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Abstract 

 
In this study, the capability of the Lattice-Boltzmann Method (LBM) is demonstrated simulating one of the 
most challenging problems in rotor aerodynamics, i.e. dynamic stall. For this purpose, 2-D simulations with an 
in-house developed finite-volume based LBM flow solver were performed for a NACA 0015 airfoil that is 
sinusoidally pitching around its quarter-chord. For the current study, three cases for different mean angles of 
attack but with the same pitching amplitude and the frequency were considered. Each case corresponds to 
different flow regimes, i.e. attached flow, light stall, and deep stall. Once the converged solutions were 
obtained, the computed variations of forces and pitching moment were compared with the measured data 
and satisfactory results were obtained. Also, the same simulations were repeated with a NS equations based 
flow solver that is available commercially (Fluent Version 14.5) and the comparison between the two methods 
revealed that both provides almost equivalent results.  

  

1. INTRODUCTION  

Since its first introduction by McNamara
1
 almost 

thirty years ago, the LBM has become an alternative 
to the classical Navier-Stokes (NS) equations based 
methods and its use and applications in various 
areas are getting increasing acceptance among the 
Computational Fluid Dynamics (CFD) community, 
see for example 

2
,
 3

, 
4
, and 

5
. Derived from the 

Lattice-Gas Automata (LGA) method
6
, the LBM 

basically shares the same idea. In the LGA method, 
which can be thought as a simple Molecular 
Dynamics model, the gas is modeled as a cluster of 
solid spheres moving along a uniform lattice. Each 
solid sphere has a discrete set of possible velocities 
and the collision between separate particles is 
handled by a set of elastic collision rules. 
Macroscopic quantities, such as particle density and 
velocity at each lattice node, can be computed using 
the microscopic quantities, making it possible to 
study the macroscopic behavior of a fluid flow. 
Numerically, the LGA method suffers the statistical 
noise caused by the averaging procedure to obtain 
the macroscopic properties from the microscopic 
properties. To remedy the statistical noise that the 
LGA method suffers, the LBM was developed. The 
main difference between the two methods is that 
instead of handling single particles, the LBM handles 
particle distributions. This removes the need for 
averaging to obtain the macroscopic properties from 
the microscopic properties, so the statistical noise is 
also removed. Even though the idea given above is 
simple, the method still provides similar solutions as 
the incompressible NS equations based methods do. 
Beyond being simple, it has several advantages over 
its counterpart. For example, the equation solved 

when utilizing the LBM is a first order ordinary 
differential equation, which is easier to discretize 
compared to the second order equations of NS 
equations based methods. In addition, one does not 
have to solve computationally expensive Poisson 
equation, which is required when coupling pressure 
and velocity solutions when using NS equations 
based methods. Also, since no pressure-velocity 
coupling is not needed, the complex staggered-grid 
systems are not required, too. Furthermore, the 
convective term included in the equation of the LBM 
is linear, which is easier to handle numerically 
considering the non-linear convective term included 
in the NS equations, so the solution effort is reduced 
further. 

In this study, the capability of the Lattice-Boltzmann 
Method (LBM) is demonstrated simulating one of the 
most challenging problems in rotor aerodynamics, 
i.e. dynamic stall. The challenge is due to the 
complex nature of the flow that involves 
unsteadiness, separation, reattachment and 
turbulence which produce harmful effects such as 
stall flutter and harsh vibrations on overall aircraft 
system. Dynamic stall appears on helicopter rotor 
blades too, when the blades are moving opposite 
direction of the flight and its occurrence seriously 
limits the forward speed and the maneuverability of 
helicopters. It occurs when a pitching airfoil exceeds 
its static-stall angle. Beyond this angle, a disturbance 
occurs in the boundary layer and it triggers the 
reverse flow at the trailing edge of the airfoil while it 
is spreading towards the leading edge. Many factors 
such as airfoil shape, pitch rate, frequency, Reynolds 
number, and Mach number could affect this reversal 
progress. Subsequently, a very strong vortex begins 
to evolve close to the leading edge of the airfoil. This 
newborn vortex then moves downstream which gives 
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rise to a variation of aerodynamic forces and 
moments over the airfoil surface. It continues to 
enlarge downstream and then drag starts to 
increase, while both lift and pitching moment 
decreases rapidly. There have been numerous 
researches about this phenomenon in the literature. 
McCroskey et al.

7
 and Piziali

8 
experimentally 

investigated a pitching airfoil to reveal the flow 
events. Wang et al.

9
 numerically investigated the 

effects of different frequencies, mean oscillating 
angles and amplitudes at low Reynolds numbers. 
Recently, Dumlupinar et al.

10 
and Fang et al.

11
 

simulate dynamic stall at different flow conditions 
using various numerical methods.  

For the aim given above, 2-D simulations with an in-
house developed finite-volume based LBM flow 
solver were performed for a NACA 0015 airfoil that is 
sinusoidally pitching around its quarter-chord. This is 
the case that was also investigated experimentally by 
Piziali

8
 and the report of this experiment includes 

data such as the variations of lift and drag forces and 
pitching moment with the pitch angle. For the current 
study, three cases for different mean angles of 
attack but with the same pitching amplitude and the 
frequency were considered. Each case corresponds 
to different flow regimes, i.e. attached flow, light stall, 
and deep stall. Once the converged solutions were 
obtained, the computed variations of forces and 
pitching moment were compared with the measured 
data and satisfactory results were obtained. Also, the 
same simulations were repeated with a NS 
equations based flow solver that is available 
commercially (Fluent Version 14.5) and the 
comparison between the two methods revealed that 
both provides almost equivalent results. 

2. NUMERICAL METHOD 

2.1. Finite-Volume Based Lattice-Boltzmann 

Method 

The present implementation of the LBM follows a 
cell-centered finite-volume approach. The derivation 
of the LBM in finite-volume form starts with the 
discrete velocity Boltzmann Equation, which is given 
by;  

(1)  

where α stands for the direction of the discrete 

velocity,  is the particle distribution 

function in which  is the position vector,  is the 

particle velocity vector, t is the time,  is the 
equilibrium distribution function (or Maxwell- 
Boltzmann distribution function), and λ is the 
relaxation time. Then, Eq. (1) is integrated over 

quadrilateral control volumes that form a structured 
grid. Considering the Fig. (1), the integration of the 
first term on the left hand side of Eq. (1) (the 
unsteady term) over the control volume [i, j] is given 
as; 

(2)  

 

where A{i,j} is the area of the cell that is indexed as [i, 
j]. 

For the integration of the second term on the left 
hand side of Eq. (1) (the advection term), the 
divergence theorem is applied; 

(3)  

where   is the unit normal vectors of the edges that 
form the cell considered. The right hand side of Eq. 
(3) can be written for a quadrilateral cell as follows; 

(4)  

where l terms are the length of each edge that forms 
the cell considered. For the evaluation of flux-terms 
introduced in Eq. (4), an interpolation scheme is 
needed to compute edge values of the distribution 
functions. For this purpose, the Monotone Upstream-
centered Scheme for Conservation Laws (MUSCL)

12
  

might be used. For example, depending on the sign 

of the  term, the distribution function on 

the bc edge is given as; 

(5)  

where the term  determines the spatial accuracy 
and by setting this term to 1/3, one can obtain 
second order accuracy. 

The term on the right hand side of Eq. (1) (the 
collision term) can be integrated using; 

(6)  
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So, the finite-volume formulation of the LBM for a 
sample cell of $abcd$ as shown in Fig. (1) takes the 
final form given as; 

(7)  

where stands for the flux terms that is 

introduced in Eq. (4). 

To advance the solution of Eq. (7) in time, the 
Implicit-Explicit Runge-Kutta (IMEX) scheme

13
 is 

used. This scheme consists of multiple stages and 
the solution of each stage for the finite-volume based 
LBM, omitting the index [i,j] of control volume for 
convenience of writing, is given by the formula; 

(8)  

where s, , , and  are the stage number, the 

stage distribution functions, the stage equilibrium 
distribution functions, and the stage sum of 

numerical fluxes, respectively.  represents the 

distribution functions of the time level. Then, the 
solution at next time level is given by; 

(9)  

where r is the total number of stages. In addition, the 

rxr matrices of  and m and the r vectors of  and n 
contain the coefficients that characterize the IMEX 
scheme. For the present implementation, a 3-stage 
2nd order form proposed by Pareschi and Russo

13
 is 

used and to accelerate the convergence of iterations 
in pseudo time (subiterations), a local time stepping 
strategy

14
 is followed. A Dual Time Stepping 

scheme
15

 is also implemented to make the time-
accurate simulation feasible allowing larger time 
steps that are restricted by order of accuracy desired 
not by the stability limit of the time advancement 
method. 

As to model the effect of turbulence in the 
simulations, one-equation model of Spalart-
Allmaras

16
 is implemented. To solve the transport 

equation for the eddy-viscosity model of Spalart-
Allmaras, the same cell-centered finite-volume 
based approach is followed that is also applied for 
the LBM. 

2.2. Fluent Version 14.5 

Fluent is a commercially available flow solver that is 
based on finite-volume formulation of the NS 
equations. The same cell-centered approach that is 
followed for the present implementation of the LBM 

is used in Fluent, too. But, contrary to the present 
implementation, Fluent can handle both structured 
and unstructured grids. The other major difference 
from the current LBM flow solver that Fluent can 
solve both incompressible and compressible flows 
while the LBM works only for incompressible or 
mildly compressible flows.  

Fluent can provide second order accuracy both in 
time and space discretization. The second order 
accuracy in space is provided with the MUSCL 
scheme that is also used for the present 
implementation. A dual time stepping scheme is also 
available in Fluent either with an explicit Runge-Kutta 
or an implicit Lower Upper factorization method 
resulting in second order accuracy for the temporal 
discretization.  

When using Fluent, turbulence may be taken into 
account using one of the many models implemented 
and, among them; the same Spalart-Allmaras one-
equation model implemented into the LBM flow 
solver is also available.  

3. SIMULATION DETAILS 

Before beginning the simulations, a grid 
convergence study is performed first. For this 
purpose, starting from a coarse grid, three C-type 
structured grids were created halving the spacing 
between the grid points. Among them, the medium 
grid is shown in Fig. (2). This grid has 377 points in 
the chordwise direction and 171 points normal to the 
airfoil. The spacing between the first layer of cells 
wrapping the airfoil and the airfoil surface is 1.E-6 
chord length. The outer boundary of the grid extends 
about 100 chord lengths away from the airfoil for all 
three grids used.  

To define the adequate grid resolution, static 
simulations that correspond to 5 degrees angle of 
attack were run using the three grids generated. The 
variation of lift and drag coefficients with the grid 
resolution are given in Tbl. (1). After this study, it was 
concluded that the grid with 377x171 points has only 
%2 error in lift and %4 error in drag coefficients, thus 
it has enough resolution to use in further simulations. 

To investigate the accuracy of the implemented 
method, static simulations were performed first and 
the computed force and moment coefficients were 
compared with the experimental data. Once the 
confidence in the implemented method was satisfied, 
dynamic stall simulations were performed. The 
dynamic stall cases considered in this study is given 
in Tbl. (2).   

The dynamic stall simulations were started from the 
static solutions obtained for the mean angle of attack 
to reduce the number of cycles that are necessary 
for a converged solution. The variation of pitch angle 
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with time was computed using; 

(10)  

where   and   are the mean angle and the 
amplitude of the pitching, respectively. Ω is the 
frequency of the motion and t stands for the time. At 
each time step, the grid was rotated rigidly due to the 
above given change in the pitch angle. For all the 
cases, the time step was set to complete a cycle in 
8000 and at the end of 2.5 cycles convergence was 
obtained for the monitored variations of forces and 
pitching moment. 

4. RESULTS 

As has been stated, the aim of the present study is 
to calculate the forces and moments of a sinusoidally 
pitching two dimensional airfoil by using two different 
numerical methods and compare results against 
experimental data. Initially, static stall case was 
performed and the obtained numerical results were 
compared with experimental ones and are shown in 
Fig. (3). The comparison between the methods and 
the experiment is remarkably good. 

Thereafter, dynamic stall phenomenon was 
considered for three cases, i.e. attached flow, light 
stall, and deep stall. For attached flow, the force and 
pitching moment coefficients are depicted in Fig. (4). 
The solid arrow represents the upstroke and the 
dashed one represents the downstroke of the 
oscillating cycle. During the downstroke, the lift and 
pitching moments are higher than the upstroke 
values because of the formation of upwash flow. The 
calculated lift coefficients are in better agreement 
with the experiment. The computed pitching 
moments during upstroke is higher and the drag is 
lower than the experimental value.  The hysteresis 
shapes of drag coefficients are same, but there is a 
shift between numerical results and the experimental 
data. It should be stated that the viscous 
components of forces and moment were not 
involved both in the experiment and the numerical 
results. 

Secondly, the light stall case was considered and the 
comparisons of the forces and moment are shown in 
Fig. (5). Both methods have given acceptable results 
for this case. But, the results of the present method 
are slightly better. The difference may be explained 
knowing the fact that the flow is separated from the 
trailing edge of the airfoil along the downstroke. To 
investigate this, the flow field evolution computed 
with the two methods were compared and shown in 
Fig. (7). The stations along the cycle that the 
streamlines were computed is shown in Fig. (6). This 
comparison reveals that the present method retains 
the separation longer during the cycle thus giving 
better results. 

Finally, the simulations of the deep stall case were 
performed and the comparisons of the forces and 
moment are shown in Fig. (8). Even though the 
comparison is not as good as the other two cases 
considered, both methods have captured the 
expected leading edge separation. This is shown in 
Fig. (9). Again, the present method retains the 
trailing edge separation longer thus giving slightly 
better results. 

5. CONCLUSION AND FUTURE WORK 

In this study, 2-D LBM has been implemented 
following the finite-volume approach in a cell-
centered fashion. With the implemented flow solver, 
one of the most complex flow problems in rotor 
aerodynamics, i.e. dynamic stall, has been solved for 
three different flow conditions and the computed 
variations of force and moment coefficients with 
pitching angle have been compared with 
experimental data and the results from a NS 
equations based flow solver. The comparisons have 
revealed that the LBM, at least for this problem, can 
provide satisfactory results that are almost 
equivalent to its counterpart. As for the conclusion, 
the LBM has been proven to be an efficient and easy 
to implement alternative to the NS equations based 
methods. 

As the future work, a 3-D version of the method is 
going to be implemented to study more practical flow 
problems related to helicopter aerodynamics such as 
rotor performance in hover and forward flight 
conditions. 
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Figure 1. Quadrilateral control volumes and resulting structured grid. 

 

 

 

Figure 2. The C-type grid (with 377x171 points) used in the simulations. 

 

Table 1. Results of grid convergence study performed for 5 degrees angle of attack. 
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Table 2. Dynamic stall cases considered. 
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Figure 3. Comparison of computed and measured static data of (a) lift coefficient, (b) drag coefficient, 

and (c) moment coefficient. 
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Figure 4. Comparison of pitch variation of (a) lift coefficient, (b) drag coefficient, and (c) moment 

coefficient for the attached flow case. (solid and dashed arrows mean upstroke and downstroke, 

respectively. 
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Figure 5. Comparison of pitch variation of (a) lift coefficient, (b) drag coefficient, and (c) moment 

coefficient for the light stall case. (solid and dashed arrows mean upstroke and downstroke, 

respectively. 
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Figure 6. Points along the pitching cycle that streamlines were extracted. 
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Figure 7. Comparison of the streamlines around the airfoil computed with (a) FV-LBM and (b) Fluent 

for the light stall case. 
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Figure 8. Comparison of pitch variation of (a) lift coefficient, (b) drag coefficient, and (c) moment 

coefficient for the deep stall case. (solid and dashed arrows mean upstroke and downstroke, 

respectively. 
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Figure 9. Comparison of the streamlines around the airfoil computed with (a) FV-LBM and (b) Fluent 

for the deep stall case. 


