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ABSTRACT 

NONLINEAR HELICOPTER STABILITY 

R.RISCHER, K.HEIER 

TECHNICAL UNIVERSITY, MUNICH 

Until now for stability analysis of helicopter almost without 
any exception, the linear conception (linear equations of mo­
tion) were applied. This method is normally used for rigid 
airplanes. Thus it is possible to state very quickly and re­
latively easy particulars concerning stability of the airpla­
ne under study. This method is however valid only for stabi­
lity aspects in the vicinity of the equilibrium state since 
the equations of motion are linearized around this state. In 
the case of the high nonlinear equations of motion of a heli­
copter this assumptions can be made only with great neglec­
tions. Therefore it has to be achieved to study nonlinear 
equations of motion without linearization. 

For the study of stability of nonlinear systems only a very 
few methods are reliable. Most of these methods are based on 
the second method of Lyapunov. A relatively simple and howe­
ver effective method for determining stability behaviour of 
nonlinear systems is described by the American J. Roskam in 
his thesis. This method in modified form will be described. 

The study was carried out at the Institute for Flight Mecha­
nics and Flight Control at the Technical University of Munich 
by order of the Federal Ministery for Research and Technology. 
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1 INTRODUCTION 

~ rigid body in flight possesses in case of steady control 
six possibilities of motion {-degrees of freedom). It can 
execute three translational and three rotational motions. 
In case of a helicopter, the degrees of freedom of flapping, 
lagging and variable rotor speed are added. Further degrees 
of freedom result from the case of free controls, from the 
application of regulators and from respective elastic defor­
mation of various helicopter parts. The sum total of all these 
degrees of freedom influences all the acting forces and mo­
ments on the particular aircraft parts henceforth resulting 
the dynamics of a helicopter and also its stability properties. 

Stability or instability is a characteristic of an equilibrium 
state. The equilibrium is stable if the system upon a slight 
disturbance in any of its degrees of freedom returns finally 
to its initial state. 

According to the defi.nition of stability a helicopter is re­
ferred to as stable if after a minor deviation of a stationary 
flight condition without any interfering action of the pilot 
it will return into this former position. The initial flight 
position can be· a hovering state or a stationary advance flight. 
Disturbing effects can be gusts of wind or temporary steering 
deflections. The return into the initial position can occur in 
the form of oscillations or in aperiodic motion procedure. The 
following quantities can suffer disturbances during a helicop­
.ter flight: height, velocity, inclination angle of flight path, 
position of helicopter, rotor rotational speed etc. On behalf 
of various reasons it is wished for that a helicopter indicates 
stability, that is it does not show too much instability. The 
pilot is thus greatly relieved. It has been indicated that most 
helicopters do not fulfill in a strict sense the conditions of 
stability. If the handling qualities are good the pilots do not 
have too many objections against a slight instability. The co­
herence of stability characteristics and handling qualities in­
fluences essentially the classification of the flying qualities 
of a helicopter by the pilot. From mathematical analysis result 
exact criteria for the stability of an airplane. 

The investigation in the stability behaviour can be listed under 
the following seperate headings. 

• 
Ascertainment of force - and momentum coefficients of wind 
channel tests, flight tests or theoretically 

• Formulation of the equations of motion 

•Calculation of the respective stability values 
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2 LINEAR STABILITY ANALYSIS 

For the linear stability analysis of a helicopter the linearized 
equations of motion of a helicopter are used with the assumption 
of small disturbances. Every variable x is seperated in a con­
stant part x 1 and in a variable part L\ x. 6. x is a small quantity 
and now the ~ariable function. The constant part x describes 
the statiollary initial state. The aerodynamic forges and moments 
are expanded with reference to the vicinity of stationary state 
in Taylor-series. The equations of motion in this manner simpli­
fied and summarized result in a system of linear differental 
quations with constant coefficients. This differential equation 
system is shown in figure 1 and discribes the motion of a heli­
copter with auxiliary linear dynamics. With the assistance of 
the derivatives expressed in the matrices ~* und ~* statements 
concerning static stability of helicopter can be made [7,9]. 
The dynamic characteristic behaviour of the helicopter is deter­
mined by the position of the poles of the characteristic equation 
(7,9]. The system shown in figure 1 can be written in simplified 
form thus. 

p X = A X + B u ( 2 . 1 ) 

X (u,v,w,p,q,r,¢,G]T 

.':!_ [8 ,8 ,6 ,GH] 
0 c s 

or 

X 
-1 p A X + P-1B u ( 2. 2) 

with 

A* p-1A 

B* -1 
= P B 

it finally results that 

X * A X + s*u ( 2 • 3) 

The poles of the characteristic equation can be obtained if one 
determines the eigenvalues of the matrix~*. For the flight 
case ug = 27.8 m/s, altitude FH = 1500 m the eigen values of 
the matrix A* were determined for the model combination MODl 
(see also chapter 4.1) and were entered in the complex number 
plane (figure 2). As an example helicopter the B0-105 of MBB 
company served for this and the following investigations. 

Modern helicopters with hingeless rotors without stabilizer 
have according to theroretical investigations generally an in­
stable trajectory oscillation (phugoid), a slightly damped 
tumbling (dutch roll) and two aperiodic forms of motion (pitch 
mode and spiral mode) (see figure 2) .·All eigen values change 
with air speed, altitude, gross weight and the location of 
center of gravity and also other system quantities such as 
e.g. rotor rotational speed, blade mass etc. 
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3 NONLINEAR STABILITY ANALYSIS 

The helicopter forms a nonlinear system with nonconservative 
forces. The dissipative forces here can also add energy to 
the system. For these reasons it has not been found possible 
to apply conventional energy methods or to construct a Lyapu­
nov function [1 ,2,3,4 ]. 

Asymptotic stability of the undisturbed motion implies that 
all disturbed values vanish after some time. Weak stability 
implies that all phase variables remain inside some region 
around the origin. From a handling qualities viewpoint, it 
is desirable to have those phase variables designated as 
velocities vanish such that: 

lim T(t) = 0 ( 3 • 1 ) 
t+(Y) 

where T is the kinetic energy of the disturbed motion varia­
bles. Naturally in most cases it is not interesting to regard 
the numerically obtained solution over an infinite time interval 
as it is the case with the conventional stability definitions. 
It is however necessary to determine the stability by obser­
vution of the motion during a limited time interval. Using the 
definition of stability in a limited time interval due to Lebe­
dev it follows by interpreting T as a positive definite function 
that in the time interval t

0 
< t < t

2 
the condition for stability 

is: 

T ( t) < T(t ) 
0 

( 3 . 2) 

A consequence of (3. 2) is that both motions of the following 
figure must be called stable. This conclusion is acceptable 
for T

1 
(t) but not always for T

2 
(t). 

T ( t) 

t 
0 

t 
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This unwanted- fact can be eliminated if one adds to the mentional 
inequation (3.2) a condition based upon a time integral of kinetic 
energy. 
Suppose the following energy process: 

T ( t) 

t tl t2 t3 t4 t 
0 

t2 t4 
fT(T)dT + fT(T)dT 
tl t3 

< 1 ( 3 . 3) F 
tl t3 

/T(T)dT + fT(T)dT 

0 t2 

increasing kinetic energy 
or F 

decreasing kinetic energy 

Condition F is a practical stability criteria for the nonlinear 
equations of motion of a helicopter; especially in cases where 
stability is to be Viewed inside a limited time interval. A motiorl 
is called stable inside a time interval t < t < t , if the following 
conditions are fulfilled: 0 e 

T(t) 

F S 

< T(t ) 
0 

6 < 1 

( 3 • 4) 

( 3. 5) 

t must be chosen such that T has a maximum. If this is not the 
c~se the forementioned stability criteria are no longer valid. 
The reason for this is that for arbitrary initial disturbances 
T(t=O) >O is possible. This depends entirely on the character 
of the ''kinetic energy generating terms'' in the equations ot 
motion. 

In the case t -reo both conditions (3.4, 3.5) are necessary but 
not sufficienf equivalents of the Lyapunov definition foL stability. 

Since the nonlinear equations of motion are integrated numerically 
in the program ''HESISTAP'' and for every integration step the state 
variables and their derivatives are thus known, it is simple to 
calculate kinetic energy as a function of time. 
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Therefore, it is possible to keep track of both conditions, 3.4 
and 3.5 and obtain a continous history of the stability character 
of motion~ 

In this manner, a numerical procedure for the practical determi­
nation of s~ability of nonlinear equations of motion is obtained. 

3.1 APPLICATION OF MODIFIED ENERGY-METHOD WITH NONLINEAR 
EQUATIONS OF MOTION OF A HELICOPTER 

The energy contributions can be found if one multiplies each 
equation of motion by its characteristic velocity and by a 
subsequent integration. 

The 
I xy 

following equations 
= I = 8 = 8 = yz xd yd 

result; with 
8 = 0. 

zd 

t1 
/FAXU dT 

0 

t1 
/FAYV dT 

0 

t1 
/FAZw dT 

0 

t1 
= J<m 

0 

t1 
= J<m 

0 

t1 

• u u + m w q u - m v r u)dT 

. 
v v + m r u v - m p v w)dT 

• w w + m p v w - m q u w)dT 

. 

the exception: 

= 2 
J<Ixj p - I r p + q r(I - I )p - I p q) dT xz zz yy xz 

0 

t1 
/M q dT 

0 

t1 2 2 
tf(I q q + r p(I - I )q + I (p -r ) q) dT 

0 yy XX zz xz 

t1 
/N r dT = 

0 

t1 
I r r + p q(I 2 

J<-Ixzp r + I )r + I q r )dT zz yy XX xz 
0 

where FAX = X - m g sine 

FAY = y + m g case sin<P 

PAZ = z + m g case cos<P 

(3 .6) 

(3.7) 

(3.8) 

After completing the integrations, adding the equations and 
rearranging, it is not surprising that a statement of energy 
balance is recovered: 

[l.m 2 1 2 1 2 1 2 1 2 1 2 
2 u + 2 m v + 2 m w + 2 Iyyq + 2 Ix~ + 2 Izzr - Ixzp r] = 

t 

;tFAZw + M q + FAYv + L p + FAXu + N r)dT -
0 

t1 ~12 t1 2 2 
Jr p q dT + I xz J!P q dT- I f(p -r )q dT -xz t: 

0 0 0 
t1 t1 

t1 
mJ<r 

0 

v w - q u w)dT - (I -I ) 
XX ZZ 

u v - p w v)dT- (I -I ) zz yy 
t1 

Jq r P dT -
t12 

I Jr q dT - (I -I ) /P q r dT - mJ<w q u- v r u)dT 
xz yy XX 0 (3.9) 

0 0 0 
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The energy-time histories can also be useful in pointing out 
the effect of individual terms in the equations of motion. Be­
fore the energy-time histories of disturbed motion of helicopter 
are discussed, the program "HESISTAP" should be describad briefly. 
With this program all the investigation studies were carried out. 

4 HELICOPTER SIMULATION AND STABILITY ANALYSIS PROGRAM 

With the computer program "HESISTAP" the following calculations 
can be executed (see also figure 3). 

Calculation of trim values (6
0

, e.,, 6~, 6H•.0, <P, u, v, w) 
• for an example helicopter with choosable initial velocities 

u , v , w . 
g g g 

Calculation of derivatives of an example helicopter for a 
• calculated steady state or for an arbitrary quasistationary 

state. 

• Calculation of eigen values of system matrix A* (linear 
stability analysis). 

• Integration of nonlinear equations of motion of helicopter. 

• Calculation of energy-time histories with nonlinear stability 
analysis thereafter. 

~ Calculation of optimal control for a desired flight path. 

Furthermore for each of the four blade control angles 6o,6c,6s,6H 
three time depandant blade control angles can be chosen: 

• constant (trim value) 

• doublette 

• 3-2-1-1 pulse 

Besides it is possible that during a program procedure blade 
control angles. can be read in from a tape. This is especially 
interesting when a helicopter simulation with measured blade 
control angles is executed. To adapt the blade control angles 
to real conditions, the possibility exists to smoothen the 
chosen step function by application of a filter. 

The program "HESISTAP" is also feasible for combining 
complicate~ mathematical main - and tail rotor models 
other. For this investigation two model configurations 
MOD2) were chosen to be described in the following. 

variously 
with each 

(MOD1 and 

4.1 BASIS FOR THE MATHEMATICAL DERIVATION OF FORMULA APPARATUS 
USED IN THE PROGRAM "HESISTAP" 

Deduced from the system of equations of motion for the general 
case of a (spatial) motion with six degrees of freedom in a body 
fixed frame, velocity - and acceleration components are calculated 
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existing on a blade element whereas all translational and all 
rotational motions are considered. After these preparations 
the flapping motion of blades is calculated. The flapping angle 
is set such that the sum of correction moment (for consideration 
of hinge Less rotor), massmoment and airloading moment around 
the (equivalent) flapping hinge disappears. If the sum of these 
three moments. is taken zero, one abtains a system of equations 
with three equations for the three flapping angles S0 ,8c,Ssto be 
searched. Next by means of the blade element theory the forces 
generated by the rotor are calculated. A trapezoidal induced 
velocity distribution is assumed [8]. Now the moments generated 
by the rotor around the body fixed axes are calculated. The blade 
torsional moment is hereby neglected. A rotor shaft angle (in 
x,z-plane) is considered. Special difficulties always cause the 
exact appropriation of fuselage aerodynamics. In the program 
''HESISTAP'' therefore a very simplified fuselage model is applied. 
The following assumptions are made: 

• 
• 

fuselage drag acts in center of gravity 

fuselage drag is effective in direction of resulting velocity 
of flow from initial direction 

with the representation of elevator it is supposed in simplified 
manner that the direction of elevator lift coincides with z-direc­
tion. The elevator drag is supposed to be included in fuselage drag. 

The mathematical modeling of tail rotor is based on the see-saw 
construction mode of rotor. The derivation of tail rotor forces 
respectively moments succeeds the same as with main rotor; with 
rotor specific alterations. The formula apparatus resulting from 
this is called MOD2. MODI has with respect to MOD2 the following 
simplifications: 

• No side and no yawing velocity 
v = r = o 

No blade twist; 8 is thus to be regarded as a mean value of 
• angle of incidencg 

81 = 0 

• Effective flapping hinge offset zero 
a = 0 

The influence of mass moment is neglected 
• MGA = 0 

The induced downwash and thus the lift are effective on the 
• entire blade length 

A = 0, B = 0 

The • induced downwash is 
=canst., vic vis 

constant 
= 0 

Furthermore with the tail rotor modeling it is supposed that the 
tail rotor generates only a force in the y-direction. The influence 
of the induced downwash on the tail rotor force is considered by a 
factor F on OH. The influence of forward velocity on the tail 

vi 

3.9 - 9 



rotor force is not considered. 

{For the exact derivation of mathematical models see [5,6]). 

5 APPLICATION 

For the procedure described in section 3 a simulation with the 
model combina~ions MODl and MOD2 was carried out. Based on an ideal 
hovering in both combinations the forward velocity u was disturbed 
{[1u = - 5 m/s). Because of this disturbance the resulting time 
histories of states are represented in the figures 4a)to 4h). 
The resulting energy time histories are illustrated in the figures 
4i} to 4o}, whereas in the figures 4i) to 4k) the translational 
parts of kinetic energy and in the figures 41) to 4n) the rota­
tional parts of kinetic energy are shown. The figures 4o) and 5 
show the time histories of the total kinet~c energy composed as 
such from the {previously mentioned) translational and rotational 
parts. The blade control angles are shown in the figures 4p) to 
4s) . 

If one compares time histories of the states of the model com­
binations MODl and MOD2, one can notice partly a considerable 
difference in the amplitudes and on the time histories itself. 
The reason for this is based on the different modeling (great 
neglections in MODl). Furthermore there is an instable tendency 
of the time histories to be recognized. 

If one regards the single energy time histories for this disturbed 
motion, the forementioned is confirmed. Furthermore one realizes 
that essentially the translational energy parts supply contributions 
to the total energy. 

Though one would attest the disturbed motion with the aid of the 
time histories of states an instable character as such, with the 
assistance of figure 5 and the energy method described in section 
3 a range can be found in which "stability within a range" prevails 
that is, stability criteria 3.4 and 3.5 are fulfilled. For this ir1 
figure 5 stability parameter 0 in the time interval 0::? t ~ 4. 5 s 
(4.7 s) is represented. o is in the range 0;'; 8 ~.43(.4). 

After 4.5 s (4.7 s) furthermore up to 5.7 s (5.3 s) th" criteria 
3.5 is fulfilled whereas criteria 3.4 is violated. The disturbed 
motion become quickly instable from this time on; which is also 
asserted by the known behaviour of examply helicopter B0-105. 
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6 CONCLUDING REMARKS 

The linear stability analysis is in case of the high nonlinear 
equations of motion of helicopter no more applicable. A proce­
dure was shown with which a nonlinear stability analysis can 
be performed. With the aid of energy time histories important 
terms can be identified from the nonlinear equations of motion. 
The out'lined procedure is the beginning of a series of con­
tinous investigation possibilities of nonlinear equations of 
motion of helicopter which are carried out in the Institute 
for Flight Mechanics and Flight Control at the Technical 
University Munich. In the future it is relevant to find cri­
teria with the aid of the nonlinear stability theory and thus 
to be able to make exact statements on the stability behaviour 
of helicopters. 
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