found to consistently 
adapt their behaviour to counter the applied time delay in Phase II, in both simulation facilities. Proposed pilot 
model and corresponding model parameter deviations to cope with triggered RPC are presented within this 
paper. Pilot control behaviour adaptations during possible RPC events were mainly observed during the low 
frequency compensation partition of the wide-frequency manual control task. 
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Roll angle, rad 
Roll damping, 1/s 
Lateral Control Matrix element, 1/s
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Lateral cyclic Gearing, rad/(% input) 

Lateral cyclic input, % 

Simulated lateral cyclic input, % 

Disturbance forcing function, rad 

Trim roll angle, 0 rad 

Roll angle error, rad 

Disturbance forcing function, rad 

Number of sinusoid frequencies in 

disturbance forcing function 

   

        

 

        

 

        
 

   

      
   
 

Amplitude scaling factor 

Amplitude distribution of disturbance 

forcing function, rad  

Sinusoid frequencies distribution of 

disturbance forcing function, rad/s 

Phase distribution of disturbance 

forcing function 

Measurement time frequency, rad/s 

Low frequency lag phase correction 

Break frequency, rad/s 
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Precision pilot model  

Lead time constant, s 

Lag time constant, s 

Pilot gain, - 

Neuromuscular lag, s 

Neuromuscular frequency, rad/s 

Neuromuscular damping, rad/s 

Pilot time delay, s 

Low frequency lead time constant, s 

Low frequency lag time constant, s 

Measurement time, s 
Measurement frequency, rad/s 
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FCS     Flight Control System  
FFT   Fast Fourier Transformation  
FP7  7th Framework Programme 
FT  Flight Test 
FBW   Fly-by-Wire 
GARTEUR Group for Aeronautical Research 
  and Technology in Europe 
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MLE   Maximum Likelihood Estimation  
MTE  Mission Task Element  
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PAO   Pilot Assisted Oscillations 
PIO  Pilot-Induced Oscillations  
PIOR  Pilot-Induced Oscillations  
  Susceptibility Rating 
PLE  Position Limiting Element 
PVS  Pilot-Vehicle System 
RB  Rigid Body 
RLE   Rate Limiting Element 
RMS  Root Mean Square 
ROVER Real-Time Oscillation VERifer 
RPC  Rotorcraft Pilot Coupling 
SIMONA Simulation, Motion and Navigation 
SOS  Sum of Sinusoids 
SRS  SIMONA Research Simulator 
STD  Standard Deviation 
TUD  Delft University of Technology 
UoL  University of Liverpool 
VAF   Variance Accounted For 

1. INTRODUCTION 

 
Rotorcraft Pilot Couplings (RPCs) – including “pilot 
induced/assisted oscillations” (PIO/PAO)- refer to 
inadvertent, sustained aircraft oscillations which are a 
consequence of an abnormal joint enterprise between 
the aircraft and the pilot [2]. In other words, RPC events 
are unexpected and potentially catastrophic instabilities, 
the convergent RPCs are manifested as limit cycle 
oscillations that arise from pilot effort to control the 
aircraft. RPCs are typically triggered by a “mismatch” 
between the pilot and the vehicle dynamics. This 
mismatch manifests active PIOs and/or passive PAO’s 
participation of the pilot in the control loop [2]. Despite 
decades of work to develop methods for their 
prevention, unfavourable aircraft/rotorcraft pilot 
couplings (A/RPCs) continue to occur. To extend the 
understanding of RPCs, GARTEUR HC AG-16 was 
formed and was composed of a number of European 
universities and industry partners in 2005 [11]. In 2010, 
the European Commission (EC) launched, under the 
umbrella of the 7th Framework Programme (FP7), the 
ARISTOTEL project [9] (Aircraft and Rotorcraft Pilot 
Couplings – Tools and Techniques for Alleviation and 
Detection) to extend the gathered knowledge from 
GARTEUR HC AG-16. The aim of ARISTOTEL project 

is to advance the state-of-the-art in A/RPC 
prediction and suppression. With duration of 3 
years and involving partners from across Europe, 
the ARISTOTEL project

1
 objectives are to 

improve the physical understanding of present 
and future A/RPCs and to define criteria to 
quantify an aircraft’s susceptibility to A/RPC.  
According to the degree of non-linearity of the 
oscillation of the Pilot-Vehicle System (PVS), 
RPC are divided in four main categories [2]: 
Category I RPC’s are essentially linear and are a 
direct consequence of system time delays, or 
phase lags in the vehicle/control path dynamics. 
Category II A/RPC’s are quasi-linear events and 
are triggered by the nonlinear rate and/or position 
limiting elements (RLEs and/or PLEs). Category 
III A/RPC’s are essentially non-linear PVS 
oscillations with transitions in command type of 
the Flight Control System (FCS) that cause a 
pilot mental mismatch. Category IV A/RPC’s are 
oscillations due to the coupling of elastic 
structural modes (Aeroelastic) and the pilot or 
due to biodynamical couplings.  
 
Throughout the GARTEUR HC AG-16 project, 
application of time delays to the control paths of 
the pilot control inceptors and rate limiting on the 
main rotor swash plate actuators resulted in 
successful triggering of RPCs during simulation 
test campaign trials [11], supported by subjective 
pilot handling qualities ratings (HQRs) and PIO 
ratings (PIORs). The study of this paper also 
uses the application of time delays (300ms) on 
the pilot cyclic as a trigger for ‘possible’ RPC 
situations. This is equivalent to triggering a Cat. I 
RPC event.  
 
For RPCs to occur, three key elements are 
required: the vehicle, the pilot and the trigger. In 
a broad terms, a vehicle with poor handling 
qualities [1], a pilot with out-of phase tight control 
strategy[34], and an external or internal triggering 
factor[2] (e.g. Fly-by-wire (FBW) software node 
change or  actuator rate limiting)  together form a 
higher potential for RPC than a rotorcraft holding 
good handling qualities with a pilot who is familiar 
to RPC events with good RPC suppressing skills 
such as breaking the loop instead of tightening 
the control to override the triggered RPC.  
Starting from the Wright Brothers first flight, pilot 
vehicle system (PVS) closed loop instabilities, 
and one step further PIO’s (namely A/RPC’s), 
have been considered an important research 
area, directly affecting the safety features of the 
aircraft and the crew. It is worth mentioning that 
A/RPC studies (e.g. [2],[11],[12],[13]) have 
revealed that it is not just the pilot or the vehicle 
that is the ‘guilty element’ in an RPC event. It has 
been emphasized that it is the coupling and 
interaction of both elements that cause the 
instability. The study reported in this paper aims 



 

 
 

to determine the pilot’s role in the instability, in the 
presence of vehicle dynamics and a trigger situation 
known to cause RPC events.  
This paper describes a set of experiments conducted in 
simulation facilities both at the Delft University of 
Technology (TUD), Netherlands and the University of 
Liverpool (UoL), UK. The scope of this study was to 
understand the role of the pilot control strategy during a 
time delay triggered ‘possible’ RPC event for a hover 
stabilization task of a Bo105 rotorcraft simulation model 
within a designed disturbance rejection task. The 
underlined elements of the statement above were 
included in a scenario within a controlled simulator 
environment, and an identification methodology was 
applied to investigate the pilot model during a “possible” 
RPC task.  
 
In 2000, Mitchell

[34]
 published a study to identify the 

pilot in PIO’s, which were recorded during fixed wing 
HAVE PIO flight tests [40] and ground simulations [39]. 
Pilot control strategies were categorized as 
synchronous and compensatory, depending on the 
pilot’s compensation effort and ultimately the task. This 
study was proposed to understand the characteristics of 
the pilot immediately before and after the PIO, to 
enhance the determination of RPC suppression 
methods. Especially, sum of sinusoids (SOS) tracking 
data provided a good basis to investigate PIO 
frequency per pilot, which was calculated by peak to 
peak values of vehicle body rate responses. 
Considering the fact that the ground simulation in ref. 
[34] was originally aimed to identify the pilot for different 
vehicle configurations (not focused on APCs), the 
measurement data were not fully compatible with 
identification of a pilot behaviour for PIOs. However, 
extracted data concluded that pilots showed different 
tendencies to detect and respond to PIO conditions 
(PIO frequency). 
 
Multi modal human identification methods have been 
used in many fields of human-operator controlled 
systems and have recently received much interest in 
the specialist literature [15]. This wide spectrum of 
human identification research also includes rotorcraft 
pilot identifications. This technique can be a challenge 
for rotorcraft applications due to the inherent instability 
of the controlled element and multiple loop coupled pilot 
control activities. Nieuwenhuizen et. al. [3] investigated 
the identification of helicopter pilots for a roll and lateral 
displacement (two degree of freedom) model, during a 
target tracking and disturbance-rejection manual task. 
The scope of the experiment was to investigate the 
motion feedback effects on perception and control 
strategy of the pilot model for the designed task. In 
addition to the common approach of considering the 
rotorcraft pilot models as Linear Time Invariant (LTI) 
systems, there is a growing interest in time varying 
human operator identification. Recently (2011), Zaal 
and Sweet [6] presented research on a time variant 
pilot model estimation by using offline simulation 
models with/without remnant. The simulations showed 

that the Wavelet method, which has the 
capability to capture time and frequency 
resolutions, is prone to inaccuracy depending on 
the remnant level, whereas windowed Maximum 
Likelihood Estimation (MLE) shows better 
accuracy. However, this brings with it the penalty 
of missing fast changes in pilot control behaviour. 
In 2011 Klyde et al [7] used a Wavelet method to 
characterize the rotorcraft pilot-vehicle 
interactions for added dynamics (lead/lag second 
order dipole pairs) throughout a piloted precision 
hover task with uncoupled OH-6A dynamics. The 
Wavelet method successfully showed the 
transition phases of pilot activity and vehicle 
responses as the dynamics varied. Finally, a 
study also published in 2011, concentrated on 
the adaptation of human pilot dynamics in the 
control of time-varying systems (added first order 
low pass filter) for a multi-loop uncoupled 
rotorcraft model [8]. The study focused on bode-
representations of open-loop responses of 
human-vehicle system, instead of identified pilot 
parameters. 
.  
This paper is structured as follows: First, the 
methodology of the pilot model identification 
procedures is discussed. Second, the 
experimental setup is discussed. Third, the 
results are given. Finally, conclusions are drawn 
and recommendations are made. 
 

2. METHODOLOGY 

 
A disturbance rejection manual control task was 
designed to control a single axis (roll degree of 
freedom) Bo105 simulation model. The 
schematic representation of this single 
compensatory control loop is shown in Figure 1.  
 
  

 
 

Figure 1 .The closed-loop manual control task with 
forcing function fd, roll angle   , 0 trim bank angle 

     , displayed roll angle error   , pilot lateral cyclic 

input     , and main rotor swash plate deflection    . 

 
The following Sections describe the components 
of the closed loop control task and the 
identification methods used. 
  
2.1 Disturbance Forcing Function (fd) 
 
To be able to identify the pilot control behaviour 
for the designed task, a disturbance forcing 



 

 
 

function (fd) was designed to have sufficient frequency 
content to excite the pilot response bandwidth of 
interest, which contains low frequency content for active 
pilot control and high frequency content to stimulate 
neuromuscular adaptation. In agreement with McRuer’s 
description [1], the disturbance forcing function is 
composed of a sum of 10 (    ) sinusoids: 

 
 
(1) 

 

        ∑                                

    

   

 

 

The amplitude,        , frequency         and phase  

     distribution of the initial SOS disturbance signal is 

listed in Table 1. The amplitude distribution is shown in 
Figure 2.  
 

Disturbance Signal (fd) Design 

kd nd ωd, rad/s Ad, rad    ,rad 

1 5 0.3835 0.01 -0.269 

2 11 0.8437 0.01 4.016 

3 23 1.7641 0.01 -0.806 

4 37 2.8379 0.005 4.938 

5 51 3.9117 0.005 5.442 

6 71 5.4456 0.005 2.274 

7 101 7.7466 0.005 1.636 

8 137 10.5078 0.005 2.973 

9 177 13.5757 0.005 3.429 

10 126 17.3340 0.005 3.486 

Table 1. Experiment disturbance forcing function design 
settings.  

 
Figure 2 .Disturbance forcing function amplitude 
distributions 
 
From a design point of view, there is a trade-off 
between having powerful high and low frequency 
content of the disturbance; high power in low frequency 
leads to a predictable disturbance signal for the pilot to 
track, whereas high power in high frequency results in a 
very difficult to track chaotic signal which leads the pilot 
to believe they have no control. To account for this, a 
scaling factor was introduced to set the overall 
designed forcing function to an unpredictable 
disturbance, with noticeable high frequency content. 
This tuning was performed with two helicopter pilots 
and finally the whole bandwidth scaling factor (   in Eq. 
(1) ) was set to 0.3 by conducting shakedown tests prior 
to the identification experiment. Thus, a hard to predict 
disturbance signal was obtained which did not require 

excessive pilot control but with sufficient high 
frequency content. The resultant time trace of the 
applied disturbance forcing function is shown in 
Figure 3, with the marker showing the start of the 
forcing function repetition basis measurement 
time (          ). 
 

 
Figure 3 .Disturbance forcing function time trace. 
 
The sinusoid frequencies of the disturbance 
signal are approximately logarithmically spaced 
from 0.3 to 18 rad/s, to allow pilot identification 
methods to be used by spectral methods [14]. 
The measurement time was set to 81.92 
seconds, which contains the highest power-of-
two data points and these sinusoid frequencies 
are integer multiples of the measurement time 
frequency,          ⁄          rad/s. The 
repetition numbers of the sinusoidal frequencies 
(nd) and the random phase distribution (  ) are 
shown in Table 1. The signal’s phase distribution 
was checked for possible undesirable clustering 
around some frequencies and the resultant 
signal, shown in Figure 3, was decided to be 
within the pilot control margin. 
 
2.2 Controlled element (The Helicopter Model 
and Main Rotor Actuator Model) 
 
A representative 1-dof Bo105 was extracted from 
a linearized analytical rotorcraft model, which 
was developed specifically for use in the first 
ARISTOTEL Rigid Body (RB) test campaign [33]. 
The characteristics of the uncoupled roll 
simulation model are essentially defined by the 
roll subsidence mode of the rotorcraft (in the 
hover condition). This mode is also driven by the 
roll damping (Lp) of the helicopter, which has 
been verified with other ARISTOTEL partner 
simulation models], shown in Figure 4, and the 
literature [26].  

        
                                        Speed, kts 
 
Figure 4. Rolling damping, Lp, of simulation 
models for increasing forward velocities. 
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The equation of motion for the simplified linear Bo105, 
the controlled element, can be expressed as; 
 

(2)  ̈     ̇      
    

(3)               

 
where   is the roll angle, Lp is the roll damping,     

 is 

the control matrix element of lateral swash-plate input  
and     is the commanded swash-plate angle. Equation 
(3) represents the direct mechanical gearing (     ) 

between pilot cyclic input (    ) to swash-plate angle 

deflection (   ). Here, for simplicity of analysis, no 
actuator model was introduced (despite its use in the 
original model).  Instead, one-to-one gearing from cyclic 
input to actuator deflection was utilised. Therefore, any 
commanded actuator deflection angle was directly 
achieved without any additionally incurred time delay or 
rate limiting. Figure 5 shows the Bode diagram for the 
system described in Eqns. (2) and (3). 
 

 
Figure 5. Bode diagram of Bo 105 bank model used in 
the experiment, an integrator, a double integrator and 
Schroeder’s roll model 
 
It can be seen from the bode comparison Figure 5 that 
the controlled element, the model of the Bo105 model 
in this study, behaves like a unity integrator for low and 
moderate (0.3 to 11 rad/s in this study) human pilot 
control frequencies and switches to double integrator 
behavior for the high frequency portion (above 11 
rad/s). The break frequency of the model (11 rad/s) and 
the roll-lateral coordinated model [4] (5.5 rad/s) is also 
shown in Figure 5, indicated by the later convergence 
to magnitude and phase (-180 degrees) of double 
integrator from the single integrator (-90 degrees). 
 
2.3 Identification Methods 
 
It was assumed that in the experiment, pilots achieved 
a linear control strategy without time dependency, 
except the transition part just after when the time delay 
in the control path was applied. In order to capture the 
behavior of the pilot, two LTI identification methods 
were used in the experiment set. The 1

st
 method was 

the non-parametric frequency domain Fourier 

Coefficients (FC) method followed by a model 
parameter optimization. The 2

nd
 identification 

technique was the parametric time domain 
Maximum Likelihood Estimation method.  
 
2.3.1 Fourier Coefficients (FC) Method 
 
The FC method uses the Fast Fourier 
Transformation (FFT) of input to the pilot models 
(  ) and the corresponding control input of the 

pilot (    ,), to extract the frequency content at 
the enriched forcing function frequencies. Instead 
of describing the pilot model structure, this 
frequency domain method provides the non-
parameterised, analytic pilot model response 
describing functions [14,29].  
Furthermore, an embedded optimization tool 
(lsqnonlin) in MATLAB

®
 was used to minimize 

the frequency response error between the 
measured FC model and the proposed pilot 
model frequency response, whilst also using pilot 
parameters as optimization variables. This tool 
solves non-linear least squares problems with 
either trust region reflective or Levenberg-
Marquardt algorithms [19]. The trust region 
reflective section of the algorithm is a bounded 
parameter optimization, which requires low and 
high bounds of the parameter interval. 
 
From here, the term “FC identification” used in 
this paper refers to following two-step pilot 
modeling technique; 1. FC of measurement data, 
2. Optimisation of pilot parameters to achieve 
minimum frequency model error to fit the 
measurement data. 
 
2.3.2 Maximum Likelihood Estimation (MLE) 
Method 
The MLE method is a time domain identification 
technique where the Jacobian matrices of the 
proposed pilot model and the corresponding 
Fisher information matrix are used. With adaptive 
line search vectors, likelihoods of optimisation 
iteration steps are obtained for the proposed pilot 
model in the algorithm. The cost function of the 
gradient based Gauss Newton optimisation 
method is defined by minimising the error 
between time domain response of the proposed 
pilot model and the time domain measurement 
[20,43,44].  
 
Briefly, the essence of MLE is to find the joint 
probability function for the “predicted” error, 
which is the error between the actual 
measurement data and the result of the model. 
More specifically, the required probability function 
should make the parameter estimate “most likely” 
by maximizing the likelihood function, which is 
presented in Eq.(4) 

[20,43,44].
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(4)                           

 

where L is the likelihood function,   is the predicted 

error,   is the parameter vector and N is the sample 
size of the measurement data. 

The Gauss Newton optimization routine aims to find the 
parameter vector (Eq.(5)

[37]
) which maximizes the 

likelihood function Eq.(4) ;   

(5)                               
 

   
 ∑   

  
    

where    is the parameter set which results in 

maximum likelihood function,   is the error variance, 

and   is the predicted error. One of the common issues 
of MLE is localizing around a local minimum, instead of 
the global one. One practical remedy is to chance the 
initial conditions and assuming a global minimum if all 
the selected initial conditions converges to the same 
minimum

[37]
. Another remedy (computationally 

expensive) is using Genetic Algorithm to automize and 
optimize the selection of initial condition

[30]
. 

More detailed information on MLE identification 
technique can be found in Ref [20,43,44]. 
In this study, initial conditions were obtained from FC 
identification results, and the internal optimization 
routine is the convex Gauss Newton. Considering the 
importance of the initial conditions in such a gradient 
based optimization, good time domain model fit values 
of FC results lead to the assumption that the global 
minima could be in the vicinity of these parameter set.  
 
2.4 Pilot models 
 
Stemming from McRuer’s crossover model [1], various 
pilot modelling structures have been developed in the 
literature, as summarized in Refs. [23,27]. Control 
strategy models have focused on pilot equalisation 
techniques to perform the task, whereas structural 
models aim to model pilot’s structural components with 
detailed muscle-neuron, partial central nervous system 
(CNS), and vestibular system organs (i.e. otoliths, etc.)  
 
In this paper, the aim is to identify the pilot through the 
use of McRuer’s Precision Model

[1,17]
, a modified 

version of the extended crossover model that covers a 
wider frequency range (0.1 rad/s up to 20-30 rad/s 
depending on the neuromuscular resonance): 
 

         (
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( 6 ) 

 
The Precision Model (described by Eq( 6) features a 

general pilot equalisation term with lead and lag 
(TL and TI respectively), a pilot visual gain (Kp), a 
neuromuscular model with lag (TN), 

neuromuscular natural frequency (   ) and 

damping(    , a pilot time delay ( ), and low 

frequency equalization lead-lag term (   and   
  

respectively). 
 
The reader should note that the pilot equalization 
part of the model is generic, depending on the 
controlled element dynamics. In the results 
Section of this paper, the pilot equalisation for the 
experiment controlled element, Figure 5, will be 
taken into consideration and the required pilot 
model structure will be discussed depending on 
the measurement data and the controlled 
element dynamics. 

3. APARATUS AND EXPERIMENT SETUP 

 
3.1 Flight Simulator Facilities 
 
Two simulation facilities were used in this 
experiment set; SIMONA (SRS)

[24]
 at TUD, and 

HELIFLIGHT-R(HFR)
[18]

  at UoL, shown in Figure 
6. 
 

      
(a)                              (b) 

Figure 6. a) SIMONA research simulator TU 
Delft, Netherlands,  b) Heliflight-R research 
simulator

[25]
 Liverpool University, UK.  

 

The compensatory model is based on the 
assumption that pilot responds to the error that 
they perceive. Therefore, the visual environment 
projector displays were turned off to prevent the 
pilots using any visual cues. It also mitigated 
against the possibility of pilots introducing a feed-
forward control strategy [28]. Since it is crucial to 
respond to the perceived error of roll angle in this 
compensatory setup, the scale of displayed error 
was considered to be important. Ref. [22] 
showed the positive effect of indicator display 
size on roll axis tracking task performance. In the 
current experimental setup, the perceived errors 
were displayed through scaled up attitude 



 

 
 

indicators from the original console displays in both 
simulators, shown in Figure 7 with dimensions of 
displays. 
 

                  
                  (a)                                (b) 

Figure 7 . a) The scaled up attitude indicator in 
SIMONA. Indicator outer and inner ring diameters are 
13 cm, 9.5 cm respectively. The display distance to eye 
design point of the pilot seat is approximately 85 cm. b) 
The scaled up attitude indicator in HFR. Indicator outer 
and inner ring diameters are 15 cm, 13 cm respectively. 
The display distance to eye design point of the pilot 
seat is approximately 90 cm. 

               
The motion systems of both simulators were switched 
off to prevent pilot vestibular feedback. Finally, a pure 
compensatory visual model was achieved. Although the 
cyclic controllers of simulators are not identical, the 
control feel system settings were matched as far as 
possible within the existing software’s capabilities. Both 
cyclic lateral force gradients were set to approximately 
4N/deg, and a small breakout force was maintained to 
preserve the continuity of the simulator test campaign, 
as the pilots used were already familiar with the 
simulator configurations. Considering the fact that LTI 
linear model identification methods require consistent 
linear responses from the pilot, it was assumed that the 
nonlinearities arising from control inceptor dynamics 
were not dominant and they could be considered to be 
included in the pilot remnant. 
 
This experimental task setup resembles a scenario 
whereby a high roll turbulence in zero visibility (e.g. in 
cloud) is being experienced that forces pilot to use his 
instrument flight skills. However, it must be noted that 
the lack of motion cues, and isolated and uncoordinated 
single axis control/response makes the SOS task 
noticeably ‘unrealistic’’ for pilots. Similar identification 
trials have also reported the lack of realism in such 
setups [30,34,38]. Although this lack of realism may be 
seen as a drawback of the investigation, it is assumed 
that using simulator helicopter cyclic inceptors, locating 
the pilots in the actual simulator environments (where 
pilots practiced full capability ADS-33 Mission Task 
Elements(MTEs)) and actual attitude indicators (unlike 
artificial roll error displays) would achieve a higher level 
of realism when compared to a laboratory tracking task 
setup. 
 
 
 
 

3.2 Experiment Setup 
 
3.2.1 Measurement Settings 
As mentioned in Section 2.1, the measurement 
time for the pilot identification was 81.92 
seconds. An additional 10 seconds was 
introduced to account for pilot adaptation to the 
task and translate into linear control behaviour; 8 
seconds of fade in and 2 seconds of fade out.  
Two separate sets of identification data were 
gathered; ‘training’ and ‘full’ runs. The two sets of 
tests are as follows; 
 

 Training: 4 training runs per pilot were 
generated for 91.92 seconds. The fade in 
and fade out parts of the measurement data 
were omitted and frequency domain 
matching was performed for           . 

 Full run: Four runs of full length 
measurement were performed per pilot. A 
full run consist of a continuous 183.84 
seconds, which is composed of a no time 
delay partition for the first 91.92 seconds 
and a time delay applied second portion of 
91.92 seconds duration. These two phases 
are termed as Phase I, standing for “no time 
delay applied” first partition, and Phase II 
standing for the “time delay applied” second 
partition. For clarity, Figure 8 shows the full 
run measurement time axis and 
corresponding parts and identification 
intervals with fade in and fade out time 
segments. 

 

Figure 8. A sample sketch of a full run time axis 
showing the Phase I and Phase II partitions, 
applied time delay activation time, and 

measurement times (            ) that were 
used for identification methods. 

Here, it is important to mention the transition 
measurement time between Phase I and Phase 
II. 
McRuer [10] concludes that the transition 
dynamics of the pilot from one controlled element 
to an altered one requires time to adapt.  This is 
called the Post-Transition Retention

 

[10]
.Throughout the transition phase, the pilot still 

believes that they are controlling the vehicle 
operated prior to the change of control element 
dynamics. Following this period, the pilot adapts 
to the altered control element dynamics and 
finally compensates for the final control element. 
In this experiment set, it was assumed that the 



 

 
 

fade out time of Phase I in addition to the fade in time of 
Phase II (which are 2s + 8s respectively) provided 
sufficient time for the pilot to adapt his linear control 
strategy to the altered controlled element dynamics, 
namely the time delay applied during Phase II. 
 
3.2.2 Participants 
 
Four experienced helicopter pilots participated in both 
simulator experiments. Each pilot had a short 
familiarisation run which did not include the external 
disturbance, allowing them to acclimatise to the 
response of the controlled element (roll model). After 
the familiarisation run, 4 training runs were performed 
followed by 4 ‘full’ runs per pilot. Between all runs, a 
short break was provided to keep the pilots rested. 
Here, it must be noted that the task of focusing the 
bank error on the attitude indicator in a dark simulator 
cabin requires extensive attention from each pilot. As 
pilots were not provided with any post run statistical 
performance feedback (like Root Mean Square (RMS) 
of error), they were required to subjectively adjust their 
performance level. This situation was also a matter of 
overall task handicap which implies the lack of 
detecting pilot back-off from the task (when the pilot 
ignores the displayed error and reduces his responses). 
. Recommendations Section will extend the discussion 
of this matter with proposed remedies.  
 
Table 2 lists the experience of the pilots who 
participated in the identification experiment set. 
 

Pilot Current Job 
Rotary-
wing 
hours 

Fixed-
wing 
hours 

Sim 
hours 

A 
Senior Captain for 
Commercial Airline 

3000 11000 5000 

B 

Senior First Officer for 
Commercial 
Airline/British Royal 
Navy 

7800 8000 1300 

C 
Royal Netherlands 
Airforce – Chinook 
Test Pilot 

1500 200 230 

D 
Royal Netherlands 
Airforce – Apache 
Test Pilot 

2000 150 400 

Table 2. Pilot experiences extracted from Ref. [33]  

4. RESULTS 

 
The results of the experiment will be explained in this 
Section. First the overall frequency content of the 
measurement data will be presented to understand the 
general tendency of pilot adaptations to the task and 
simulator environments. 
This subsection is essentially the first part of the FC 
identification method. 
The second subsection introduces the pilot model 
structure that describes the pilot compensation and 
model fit. The justification and parameterization of the 

selected pilot model will be reported in this 
subsection with adaptation to both FC and MLE 
identification methods. The third subsection will 
show the pilot model parameter changes for the 
recorded measurement data with various 
comparison bases. 
 
4.1 Frequency content of measurement data 
 
Before applying any pilot model estimation, the 
frequency content of the measurement data 
should be checked to verify the trace of rich 
content on the disturbance frequencies in the 
pilot response and detection of possible low 
signal-to-noise ratios. 
 
 

      (a) 
 

     (b) 
Figure 9. Single sided amplitude spectrum of pilot 
perceived bank angle error, e (the input to pilot 

model, indicated as   in Figure 1) and pilot 

control, u (the output to pilot model, indicated as 

     in Figure 1) of a sample run, where the 
designed disturbance function frequencies are 
marked with circles. 
 
Figure 9 shows the displayed visual roll angle 
error. Fig.9–a contains the rich content of the 
disturbance function, which is expected when the 
task design allows direct implementation of 
disturbance to state output of the controlled 
element, like in this experiment. More important 
is the output of the pilot (Figure 9 –b)  as this 
may include high frequency noise in the 
measurement data and merge or lump 
nonlinearities into high frequency content of his 
output, which combines with nonlinearities of the 
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inceptor. Large power content in the high frequency 
bands of the disturbance function (see Figure 2) 
resulted in noticeable rich high frequency content, 
which is an indication that the pilot responded to the 
frequencies contained within the disturbance forcing 
function. Even though it is beneficial to have high signal 
to noise ratio, it may end up with a very hard task for 
pilots to complete, or occurrence of pilot crossover 
regression to bypass the high frequency content. 
Nevertheless, the clear peaks of high power in both 
input and output of the pilot model set a good 
identification quality basis. 
Further investigation of the frequency content of the 
measurement data shows pilot control adaptations for 
the training, Phase I (no time delay) and Phase II (with 
time delay) partitions of the experiment runs. 
As an example, measured responses of pilot B in 
SIMONA for training, Phase I and Phase II partitions 
are shown in Figure 10. 
 

 
   (a) 

 
   (b) 

 
(c) 

Figure 10. Measured frequency response of pilot B (Hp 
Measured), in SRS simulator for training (a), Phase I (b) 
and Phase II (c), with mean of each frequency point 
(square markers) with corresponding standard 
deviation(std) bars for four runs of each partition. 
 

It is observed from Figure 10 that the frequency 
content of the training phase has more sparse 
data in the magnitude plot than the phase of the 
pilot response The Phase II portion of the test 
showed a consistent response of the pilot at low 
frequencies and more varying responses around 
neuromuscular natural frequencies [1], during 
different runs. Furthermore, the variance in 
magnitude is more noticeable than the variance 
of phase, regardless of the task phase. Similar 
trends are also observed for the other pilots.  
From another point of view, Figure 11  shows the 
difference of mean values of frequency 
responses for each task partition for tests 
performed in both simulators. 
 

 
   (a) 

    

 
   (b) 
 
Figure 11. Measured mean frequency response 
of pilot B in SRS (a) and HFR (b) simulators for 
training, Phase I and Phase II partitions of the 
experiment runs. 
 
Figure 11 shows that pilot B showed good 
training skills for the task, indicated by a very 
close response between training and Phase I, 
which are essentially the same disturbance and 
no-time delay portions of the experiment. 
Moreover, the pilot adaptation to “possible” RPC 
scenario is also apparent with the distinct 
frequency response for magnitude (a low 
frequency drop) and partially in phase (higher 
lead, or less pilot time delay up to 6-7 rad/s). All 
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pilots showed a consistent pilot control strategy 
adaptation to the degraded helicopter model, 
regardless of the simulator. Before starting any pilot 
model fitting to the measurement data, this non 
parametric identification (which is essentially the first 
step of the FC method) already indicates a 
comprehensive pilot adaptation to the RPC prone task.   
 

 

 
(a) 

       

 
 

   (b) 
 

  
           (c) 

Figure 12 Measured pilot frequency responses for 
training (a), Phase I (b) and Phase II (c) of the task for 
four pilots in SRS simulator. 

 
Figure 12 shows the difference between all pilots when 
completing the task in SRS. During the training 

sessions (Figure 12-a), Pilot A and Pilot C 
showed similar performance in both magnitude 
and phase. The gain offset (the vertical shift in 
magnitude) also shows pilot adaptation 
differences, containing the neuromuscular 
activation. Phase I (Figure 12-b), which is 
essentially the same as the training phase, 
shows that Pilot C lowers his gain and coincides 
with pilot B, while pilot A and D keep almost the 
same training frequency response. This gives a 
hint about the level of training, and the achieved 
consistency within the same task. Phase II 
(Figure 12-b), which contains the “possible” RPC 
condition, shows an interesting adaptation 
among pilots; with the exception of Pilot D, all 
pilots matched almost the same low frequency 
magnitude response with different neuromuscular 
frequency and damping. The reader’s attention is 
drawn to the response of Pilot A, who showed 
signs of a significant under-damped 
neuromuscular activation when compared to 
Phase I results. Furthermore, Pilot D showed a 
lower phase lag response at the lowest two 
frequencies than other pilots in Phase II, 
indicating that the pilot noticed the reduced 
phase margin due to the applied time delay and 
tried to cope with it, both in magnitude and phase 
content.  
 
To compare differences in pilot control 
adaptations between simulators, the following 
sample figure is plotted, Figure 13. 
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           (a) 
 

 
            (b) 
 

            
         (c) 

Figure 13. Measured frequency responses of pilot D in 
both simulators for training (a), Phase I (b) and Phase II 
(c) of the task. 
 
Regardless of the task phase, Figure 13 shows that the 
offset between pilot magnitudes due to simulator 
differences (including physical differences of indicators, 
control inceptors, seating postures, etc.) and 
experimental differences (different experiment dates, 
pilot state of mind, more training, fatigue state, etc.). 
Consistent magnitude response and phase margin 
reduction are observed for Pilot D in HFR during all 
phases of the task. It may be a result of the introduction 
of greater lead compensation in SRS. 
 
 
 

4.2 RPC Detection 
  
Considering the definition for RPC presented in 
Section 1, detection in measured data, and 
concluding on the existence of RPC is a hard 
decision to make. In RPC events, the pilots, who 
are able to recognize the occurrence of a RPC 
event, simply back off after a couple of cycles or 
force themselves to avoid excessive inputs. Yet 
RPC’s continue to occur, the ARISTOTEL project 
in Europe is taking initiative to expose RPCs in 
simulator environments in various aspects of 
RPC (e.g. criteria, simulator and design guideline 
development, etc.). One area of interest is the 
detection of the RPC in quasi real-time 
performance and possible post-processing 
applications. TUD aims to combine some aspects 
of Handling Qualities (HQ) criteria from ADS-33 
[21] to enhance the existing Real-Time 
Oscillation VERifier (ROVER) [21], and UoL 
intends to make use of the newly conceived 
Phase Aggression Criteria [33].  
This identification analysis used ROVER to 
determine the existing “possible” RPC’s   
Briefly, ROVER checks for peaks in excess of 
user-defined thresholds of stick activity, body 
rates, frequency of the input and the 
corresponding phase difference. Then, it 
provides ROVER ‘flags’, defining a ROVER score 
(number of individual flags at one time). Four 
flags (all activated) denote detection of PIO (the 
oscillatory RPC).  
Threshold values used in ROVER for this 
identification experiment test are listed in Table 
3. More information about ROVER can be found 
in references [31,32, 33]. 

 

Threshold name Value Unit 

Stick amplitude 2.5 deg 

Roll rate amplitude 18 deg/s 

Frequency  1-8 rad/s 

Phase delay 75 deg 

∆stick extreme 0.2 deg 

∆time stick extreme 0.3 sec 

∆roll rate extreme 1.2 deg/s 

∆time roll rate extreme 0.3 sec  

Table 3: Threshold values for ROVER 

 
It was assumed that the Phase II portion of each 
identification run (after 91.82 seconds) contained 
“possible” RPC events. An example of ROVER 
output is shown in Figure 14, displaying a clear 
increase in the total ROVER score following 
transition from Phase I to Phase II (an indication 
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of RPC proneness).  
 

 
Figure 14. ROVER output of a sample identification full 
run. 
 
Figure 14 displays the first occurrence of a ROVER 
score =4 immediately after transition to Phase II. The 
score is particularly influenced by phase flags resulting 
from the applied time delay (as would be expected). 
ROVER scores of all identification full runs for all pilots 
show similar trends; increased ROVER warnings and 
occurrences of “ROVER detected” PIO’s in Phase II. 
 
Hence, claiming that Phase II could lead to RPCs was 
confirmed with ROVER. Thus, any pilot model 
describing Phase II has a high chance of describing the 
“pilot model” during RPCs. 
 
4.3 Pilot Model Structure Determination 
The MLE and the second step of FC identification 
require a pilot model to describe the response of the 
pilot during the experiment. As for an initial prediction of 
the pilot model, the control element, (essentially an 
integrator up to ~10rad/s) requires gain compensation 
till the break frequency and a lead at the break 
frequency of the controlled element. This is in 
accordance with McRuer’s Crossover model 
judgements; open loop PVS will have -20db/decade 
slope at the break frequency at which the 0 db 
magnitude defines the crossover frequency. After the 
first additional correction term for low frequency phase 

lag (      )[1], McRuer’s proposed a lead/lag 
compensation to capture the pilot low frequency lag in 
the Precision Model. The latter is thought to provide a 
better description of the pilot when considering the 
magnitude drop at low frequencies in measurement 
data (see Figure 12) and not only the low frequency 
phase lag. 
 
The correction for low frequency is essential in this 
study because all pilots show the same low frequency 
lag adaptations. This is especially true for the lowest 
two frequencies of the disturbance signal (see Figure 
12). 

 
One reason for the existence of the low 
frequency magnitude cliff could be the long 
duration of the maximum left or right lateral stick 
input, which might end up as a low frequency 
response in the frequency domain analysis. 
However, the data were checked for the 
signature of such long durations of cyclic inputs 
at maximum deflections and no noticeable 
occurrences were observed. 
 
Both identification techniques used the adapted 
precision pilot model as shown in Figure 15. 
 

 
Figure 15. Proposed pilot model, describing the 
pilot model block in Figure 1, with the adapted 
precision model Eq. ( 6), and the nonlinear pilot 
response; remnant (n). 
 
Figure 15 includes the pilot equalization for 
lead/lag at low frequency           ⁄  , pilot 

visual gain Kvis, lead          for high frequency 
compensation of controlled element break 
frequency. The pilot limitation segment of the 
pilot model consists of pilot time delay      and 
second order neuromuscular dynamics

[16]
 

adaptation with natural frequency (   ) and 

damping (    . Finally pilot remnant (n) was 

shown to reflect nonlinearities in pilot response 
arising from several sources [1]. Identification 
efforts in this paper do not include any remnant 
noise model, and it is assumed that there is no 
significant noise in the data, which was also 
shown in Figure 9–b (even in high frequencies 
the enriched frequency contains high signal to 

noise ratio). 
 
4.4 Pilot performance and control activity 
 
Two scales were used to assess the task 
performance and the control activity: RMS of 
displayed error (  ) and pilot control (    ) 

respectively, shown in equations 7 and 8, 

7 )      √
 

 
∑    

  
    

8 )      √
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For the remainder of the paper, the comparative figures 
are plotted per task, per pilot and per simulator. It must 
be noted that the main emphasis of this study was to 
compare the pilot adaptation between task phases, and 
to observe each pilots variance per task phase. The 
comparison between simulators is provided mainly to 
check the “trend of the pilot adaptation” consistency, 
not the absolute magnitudes. Therefore, scales of 
figures are adjusted by judging on deviation of std bars 
of the individual parameter figure, for each simulator.  
 

  
Figure 16. RMS of perceived error mean and standard 
deviations per pilot, per task phase and per simulator. 
 
Figure 16 shows the RMS of displayed error of roll 
angle, which should be minimized by the pilot; the lower 
the value, the greater the performance. It is observed 
that in both SRS and HFR, pilots show similar 
performance for both training and Phase I, whereas 
lower performance (higher RMS) for Phase II. This was 
expected since the time delayed cyclic control in such a 
disturbance rejection task can easily lead to difficulty in 
capturing zero trim bank angle. The variance per pilot 
(the vertical std bars) was considered small for each 
task phase, with slightly more deviation in Phase II. 
 
 

  
Figure 17. RMS of deviation of pilot control deviation 
mean and standard deviations per pilot, per task phase 
and per simulator. 
 
Figure 17 shows the pilot control activity per phase per 
simulator. Regardless of variations between pilots, they 
all increased their control activity when experiencing the 
time delayed phase, Phase II. 
 
To sum up, irrespective of simulator, all pilots had lower 
performance and higher control activity when 
experiencing a possible RPC scenario. Considering the 
degraded handling qualities of the controlled element, 
this was expected to be the case.  
 
 4.5 Pilot Model Fit 
 
Since the low frequency magnitude drop and negative 
phase is apparent for all pilots in all simulators in this 

experiment set, a need for the low frequency fit 
was proposed, as performed by McRuer in Ref. 
[20]. This correction term in the present 
measurement data (lead/lag) requires a setting 
point for gain and a lag term that fits the first two 
lowest frequency data to have the negative slope 
in the magnitude plane and a negative starting 
phase value for the phase plane. As an example 
without lead, this pair of gain and lag terms are 
represented in a non-scaled descriptive plot, 
Figure 18, which resembles the observed actual 
low frequency responses of pilots in Figure 12.  
 

 
Figure 18. Descriptive plot of pilot gain and lag 
frequency pairs that satisfies the fitting condition 
for low frequency lag of a representative 
measurement data in magnitude plane. 
 
In Figure 18, the red dashed fitting line 
represents the modelling line that allows a fit to 
the first two lowest frequency contents of the 
measurement data. The pilot visual gain and lag 
coupled pairs that can achieve the model fit are 
presented as [K1,w1], [K2,w2] and [K2,w3]. These 
three pairs successfully fit the model but [K1,w1], 
[K2,w2] may lead to a reasonable pilot gain and 
lag combination, whereas [K2,w3] may lead to 
unachievable pilot gain and/or phase frequency. 
For the FC identification, the boundaries of the 
parameter optimisation allow a limit for 
parameters but still a forced result may end up 
with a “tweaked” parameter pool. On the other 
hand, MLE identification is not bounded. 
Therefore, the identification procedure may 
output extreme values of parameters but with a 
better fit. Therefore, a better time domain model 
fit  but unrealistic parameter pool may appear in 
the MLE results, even though the initial 
parameter set of MLE is provided by the result of 
FC identification. This unrealistic parameter 
situation also appears in over-parameterised 
models when using time domain identification 
techniques [20]. The remedy to this situation 
could be including even lower frequencies in the 
disturbance function and omitting the lowest 
frequency, using the value as a manual tuning 
point for the identification. However, this solution 
also leads to an extended measurement time, 
which would lower the pilot concentration on the 
task. Sophisticated optimisation tools (e.g. 
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enhanced with Genetic Algorithms) to handle similar 
phenomena but in this paper, only the results of bare 
FC identification and Gauss-Newton gradient aided 
MLE are presented. They include those extreme values 
as well in parameter plots to point out the occurrences 
of such cases. 
 
Another issue when using frequency and time domain 
identification methods in a comparative sense is the 
definition of cost function that must be in the domain to 
which the technique belongs. A good frequency fit 
parameter set may end up with a poor time domain fit, 
and vice-versa. Since MLE used in this study starts with 
the results of FC, several data proposed a better time 
domain fit but showed worse frequency fit. Likewise, a 
good frequency fit of FC sometimes showed low 
Variance Accounted For (VAF) values and mismatch in 
the time domain especially towards the end of the 
measurement time when the low frequency caused an 
offset in the time trace of the model fit.  
 
Hence, extra care should be taken when interpreting 
the results with describing model fits with “good” and 
“bad”. A good fit for both identification methods is 
considered the most desirable model. 
 
4.5.1 FC Identification Pilot Model Fit  
 
The proposed pilot model transfer function, shown in 
Figure 15, was embedded in the frequency domain and 
pilot model fitting was processed by minimizing the 
frequency domain error between the measurement data 
and the resultant pilot response, as described in 
Section 2.3.1.  
 
VAF is a time domain measure of pilot model fit 
success and provides the information about how much 
of the time domain response is captured by the 
proposed model with the corresponding parameter set. 
The formulation of VAF used in this study is presented 
in Eq. (9); 

(9)      (  
∑ |                   |

  
   

∑        
  

   

)       

 

where          is the pilot model simulated control input 

and N is the number of measurement points. 
 
 
Thus, the higher the VAF, the better the model fit.  The 
perfect fit is defined as 100%, all possible lower fits 
indicate the mismatched model structure, nonlinearities 
or noise included in the real measurement, which are 
not covered by the proposed LTI models. In the broad 
sense, the remaining VAF in this content can be judged 
as the remnant, pilot nonlinearities which have not been 
modelled. Besides, good VAF values do not guarantee 
the correct model structure, since unrealistic high order 
models may fit better but cannot explain the control 
strategy in the real application or may include 

parameters unachievable for a pilot [35]. 
Nevertheless, VAF values of the pilot model are 
presented in Figure 19. Note that the FC model is 
a frequency model, and VAF is a time domain 
measure. To obtain VAF values for the proposed 
FC pilot model fit, frequency domain 
representation was converted into the time 
domain using 5

th
 order Padé approximation for 

time delays. 
 

 
Figure 19. VAF mean and standard deviations 
per pilot, per phase and per simulator. 
 
Results displayed in Figure 19 are considered to 
show good scores, with VAF values around 85-
87% for SRS and similar for the HFR. This is with 
exception to Phase I for Pilot B and Pilot D in 
HFR, probably due to the aforementioned fitting 
issues such that even one extreme parameter 
value would induce high variance in the standard 
deviation of the data mean, clearly seen in Phase 
II portion of the HFR VAF results of Pilot B and 
Pilot D. 
 
These VAF values indicate (but do not 
guarantee) that the FC model fit for all pilots in 
both simulators and all task phases is sufficient 
to represent the pilot control behaviour. The 
following figure shows a sample FC model fit with 
corresponding VAF value. 

 
 

Figure 20. FC pilot model fit to a sample 
measured identification data. VAF= 82.5% with 
the precision pilot model. 
 
Figure 20 shows a good frequency fit, with a 
close match of low frequency lag and high 
frequency neuromuscular response. 
Furthermore, corresponding VAF value (82.5%) 
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also indicates that this frequency fit also has a good 
time domain capture of pilot control to perceived roll 
angle error. 
 

 The following subsections describe the parameter 
variances of the proposed pilot model in further detail.    

 
 4.5.1.1 Pilot visual gain, K 

 

 
 
Figure 21. Pilot gain mean and standard deviations per 
pilot, per phase and per simulator. Units of pilot visual 
gain is (%cyclic)/rad 

 
Figure 21 displays pilot visual gain distributions, 
showing that pilots lowered their visual gain from 
training and Phase I to Phase II, in both simulators. 
Pilots show better transfer of training to Phase I in HFR, 
likely due to the fact that they had already been 
introduced to the task and practiced in SRS earlier. 
 
4.5.1.2 Lead time constant, TL1 

 

 
 
Figure 22. Pilot lead constant (TL1) mean and standard 
deviations per pilot, per phase and per simulator. 
 

        Figure 22 shows that Pilot A had almost the same lead 
constant throughout the identification experiment in all 
simulators and all phases. However, Pilot B, for 
example, showed a fluctuating trend in different 
simulators. Besides, as a general trend, pilots 
increased their lead time constants from training to the 
Phase I, then to the Phase II. This trend was more 
pronounced in SRS experiments. 

 
 
 
 
 
 
 
 
 
 
 
 
 

4.5.1.3 Lag time constant, TI 

 

    
 
Figure 23. Pilot lag constant (TI) mean and 
standard deviations per pilot, per phase and per 
simulator. 
 
Figure 23 shows that, particularly in SRS, there is 
a clear increase in pilot lag from training and 
Phase I to Phase II. Theoretically, also presented 
in Figure 11-b, translating from Phase I to Phase 
II requires lower gain and lower lag frequency 
when considering the frequency content of the 
measurement data. In HFR, with the exception of 
Pilot B, all pilots showed the same trend with 
increasing variances. 
 
4.5.1.4 Lead time constant, TL2 

 

 
 
Figure 24. Pilot lead constant (TL2) mean and 
standard deviations per pilot, per phase and per 
simulator. 
 
Figure 24 presents the lead time constant 
deviation for pilots in different simulators, and 
various task phases. The 2

nd
 lead time constant 

was introduced in the proposed pilot model to 
compensate the change of controlled element 
break frequency. Hence, it was expected to have 
consistent values (depending on the 
neuromuscular activation which seldom had 
peaks around the break frequency). Particularly 
in SRS, this expectation was satisfied (TL2  
   ⁄ ). In HFR, the general tendency was 
captured, but with a higher variance in Phase II.  
 
 

4.5.1.5 Pilot Limitations,    ,        

 
The pilot limitations block in the proposed pilot 
model (Figure 15) depends on the pilot’s 
physiological properties, control inceptor 
dynamics and his response time to the perceived 
trigger. It was expected to be constant per pilot 
regardless of the phase of the task, but vary with 
different simulators. 
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The following Figure shows the three pilot limitation 
parameters per pilot, per phase and per simulator. 
 

 
            (a) 
 

 
                            (b) 

      
                   (c) 
Figure 25. a.)Pilot neuromuscular system frequency 

     , b.)Pilot neuromuscular system damping (   ), 

c.)Pilot time delay (  ) ; mean and standard deviations 
per pilot, per phase and per simulator. 
 
Figure 25 verifies the expectation of achieving the same 
pilot limitation characteristics per pilot in all task phases 
and simulators. Moreover, the differences in pilot 
limitations were revealed, e.g. Pilot B had lower natural 
neuromuscular natural frequencies and higher damping 
than Pilot D, regardless of compared simulator runs. All 
pilots were found to have close time delays, which 
indicate the time to achieve desired muscular 
activation. 
 
This investigation leads to the conclusion that pilot 
limitation does not change in RPCs, but the active pilot 
control parameters (pilot equalisation) are subjected to 
change for various task phases and simulators. 
 

4.5.1.6 Crossover Frequencies (  ) and Phase 

Margins (    

 
Another performance criterion is the PVS open loop 
crossover frequency and the corresponding phase 
margin that indicates the available phase angle until the 
instability (-180 degrees). A sample run is shown in 
Figure 26. 

 
Figure 26. A sample plot of crossover frequency 
(1.77 rad/s) and phase margin (72.3 degrees).  
 
 

 
    (a) 

 

 
    (b) 

Figure 27. a.)Pilot crossover frequencies (  ), 

b.)Phase Margin     ; mean and standard 
deviations per pilot, per phase and per simulator. 
 
Figure 27 shows that overall crossover 
frequencies are noticeably low when compared 
to regular operational crossover frequencies. 
Keeping in mind that this experimental setup 
would introduce more difficult and intense pilot 
effort with the absence of regular operational 
feedback, e.g. motion and visual cues, pilots 
might experience difficulties in fulfilling the task 
requirements.  This may have resulted in the 
observed low crossover frequencies. 
 
Possible reasons for low crossover frequencies: 
1. High power spectra at high frequencies  

Rich high frequency content of the disturbance 
function may lead pilots to regress their 
crossover frequency to where they can have 
better control margin. This adaptation is called 
Crossover Regression, and several items in the 
literature have investigated the triggering 
conditions for crossover regression [1,36,37] and 
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its application to handling qualities assessment [38]. 
   
2. Lack of enough training sessions of the task  

Identification experiments in both simulators were 
conducted within the daily simulator programs of the 
first RB test campaign of ARISTOTEL project. As the 
simulator trials included ADS-33[21] MTEs with highly 
aggressive and RPC benchmarking conditions, the 
identification tests were limited by time constraints, 
which resulted  in only a short time for pilots to adapt 
themselves to the task and the controlled element 
responses. Even though training and Phase I sections 
showed good correlation among all pilots per simulator, 
approximately 25 minutes of one pilot experiment (total 
training and full length runs) is thought to be not enough 
for human operators to achieve well trained high 
crossover frequencies with high level of linear 
adaptation. 
 
3. Nature of the compensatory tracking simulation  

In Ref. [34], Mitchell reported the usage of US Air Force 
Large Amplitude Multimode Research Simulator 
(LAMARS) to investigate the extraction of pilot models 
from mimicked SOS and discrete tracking tasks, which 
were actually flown in test flights of HAVE LIMITS

[41]
 

project. Although the vehicle dynamics, triggers and the 
whole experiment setup was different than the 
experiment set in this paper, the crossover frequencies 
were experienced around 1.4-1.7 rad/s for various 
configurations of aircraft. When compared to Figure 27 
–a, it is observed that the obtained low crossover 
frequencies may be due to the nature of the SOS 
tracking task, which forces pilots into a more 
conservative state, leading to a compromise between 
task performance and stability of the PVS. Pilots might 
prefer to sacrifice performance to achieve safer stability 
response.  
 
With regards to phase margin, it can be observed from 
Figure 27 –b that pilots increased their phase margins 
while translating from training and Phase I to Phase II. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.5.2 MLE Identification Pilot Model Fit 
 
A sample MLE result is shown in Figure 28. 

 
 
Figure 28. A sample plot of MLE identification 
result, showing the actual measurement data, 
initial and final MLE model fit, with the 
corresponding iteration number and VAF. 
 
It is seen from Figure 28 that MLE aims to reduce 
the time domain error between the actual 
measurement data (red line) and the final model 
fit (black line), starting from the initial model 
(green line),which was provided from FC 
identification. An increase in VAF values, which 
refers to better time domain fit as well, was 
achieved with the cost of slight mismatch in 
frequency domain, especially at high frequencies. 
Overall VAF values are shown in Figure 29. 

 
 

                  
 
Figure 29. VAF mean and standard deviations 
per pilot, per phase and per simulator. 
 
Figure 29. shows that VAF values of MLE are higher when 
compared to FC values. This is also due to the nature of 
MLE which tries to have better time domain fit, which can 
be interpreted as VAF as well. 
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4.5.2.1 Pilot visual gain, K 
 

   
 
Figure 30. Pilot gain mean and standard deviations per 
pilot, per phase and per simulator. Units of pilot visual 
gain is (%cyclic)/rad. 
 
Regardless of parameter overshoots, pilot gain 
distributions, plotted in Figure 30, show that pilots 
lowered their visual gain from Phase I to Phase II, in 
both simulators. MLE identification showed high 
variances in both Phase I and Phase II, which is an 
indication of parameter fitting to extreme values since 
MLE does not hold any parameter boundaries. 
 
4.5.2.2 Lead time constant, TL1 

 

    
 
Figure 31. Pilot lead constant (TL1) mean and standard 
deviations per pilot, per phase and per simulator. 
 
Figure 31 shows that MLE had several parameter fits 
which exceeded beyond human operator limits, but 
provided better time domain measurement fit. Like the 
HFR results of FC identification. 
In Figure 31, pilots showed more or less consistent lead 
time in both simulators, according to MLE identification. 
 
4.5.2.3 Lag time constant, TI 

  
 
Figure 32. Pilot lag time constant (TI) mean and 
standard deviations per pilot, per phase and per 
simulator. 
 
Figure 32 shows approximately the same trend 
between Phase I and Phase II for MLE identification. 
Considering FC results, MLE could not show any 
significant deviation in lag time constant, except the 
extreme fitting for Pilot B and Pilot D in SRS. 
 
 
 
 

4.5.2.4 Lead time constant, TL2 

 
Figure 33. Pilot lead time constant (TL2) mean 
and standard deviations per pilot, per phase and 
per simulator. 
 
Figure 33 presents the lead time constant 
deviation for pilots in different simulators, and 
various task phases. Similar results were 
obtained when compared to FC identification,  
Figure 24. Hence, the same interpretation of the 
controlled element break frequency capture is 
also valid for MLE identification results for the 
second lead time constant parameter. 
 

4.5.2.5 Pilot Limitations,    ,        

 

    
   (a) 

    
   (b) 

    
   (c) 
 
Figure 34. a.)Pilot neuromuscular system 

frequency      , b.)Pilot neuromuscular system 

damping (   ), c.)Pilot time delay (  ) ; mean 
and standard deviations per pilot, per phase and 
per simulator. 
 
Like FC identification results, MLE identification 
also showed that pilot limitations (Figure 34) are 
almost equal for various task phases and 
simulators.  
 
The same conclusion can be drawn similar to FC 
identification: pilot limitation parameters are 
similar but pilot adaptation mainly occurs for pilot 
equalisation parameters, during possible RPC.  
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4.5.2.6 Crossover Frequencies (  ) and Phase 

Margins (    

 

 
    (a) 

 

 
 

    (b) 

Figure 35. a.)Pilot crossover frequencies (  ), 

b.)Phase Margin     ; mean and standard deviations 
per pilot, per phase and per simulator. 
 
Figure 35 indicates that MLE identification method 
resulted in slightly higher crossover frequencies, with 
phase margin similar to that determined during FC 
identification. Like FC, MLE showed that pilots had a 
small increase in their phase margins from training and 
Phase I to Phase II. This behaviour displays the 
tendency of pilots to have better stability by increasing 
phase margin during a possible RPC case. 

5. CONCLUSIONS AND RECOMMENDATIONS 

A set of pilot identification experiments was conducted 
in two flight simulators with four helicopter pilots. The 
task was a roll disturbance-rejection single loop 
compensatory manual control task, with a controlled 
element representative of the Bo105 roll response to 
pilot control. The scope of the experiment was to detect 
pilot adaptation to an online applied time delay, 
designed to cause RPC tendencies by using frequency 
and time domain identification techniques, FC and MLE 
respectively. Key conclusions of this investigation are 
shown below;  
 

 Measurement data showed that all pilots 
changed their response to perceived roll error 
in the compensatory task from no- RPC 
partition (training and Phase I) to possible RPC 
partition (Phase II). This pilot adaptation was 
consistent irrespective of simulator. 

 To determine the presence of RPC in the 
Phase II partition of the run, ROVER was 
applied, which displayed a clear increase in 
PIO tendency, though the activation of warning 
flags. Therefore, it was assumed that Phase II 
was a suitable task phase to be representative 
of “possible” RPC events. 

 By adjusting McRuer’s Precision Model with 
low frequency lag, a pilot model was proposed 

and used in both identification methods 
used to fit the measured data. 

 It was observed that pilots reduced their 
visual gains during possible RPC events, 
especially at low frequencies. 

 Pilots tended to increase their low 
frequency lead, to overcome the phase 
reduction caused by the additional time 
delay in the control path. 

 Pilots kept their own limitation 
parameters almost constant, namely 
neuromuscular dynamics and internal 
time delays, throughout all phases of the 
experiments in each simulator. 
Moreover, pilots show different 
limitations among each other in each 
simulator.  

 Frequency domain FC identification 
showed good frequency pilot model fit, 
with sufficient VAF scores. However, 
unbounded MLE identification seldom 
reached unrealistic parameter values but 
achieved better VAF scores. 

 Due to the high disturbance power at 
high frequencies and the lack of training 
prior to task completion, pilots showed 
lower crossover frequencies and higher 
phase margins than initially expected. In 
addition, during possible RPCs, pilots 
further tried to increase the phase 
margins. This shows that pilots tended to 
sacrifice task performance but in return 
tried to achieve better stability to 
counteract the perceived RPC. 

 
Recommendations 

 High frequency content of the 
disturbance signal was sufficiently high 
that it led to “difficult” task performance 
with low crossover frequencies. Since 
the main pilot adaptation is observed in 
the low frequency range (0.3 to 5 rad/s), 
it is recommended that lower power is 
used for high frequencies within the 
disturbance forcing function. The authors 
recommend 40-60dB difference should 
be sufficient. However, this should be 
tested prior to further investigation. 

 Due to limited time during the 
ARISTOTEL RB test campaign, the 
familiarization and training to the task 
and controlled element was probably not 
long enough to achieve linear pilot 
control behaviour. Thus, the validity of 
LTI identification methods is 
questionable. However, the comparison 
between training and Phase I showed 
similar trends. To increase the signal to 
noise ratio it is recommended to have 
more repetitions per measurement point.  

Training Phase I Phase II
1

2

3


c

M
L

E
, 
ra

d
/s

Parameter=c
MLE

, Simulator=SRS

 

 Pilot A
Pilot B
Pilot C
Pilot D

Training Phase I Phase II
0

1

2

3


c

M
L

E
, 
ra

d
/s

Parameter=c
MLE

, Simulator=HFR

 

 Pilot A
Pilot B
Pilot C
Pilot D

Training Phase I Phase II

40

60

80


M

 M
L

E
, 
d

e
g

Parameter=
M MLE

, Simulator=SRS

 

 Pilot A
Pilot B
Pilot C
Pilot D

Training Phase I Phase II

40

60

80


M

 M
L

E
, 
d

e
g

Parameter=
M MLE

, Simulator=HFR

 

 

Pilot A
Pilot B
Pilot C
Pilot D



 

 
 

 One fundamental setting in such a basic 
experiment is the control device specifications. 
Because, it defines the magnitude of pilot input 
to achieve the task performance, and various 
dynamic properties of the control inceptors are 
subjected to change between simulators. 
Although it was aimed to match the cyclic 
settings among SRS and HFR, it recommended 
to match further detailed specifications; mass of 
the inceptor, force gradients, etc. 

 A statistical analysis, e.g. ANOVA
[42]

, would 
show cross dependency of parameters and 
would provide more information about 
variances and effects on the results. 
 

 The low frequency adaptation terms lead, 
especially unbounded MLE, to reach extreme 
values which are not achievable by human 
pilots. It is proposed that using a new 
equalisation parameter which couples gain and 
lag time constant together would aid to reduce 
flexibility in the gradient based Gauss-Newton 
optimization of MLE.Hence, the equalization 
term in the pilot model may be rearranged :  

  

(10)                                         

      where,  

(11)           ⁄      

By this parameter adaptation, it may be 
possible to couple the gain and the lag, and the 
reduced number of parameters would help 
optimizations to converge. On the other hand, 
interpretation of the new parameter,   , would 
be hard to conclude on results, because direct 
pilot parameters would be merged in this new 
one. Any value would be a total effect of 
unrealistic couples, but at least a set of 
combination would be available for better 
optimisation. 

 

 During the experiment runs, pilots were focusing on 
a single source attitude indicator model on the 
screen, further concentrating on small bank errors. 
This visually intensive work caused a drop of 
attention during the full runs, which lasted 
approximately three minutes each. To maintain 
attention level and provide a performance rating, it 
would be beneficial to provide a performance score, 
e.g. RMS of error, to force pilots not to back-off and 
keep their motivation to increase their performance 
after each run. 
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