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Abstract

The methodology to correctly couple a time-
accurate free wake model to a flight dynamics sim-
ulation was investigated. The simulation model is
a coupled rotor-fuselage model with flexible blade
modelling in flap, lag and torsion. Two free wake
models capable of capturing correctly the wake ge-
ometry distortions during maneuvering flight were
used, a relaxation or iterative free wake model and
a time-marching free wake model. The assumptions
and limitations of these models make the first suit-
able for steady flight conditions, while the second
can model unsteady maneuvers. To be able to de-
termine the transient response to of arbitrary am-
plitude maneuvers with a time-accurate free wake
model accurately, a two-phase trim process is nec-
essary. This process consists of an initial trim
with the relaxation free wake model and a conver-
gence phase to obtain the equivalent geometry with
the time-marching free wake, but free of numerical
transients. The approach was investigated in low
speed straight flight and steady turns. The results
indicate that for hover and very low speeds the two
models produce very similar geometries and almost
identical induced velocities. For higher transition
speeds and for turns at a high load factor, however,
the differences in the geometry between the relax-
ation and the time-marching models, in particular
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in the prediction of the wake rollup, are significant
and affect the inflow.

Nomenclature

Cl Lift coefficient
ClM

2 Elemental lift
Dψ Finite difference approximation to the

time derivative
Dζ Finite difference approximation to the

spatial derivative
Ibi,j

Bound influence coefficient matrix
INW i,j Near wake influence coefficient matrix
M Mach number
Nb Number of blades
NS Number of blade segments
p, q, r Roll, pitch and yaw rates of the helicopter,

deg/sec
qk0 , q

k
nc, q

k
ns Constant and harmonic coefficients of the

kth blade mode
r Blade radial station, ft
r Position vector of a point on the filament
t time, sec
u, v, w Velocity components on body axes, ft/sec
u Vector of controls
V Helicopter velocity along the trajectory
V(r) Total velocity at a point r on the filament
Vx, Vy, Vz Blade velocities
V∞ Stream velocity at the control points
X Vector of trim unknowns
y Vector of states
ẏ Vector of state derivatives



αF , βF Fuselage angle of attack and sideslip angle,
deg

β(ψ) Flap angle; flap distribution, deg
Γ Circulation
∆ψ Wake azimuth resolution, deg
∆ζ Vortex filament discretization resolution,

deg
γ Flight path angle, deg
ζ Age of the vortex filament, deg
θF Pitch attitude, deg
θ Geometric angle of attack, deg
θ0 Main rotor collective pitch, in/deg
θ1c, θ1s Main rotor cyclic pitch, in/deg
θ0t Tail rotor collective pitch, in/deg
λ0, λ1c, λ1s Main rotor inflow coefficients
λ0t Tail rotor inflow coefficient
λ Induced velocity coefficient
φF Bank angle, deg
φFW Induced angle of attack due to the far

wake, deg
ψ Blade azimuth angle, deg
ψ̇ Rate of turn, deg/sec

Introduction

Sophisticated aerodynamic models are needed for
accurate predictions in a variety of practical prob-
lems of helicopter flight dynamics, such as the re-
sponse to pilot inputs in moderate and large am-
plitude unsteady maneuvers, trim in turning flight,
trim and response in descents, including near and
through the vortex ring state, and the off-axis re-
sponse to pilot inputs. Although in some cases mo-
mentum theory based models can be adequate with
the appropriate selection of tuning parameters, the
most accurate predictions from first principles re-
quire free vortex wake models coupled with detailed
models of rotor and fuselage dynamics.

Several comprehensive flight dynamic models ex-
ist, making use of aerodynamic models of different
complexity. [Ref. 1] contains a detailed review of
these models and their capabilities. The level of
sophistication of these simulation models has in-
creased rapidly in the last decade, especially for

nonreal-time, research type simulation models, in
particular looking to be able to capture maneuver-
ing flight, both steady and unsteady, accurately.

A free wake capable of modeling maneuvering
flight has been developed by Wachspress et al. [5],
as part of the simulation model CHARM, and suc-
cessfully applied to the analysis of flight in vortex
ring state and to the prediction of off-axis response.
This wake has been coupled with the Sikorsky Gen-
Hel simulation code, and used for the modeling
of free wake-empennage aerodynamic interaction,
with improvements in the correlation with flight
test data [Ref. 6]. The wake has also been coupled
with the NASA version of the GenHel code [Ref. 7],
and with the Pennsylvania State University version
of GENHEL [Ref. 8] for real-time modeling, giving
results similar to those of the Pitt-Peters dynamic
inflow model.

Descent flight and autorotation are also the
drivers behind the implementation of coupled free
wake and flight dynamics models such as [Ref. 9],
which compares the results for finite-state induced
inflow methods with a vorticity transport wake
model. Their results show that, while for shal-
low descents the differences are small, for steeper
descents, such as those required for autorotation,
there were some discrepancies between the two
models.

This brief overview of flight dynamic simula-
tion models with refined wake aerodynamics does
not include most of the comprehensive analysis
codes used by industry and government laborato-
ries. Many of these codes, like [Ref. 10] include,
or are being upgraded to include, maneuvering free
wakes, and therefore the capability to support re-
search studies in flight dynamics. They are not
included here only because no published references
are currently available that describe in detail the
incorporation of the wake in the simulation model,
or the use of the refined wake in flight dynamic
studies, or both.

[Ref. 2] used a coupled flap-lag-torsion blade
model and the free wake model developed by Bagai
and Leishman [Ref. 3]. This model uses a relaxation



technique to solve numerically the governing equa-
tions. Therefore, it is rigorously appropriate only
for a steady trimmed flight condition, and not for
transient conditions. However, it correctly modeled
small amplitude, relatively slow maneuvers. These
limitations are removed in the more recent time-
accurate free wake model of Bhagwat and Leish-
man [Ref. 4], which, when coupled with the same
rotor-fuselage model of [Ref. 2], provides a simu-
lation model suitable for analyzing maneuvers of
arbitrary amplitude.

This paper describes some aspects of the formula-
tion and validation of a flight dynamics simulation
model, in which a finite element based rotor model
and large amplitude fuselage dynamic equations are
coupled with two free wake models capable of cap-
turing correctly the wake geometry distortions dur-
ing maneuvering flight. This model, recently com-
pleted, can describe steady state flight conditions,
both in straight and maneuvering flight, and the
free flight response to pilot inputs, with no restric-
tion on the amplitude of the inputs or of the heli-
copter response.

This paper focuses primarily on the modeling of
trimmed conditions. Its specific objectives are:

1. To describe the problems associated with the
coupling of the two free wake models with the
rotor and fuselage models for trim calculations;

2. To present the methodology used for obtain-
ing a trim solution compatible with the time-
accurate free wake model to be used as a start-
ing point for the calculation of the transient
response;

3. To present validation results using compar-
isons with flight test data; and

4. To present the results of a study of the pro-
posed method in straight and level flight as
well as steady maneuvering flight.

Mathematical Model

Rotor and fuselage dynamics

The flight dynamics model used in the present
study ([Ref. 2],[Ref. 1]) is based on a system of cou-
pled nonlinear rotor-fuselage differential equations
in first-order, state-space form. It models the rigid
body dynamics of the helicopter with the non-linear
Euler equations. The aerodynamic characteristics
of the fuselage and empennage are included in the
form of look-up tables as a function of angle of at-
tack and sideslip. The dynamics of the rotor blades
are modeled with coupled flap, lag and torsion, a fi-
nite element discretization and a modal coordinate
transformation to reduce the number of degrees of
freedom. There is no limitation on the magnitudes
of the hub motions. In particular, the effects of
large rigid body motions on the structural, inertia,
and aerodynamic loads acting on the flexible blades
are rigorously taken into account. The governing
ODEs are formulated in the form

ẏ = f(y,u; t) (1)

where y is the vector of states, ẏ is the vector of
state derivatives and u is the vector of controls. In
the absence of a free wake model, the rotor induced
velocities are calculated with three-state Peters-He
dynamic inflow model [Ref. 11]. The tail rotor in-
flow is modeled with one-state dynamic inflow.

Wake models
Two free wake models are used in the present study.
Both are based on the solution of the equation of
vorticity transport, but they differ on the solution
technique. The first is the free wake model orig-
inally developed by Bagai and Leishman [Ref. 3],
which assumes that the wake geometry is in a
steady-state, periodic configuration. The equations
are solved iteratively, using a relaxation procedure.
The second is a time-accurate free wake model de-
veloped by Bhagwat and Leishman [Ref. 4], which
does not explicitly enforce periodicity of the wake
geometry. Convergence to a periodic solution oc-
curs by integrating the governing equations forward
in time from suitable initial conditions until a pe-
riodic geometry is obtained.

Both free wake methods model the flow field us-



ing vortex filaments that are released at the tip of
the blade, and which are discretized in time (ψ) and
space (ζ). A schematic of the wake discretization
is shown in Figure 1. The distortions of the wake
geometry due to maneuvers are taken into account
in both models, without a priori assumptions on
the geometry.

The behavior of the vortex filaments is described
by a convection equation of the form

dr (ψ, ζ)
dt

= V (r (ψ, ζ)) (2)

which for a rotor can be written as

∂r (ψ, ζ)
∂ψ

+
∂r (ψ, ζ)
∂ζ

=
1
Ω

V (r (ψ, ζ)) (3)

where r(ψ, ζ) defines the position of a point on the
vortex filament and V(r(ψ, ζ)) is the local veloc-
ity at that point. The wake geometry is discretized
in two domains, ψ and ζ. The first represents the
time component and is obtained by dividing the ro-
tor azimuth domain into a number of angular steps
of size ∆ψ. The second represents the age of the
vortex filament, which is discretized into a number
of straight line vortex segments of size ∆ζ. The
right hand side (RHS) of Eq. (3) is determined by
the addition of the freestream velocity, the veloci-
ties induced by all the other vortex filaments and
the blades, plus other external velocities such as
those due to maneuvering. The induced velocity is
the most complicated and expensive term to com-
pute. Biot-Savart law is used to calculate the in-
duced contribution of each vortex segment at any
point in the wake.

The discretization of the left hand side (LHS)
of Eq. (3), the integration scheme and how it is
implemented depends upon the type of free wake
model used.

The bound circulation is obtained using a
Weissinger-L lifting surface model. In this model,
the blade is discretized into NS segments. At each
segment, a control point is located at 3/4 of the
chord, while the bound circulation is placed at
the quarter-chord location, and is assumed con-
stant along the segment. The difference in circu-

lation between consecutive segments is trailed be-
hind the blade at segment endpoints, with a vortex
strength equal to the difference between the two
segments bound vortex strengths. These trailed
vortices comprise the near wake, which is assumed
planar and with a fixed angular length. The tip
vortex that constitutes the free wake extends be-
yond the near wake with a strength equal to the
maximum bound circulation along the blade. The
governing equation for the Weissinger-L method is
written as

NS∑
j=1

[
Ibi,j + INW i,j

]
Γj = V∞i (θi − φFW i) (4)

with i going from 1 to NS . Ibi,j
and INW i,j

are
the bound and near wake influence coefficient ma-
trices, respectively. The stream velocities at the
control point, V∞, are provided by the flight dy-
namics model and include the velocity due to the
translation and rotation of the helicopter, the ve-
locity due to the blade motion and flexibility and
the induced velocities.

Relaxation Free Wake
The Bagai-Leishman model discretizes the LHS

of the governing equation in both the ψ and ζ do-
mains. For both, it uses a five-point central differ-
ence approximation, which is second order accurate
in both ψ and ζ. The stencil for this approximation
is given by

Dψ ≈
∂r(ψ + ∆ψ/2, ζ + ∆ζ/2)

∂ψ
=

[r(ψ + ∆ψ, ζ + ∆ζ)− r(ψ, ζ + ∆ζ)]
2∆ψ

+

+ [r(ψ + ∆ψ, ζ)− r(ψ, ζ)]
2∆ψ

(5)

The spatial derivative Dζ is defined in the same
manner.

The integration method is a pseudo-implicit
predictor-corrector (PIPC) scheme, with some form
of numerical relaxation. Relaxation methods en-
force periodicity, with the consequent limitation of
being applicable only for steady-state flight condi-



tions. However, they are usually free of the numer-
ical problems that affect time marching methods
and converge rapidly.

The relaxation free wake model has already been
coupled with the rotor and fuselage dynamic mod-
els, and used for the prediction of trim and response
to pilot inputs (Ref. [Ref. 2]). One of the key re-
sults of the study was that it was possible to predict
accurately the off-axis response to pilot inputs, for
small amplitude maneuvers, but it required both a
flexible blade model not limited to one elastic flap
mode and a free wake model capable of modeling
the wake distortions due to the maneuver. If one of
these two ingredients was omitted, the predictions
were qualitatively incorrect. On the other hand,
the prediction of the on-axis response was consid-
erably less demanding.

Time Marching Wake
As for the relaxation model, a five-point central

difference scheme, described in Eq. (5) is used for
the spatial derivative, Dζ . For the time derivative
in the ψ direction, however, a predictor-corrector
with second order backward (PC2B) scheme is
used, which is also second order accurate, and is
given by

Dψ ≈ ∂r(ψ + ∆ψ/2, ζ)
∂ψ

=

3r(ψ + ∆ψ, ζ)− r(ψ, ζ)− 3r(ψ − ∆ψ, ζ)
4∆ψ

−r(ψ − 2∆ψ, ζ)
4∆ψ

(6)

Although this method is potentially subject to
numerical instabilities, it is not restricted by the
flight condition. Because time marching methods
do not need to enforce any type of boundary con-
dition, they are suitable for transient conditions in
which periodicity can not be enforced, and there-
fore relaxation methods can not be used rigorously.
Such flight conditions include maneuvering flight or
operations in descending flight in vortex-ring state.

The baseline trim procedure

The trim procedure used in this study is based
on that described in [Ref. 12] and [Ref. 13], which
use a dynamic inflow model to obtain the induced
velocities, and which was expanded to include a
relaxation free wake model in [Ref. 14].

The flight condition is determined by the veloc-
ity V , the flight path angle γ and the rate of turn
ψ̇, which define a coordinated steady helical turn.
Straight and level flight becomes then a particular
case in which both the flight path angle and the
rate of turn are zero.

The trim equations are a system of non-linear
algebraic equations, namely

• Three force equilibrium equations.

• Three moment equilibrium equations.

• Three kinematic equations relating the rate of
turn to the body angular velocities.

• A turn coordination equation.

• An expression for the flight path angle.

• Four equations to determine the inflow coeffi-
cients for the main and tail rotors.

• The rotor equations, the number of which de-
pends on the quantity of retained modes used
in modal coordinate transformation and the
number of harmonics used for each mode.

The vector of trim unknowns is

X = [θ0 θ1c θ1s θ0t αF βF θF φF λ0 λ1c λ1s λt . . .

. . . q10 q
1
1c q

1
1s q

1
2c q

1
2s . . . q

1
Nhc

q1Nhs
. . .

. . . qNm
0 qNm

1c qNm
1s qNm

2c qNm
2s . . . qNm

Nhc
qNm
Nhs

]> (7)

where θ0, θ1c, θ1s and θ0t are the collective, cyclic
and tail pitch, respectively, αF , βF , θF and φF are
angle of attack, sideslip, pitch angle and bank angle
of the fuselage, λ0, λ1c, λ1s and λt are the dynamic
inflow coefficients for the main and tail rotor, and
the qkx terms are the constant and harmonic coeffi-
cients of the kth blade mode.



A nonlinear algebraic equation solver is used to
obtain a solution to the system of rotor-fuselage
equations. This solver uses a modified Powell hy-
brid method ([Ref. 15],[Ref. 16]). It builds a Jaco-
bian matrix by a forward difference approach, and
then finds a better approximation to the solution
by iterating the trim vector.

Coupling of free wakes and rotor-fuselage model
For a successful coupling with the free wakes, the
flight dynamics model must provide the following
input:

1. The distribution of the velocities at all points
in the blade around the azimuth, not in-
cluding the inflow, in all three directions,
Vx(ψ, r), Vy(ψ, r), Vz(ψ, r).

2. The equivalent rigid blade flapping angles,
β(ψ).

3. The hub linear and angular velocities,
u, v, w, p, q.

The free wake model returns the inflow distribution
for that particular flight condition, λ(ψ, r).

For the flight dynamics model and either free
wake model to interact correctly, several other
details need to be taken into account, such as
proper transformation between the coordinate sys-
tems used by both models [Ref. 1], as well as inter-
polation between the different radial and azimuthal
points at which each model computes their values.
Moreover, the free wake models, which are designed
for an isolated rotor and contain their own flapping
and trim calculations, must be modified so that the
values passed from the flight dynamics model are
not overwritten.

Trimming with free wake: the two-step trim proce-
dure

The overall schematic of the coupling of the time-
accurate wake with the rotor-fuselage model is de-
scribed in Figure 2. There are two basic phases,
namely, trim and transient analysis. As far as
the transient analysis is concerned, the coupling

is “loose”. The rotor-fuselage equations are inte-
grated for a specific time interval (e.g., 10o of az-
imuth angle) for constant inflow. The free wake is
then advanced over the same time interval, with the
time history of the rotor-fuselage states just calcu-
lated. The inflow at the end of the time interval
is then held constant while the rotor-fuselage equa-
tions are integrated for another time interval, then
the wake is recalculated, and so on [Ref. 17].

The trim phase, which is the focus of this pa-
per, is more complex. For a shaft-fixed condition,
it would be typically possible to integrate the time-
accurate wake equations until a steady-state solu-
tion is reached. Through a simple Newton-Raphson
scheme, it would also be possible to adjust the con-
trols until some form of trim (e.g., desired CT and
zero flapping) is obtained. This simple procedure is
impractical or impossible to apply when the wake
is incorporated in a complete flight dynamic model.
In fact, the numerical transient encountered before
the steady-state solution is reached acts as a forc-
ing function for the complete helicopter model. If
the configuration is unstable (e.g., it has an unsta-
ble phugoid) a steady-state solution will never be
reached. If the configuration is lowly damped, a
steady-state solution might be reached, but with a
very slow convergence. Damping could be increased
through the use of a fictitious flight control system,
but the procedure then becomes ad hoc and not
guaranteed to work in every case, especially in the
case of steady turns.

In theory, the relaxation free wake model could
be used to compute the trim solution. Then, be-
cause the underlying mathematical model is essen-
tially the same as that of the time-accurate wake,
the geometry obtained using relaxation would be
the same as that of the time-accurate wake. If a
subsequent time-marching simulation was desired,
this geometry would provide the correct initial con-
ditions. In practice, however, the relaxation solu-
tion is close but not identical to a steady-state solu-
tion for the time-accurate wake, mostly because of
the different numerical schemes used for the solu-
tion. As a consequence, in switching from the for-



mer to the latter numerical transients still appear,
with the same problems previously mentioned.

The solution involves an intermediate ”conver-
gence” phase between the trim calculation with the
relaxation wake and a subsequent time-marching
simulation using the time-accurate wake. With the
rotor-fuselage states and controls fixed at their trim
values, the time-marching free wake is run until all
the numerical transients disappear. Then the rotor-
fuselage states and controls are released, and the
time-marching simulation can start with the cor-
rect wake geometry and no numerical transients.

To include the relaxation free wake model in
the trim calculation, several modifications need to
be done to the baseline trim procedure described
above. To start, the main rotor inflow coefficients
and the dynamic inflow equations corresponding to
the main rotor are removed. The induced veloci-
ties are instead provided by the free wake model,
which is solved separately at every step of the trim
iteration.

While greatly based on the process described
in [Ref. 14], there are some differences in the current
implementation, and thus a brief description of the
process is presented here. The method is described
in Figure 3. Starting from a guess solution, the al-
gebraic equation solver iterates to find a solution
in the same way as in the baseline trim procedure.
However, at each iteration, the inflow needs to be
determined to calculate the aerodynamic loads with
the free wake model. As pointed in [Ref. 14], the
interdependence of the inflow and the circulation
requires that a double loop is used to solve itera-
tively for the solution of the free wake. For each
vector of trim unknowns, [Ref. 14] calculated the
flap angles and the circulation, and used these to
determine the induced velocities. The newly calcu-
lated inflow was then used to compute an updated
circulation, which in turn was used to obtain a new
converged free wake and inflow, and the process was
repeated until the inflow between iterations con-
verged. In the present study, the introduction of a
new circulation methodology allows for an inverted
inflow-circulation loop. Rather than using a two-

dimensional sectional lift theory to calculate the
circulation distribution, the present study takes ad-
vantage of the Weissinger-L method included with
the free wake model, allowing for the inclusion of
three-dimensional effects such as tip loss. Using the
Weissinger-L method offers the possibility of updat-
ing the bound vortex strengths for each step of the
free wake loop. The process is demonstrated in Fig-
ure 3. For each guess of the solution, the velocities
seen by the blade due to the combination of trans-
lation, rotation, blade motion and blade flexibility
are calculated, as well as the equivalent flapping
angles. These, together with the body rates and
velocities, are passed to the free wake model, which
adds the inflow to the blade velocities to calculate
the circulation distribution. With this circulation,
the free wake iteration starts, determines the geom-
etry and the corresponding induced velocities, and
then updates the circulation distribution for these.
The process is then repeated until the inflow con-
verges, or the maximum number of set iterations is
reached.

After trimming the helicopter with the relaxation
free wake model, and before computing the tran-
sient response with a time-marching free wake, the
intermediate convergence phase needs to be intro-
duced. The details of the process are described in
Figure 4. Starting from the trim solution, obtained
with a relaxation free wake, and fixing the states
and controls at their trim values, the flap angles
and the blade velocities are calculated and passed
to the time-marching free wake model. With these,
the circulation distribution is calculated with the
Weissinger-L method and the time-marching pro-
cess is started. At every step of the time-marching
solution, the circulation is updated with the most
recent inflow. The process is repeated until con-
vergence is reached, or for a number of revolutions
long enough such that all the numerical transients
have disappeared. After that, the integration of
the equations of motion with the time-accurate free
wake can start, with an initial geometry free of the
numerical transients caused by the two different nu-
merical schemes.



Illustrative Results

The results shown in this study have been ob-
tained for a helicopter similar to the UH-60, except
that the blade is assumed to have a straight tip, and
the airfoil is constant along the blade, at 16,000 lbs
and an altitude of 5250 ft, with a bare airframe
configuration (flight control system off). To reduce
computational cost, only two blade modes are re-
tained in the modal coordinate transformation, the
rigid flap and lag modes. The blade is model with
four finite elements, and 32 points along the blade
are considered.

The free wake has been modeled with 4 free turns
downstream of the rotor. A 10o discretization is
used for both the time and space derivatives.

The relaxation free wake was used to trim the he-
licopter for a range of speeds from hover to 120 kts.
The present paper focuses on the low and transition
speed range, which is the most critical and difficult
to obtain accurately. Three cases for straight and
level flight are analyzed in detail: hover (equivalent
to 1 kt), 20 kts and 40 kts. The main rotor power
required is compared to the results obtained with
flight test data and with dynamic inflow in Figure 5.
The results obtained with the relaxation wake com-
pare favorably with those computed with dynamic
inflow. Although slightly lower than the fight test
data available at lower speeds, these results present
a significant improvement over the implementation
in [Ref. 1], which greatly overpredicted the power
required to hover for the UH-60.

After the trim condition has been found with the
relaxation free wake, and before one can use this so-
lution to determine the response of the helicopter
to some arbitrary pilot input, the time-marching
free wake needs to be converged to eliminate the
numerical transients that would otherwise interfere
with the actual response. The process has been
described in the previous section. In particular,
the time-marching free wake is allowed to run for
a maximum of 200 iterations, corresponding to 50
revolutions, or until convergence is reached. The
convergence is determined by the RMS of the in-

flow difference between successive iterations, and
for the present study the free wake was considered
converged if the RMS went below 10−4. Figure 6
shows the iteration history of the inflow RMS for
the three cases considered. For higher speeds, the
time-marching free wake converges before the max-
imum number of set iterations. In particular, the
40 kt case converges after 66 iterations. At lower
speeds, the inflow difference between consecutive
time steps does not go very low, due to fact that
the vortices remain much closer below the rotor and
thus any changes in their positions affect the inflow
much more than at higher speeds. At higher speeds,
the wake geometry is left behind the rotor quickly
and convergence is more frequent.

Figure 7 shows the top view of the geometry ob-
tained with the time-marching free wake model af-
ter it has been allowed to run for 50 revolutions
or until convergence, for the speeds of 1kt, 20 kts
and 40 kts. For the near hover case, the geometry
maintains a circular pattern seen from the top that
corresponds with the expected helical structure of
the wake in this flight condition. As the speed in-
creases, the wake begins to trail behind the rotor
and to rollup on both the advancing and the re-
treating sides.

The differences between the geometry of the
trimmed free wake, determined by the relaxation
free wake, and the converged time-marching free
wake are shown for 1 filament only in Figure 8, for
the same speeds as before. For the 1 kt case, the
difference between the geometries obtain with both
free wake models are minimal. At 20 kts, these dif-
ferences start to become more significant, but for
the first two revolutions of the filament they are
still very close. For the 40 kt case, however, the
differences appear to be important and need to be
investigated further.

The side view of the converged time-marching
free wake geometry is shown in Figure 9. The 1 kt
case presents a helical structure that only breaks
far downstream of the rotor [Ref. 3]. As the speed
increases, the wake begins to skew, and the vortices
begin to interact as their proximity increases.



Figure 10 shows the comparison between the re-
laxation trimmed geometries and the time accurate
converged geometries, seen from the side and for
one filament only. These figures reveal some de-
tails not observed from the top. For the 1 kt case,
it can be seen that the geometries are significantly
different in the far stream of the rotor, although
these differences so far from the rotor have no in-
fluence on the rotor inflow. The differences at 20
kts start to become significant further up in the
wake structure, but still far from the rotor. The
differences at 40 kts are are better evaluated from
the side view than from the top, and appear to be
significant enough to affect the induced velocities.

Similarly, the rear view of the time-marching free
wake geometries is shown in Figure 11. In hover,
the wake geometry appears helical as well from the
back. The rollup that characterizes the wake in
forward flight becomes visible at 40 kts.

The same differences observed from the top and
from the side between the relaxation and time
marching free wakes are seen as well in the rear
view, shown for all three speeds again in Figure 12.
Additionally, it can be drawn from this perspective
that the bigger differences that appear with speed
occur in the advancing and retreating sides, where
the rollup occurs. The two free wake models pre-
dict a similar location for the vortex filaments at
the front and rear of the rotor.

While the geometry is important is as much as it
determines what the actual inflow distribution will
look like, it is the induced velocities that are neces-
sary for the flight dynamics model. Figure 13 shows
the inflow distribution over the entire rotor for the
three cases being analyzed. At 1kt, the distribution
looks almost axially symmetric, although not per-
fectly axial because of the orientation of the rotor
which makes some cyclic pitch necessary even in
hover. As the speed increases and the wake starts
to move back, the effect is reflected as well in the
induced velocities as well. At 20 kts, the inflow in-
creases in the rear half of the the rotor. With higher
speeds, an upwash is observed in the front of the ro-
tor. In addition, the region where the rollup starts,

in the rear advancing and rear retreating areas, sees
an increase in the inflow due to the proximity of the
vortices concentrated there.

To determine whether the two-phase trim proce-
dure can be used as the starting point of the inte-
gration of the equations of motion with the time-
marching free wake, it is important to evaluate the
difference in the inflow between the two free wake
geometries. If the difference is large, the system
might see it as a perturbation and the time histories
of the states might contain large errors. The differ-
ence between the relaxation and the time-marching
induced velocities is shown in Figure 14. For hover
and 20 kts, the difference is negligible, given that
for the first two to three full revolutions of the vor-
tex filaments both models give very similar predic-
tions. For 40 kts, however, there are two regions
in which these differences are significant, and these
correspond to the areas affected by the rollup of
the vortex filaments in the advancing and retreat-
ing side. It is in these areas that the two models
seem to present the bigger differences in their pre-
diction of positions of the vortex filaments.

Figure 15 shows the distribution of the angle of
attack for the three speeds considered. At hover,
the angle of attack is axially symmetric and mostly
uniform. At 20 kts, the angle of attack increases
mostly at the outer front and rear of the rotor, and
as the speed increases the angle of attack grows in
the retreating side, where the speed seen by the
blade is lower. Figure 16 presents the distribution
of elemental lift, CLM2, over the rotor, for the same
three cases. In hover, as for the induced veloci-
ties and angle of attack, the elemental lift is quasi-
axially symmetric. As the speed increases more lift
is produced in the regions of higher angle of attack.

In addition to level flight, the model has also be
used to study steady turns. Two cases are pre-
sented, a turn at 10 deg/sec, at a bank angle of
24.6o and a load factor of 1.1, and another at 15
deg/sec, with a bank angle of 34.5o corresponding
to a load factor of 1.2.

Figure 17 shows the top, side and rear views of
the free wake geometry for one filament, at the



end of trim, with the relaxation model, and after
the time-marching convergence, for the turn at 10
deg/sec. The differences in the two geometries seem
significant, although a closer look reveals the same
differences found at 40 kts, i.e., that the main differ-
ences are the the far wake and that the rollup pre-
diction is significantly different with the two differ-
ent models. The same geometries are shown in Fig-
ure 18 for the turn at 15 deg/sec. The same behav-
ior is observed, but at this higher rate of turn the
relaxation free wake’s prediction on the advancing
and retreating side indicates a much larger rollup
than the time marching wake does.

Figure 19 shows the induced velocities for the
straight flight at 50 kts as well as the two turns.
As the rate of turn incrases, the inflow increases as
well. Comparing Figures 17 and 18, it can be seen
that the vortex filaments stay closer to the rotor
for the higher rate of turn, and thus the higher in-
flow distribution. Figure 20 shows the difference
between the inflow obtained with the relaxation
free wake and the time-marching free wake for both
turns, and the significant differences in the rollup
prediction, specially in the 15 deg/sec turn, are re-
flected in higher errors found in the areas of the
rotor close to the rolled up geometry.

Summary and Conclusion

A flight dynamics simulation was coupled with
a relaxation free wake model and a time march-
ing free wake model with the ultimate objective of
determining the transient response of a helicopter
using a time accurate free wake. The need to have
an accurate starting solution to obtain the transient
response led to the development of a two-phase trim
process, in which the first the trim solution is found
using a relaxation free wake model, and then the
time-marching free wake is converged until the ge-
ometry is free of numerical transients. The result-
ing model was used to investigate the differences
between inflow and geometries of the trim solution
with the relaxation wake and the converged time-
accurate wake.

The main conclusions obtained from the present
study are summarized below:

1. The current implementation of the relaxation
free wake model can be used to obtain a trim
solution that correlates very well with the re-
sults obtained with other inflow methods, such
as dynamic inflow.

2. For hover and low speed, the geometry and
inflow obtained with the relaxation and time-
marching free wakes are very similar. The
main differences in the geometry appear in the
far wake, and therefore have little effect on
the inflow. The two-phase trim process would
therefore be a good starting point for a tran-
sient response.

3. At the higher transition speeds, the differences
between the geometries obtained by both free
wake models move closer to the rotor, and
therefore are reflected by higher changes in the
inflow. These changes are mostly in the ad-
vancing and retreating side, where both mod-
els show significantly different predictions for
the location of the vortex filaments. The ef-
fect of this differences in a possible transient
response needs to be investigated further.

4. The method was also used for steady turns.
The two cases considered, performed at 50 kts
and 10 and 15 deg/sec, present the same prob-
lems as the straight flight in the transition
speed regime, with additional differences in the
rollup prediction as the rate of turn increases.
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Figure 1: Free wake discretization in the azimuth
(ψ) and filament (ζ) directions.
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Figure 2: Time integration procedure for the cou-
pling of a time-accurate wake model to the flight
dynamics simulation.
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Figure 7: Top view of the free wake geometry af-
ter the convergence phase with the time-marching
wake for 1kt (top), 20 kt (center) and 40 kt (bot-
tom).
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-1.5

-1.0

-0.5

0.0

0.5

-2 -1 0 1 2

z/R

x/R

-1.5

-1.0

-0.5

0.0

0.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

z/R

x/R

-1.5

-1.0

-0.5

0.0

0.5

-1 0 1 2 3

z/R

x/R
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Figure 13: Inflow distribution after the convergence
phase with the time-marching wake for 1kt (top),
20 kt (center) and 40 kt (bottom).
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Figure 14: Inflow error between the trim calcula-
tion with the relaxation free wake and after the
convergence phase with the time-marching wake for
1kt (top), 20 kt (center) and 40 kt (bottom).
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Figure 18: Top view (top), side view (center) and
rear view (bottom) of a single filament of the free
wake geometry after trimming with the relaxation
free wake (solid line) and after the convergence
phase with the time-marching wake (dashed line)
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Figure 19: Inflow distribution after the convergence
phase with the time-marching wake for straight and
level flight at 50kt (top), a turn at a rate of 10
deg/sec at 50 kt (center) and a 15 deg/sec at 50 kt
(bottom).
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Figure 20: Inflow error between the trim calcula-
tion with the relaxation free wake and after the con-
vergence phase with the time-marching wake for a
10 deg/sec turn at 50 kts(top) and a 15 deg/sec
turn at 50 kt (bottom).


