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Notation
Elxia flexible beam flapwisc bending stiffness
Elvia flexible beamn chordwise bending stiffness
Mx flapwise bending moment
My chordwise bending moment
Mz torsional moment
Oy flapwise force
Qx chordwise force
N centrifugal force
Cy linear flapdwise stiffness
Cx linear chordwise stiffness
Cep angular flapdwise stiffiness
Ce angular chordwise stiffness
Q rotor rotational speed
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The paper presents analylical procedures used
for determining the required damping as well as for
calculating strength of the main structaral members of
helicopter bearingless rotors in dilferent versions.

Analytical results  obtined for dumping
ensured in the structure with the helicopter main rotor

blade chordwise oscillations are given. The effect of

the flexible beam shape on oscillation modes and load
levels in the hub and blade is shown.

caringless

The helicopter main rotor is one of the most
complex components in the atreraft, Main rotor
designing is a challenge involving the solution of a
number of problems, such as acroelastic stability,
static strength, service life and technology.

[n the fast few decades intensive research on
the development of bearingless rotors has been done,
This design has been used successfully in many
helicopters flying. A bearingless rotor is a rotor in
whose design convenlional hinges (Ilapping, lead-lag
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and feathering ones) are completely or partially
climinated, Blade flapwise and chordwise motions, as
well as biade swaying about the longitudinal axis of
the blade and blade pitch changes when collective
and cyclic controls are applied are accomplished by
elastic deformation of some structural member which
is actually a flexible beam. At the same time, blade
pitch changes and, sometimes, chordwisc motion are
ensured by elastomeric  bearings. Elmination of
rolling bearings and application of composite
materials result in easier maintenance of rotors, more
lightweight structures, longer service lifc and higher
survivability.

Analytical Methods Used in Designing a

Bearingless Main Rotor Hub,
Although there is a great variety of

bearingless rotors in texms of their design, all of them
have certain common members. Fig, | shows a
schematic of the bearingless main rotor (BMR)
design.
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Fig. 1. Schematic of Bearingless Main Rotor.

The design consists of the hwb o which the
blade is attached by means of a beam tlexible in
bending and torsion. The blade pitch change i3
accomplished by a member rigid in bending and



torsion {(culf). The culf via the elastomeric damper is
cartied by the spherical bearing which serves as a
flapping hinge. Figs. 2 and 3 show the flexible beam
deformation under loads applied to it and the cuff.
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Fig. 2. Chordwise Deformation in Blade Root and
Hub.

Fig. 3. Flapwise Deformation in Blade Root and

Hub .

The hub sleeve and the root portion of the
biade in different designs of (he BMR can be
presented by  mechanical models as  shown in
Figs. 4-0.
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Fig. 4. Analytical Model of Hub Design. Version 1.
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Fig. 5. Analytical Mode! of Hub Design. Version 2.
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Fig. 6. Analytical Model of Hub Design. Version 3.

They present statically inderterminate bar
systems. The centrifugal and shearing forces, and
bending moments transmitted from the blade to the
hub are denoted as N, Qv, Qx, Mx, My respectively.
To determine inmer force factors, acting in the hub
components, the following method is uwsed. The
system  of cquations cxpressing a  statically
indertcrminate system can be presented as follows:

Ax=B, (1)
where A is a square malix in which the aj
elements arce deflection caused by unit forces, xi=l,
acting in the direction of the % forces. Their values
are defined from the well known formula:

M, M
By = S dx
Kl g
where Mi and M; are [unctions determining the
values of the bar lengthwise bending
moments,

EI is the bar rigidily in bending,

I is the bar length,

B is the column matrix of defleclion caused

by the ith -ferce factor acting in the direction

af the jth foree,

X is the column matrix of the unknowns

whose number ks cqual o the order

statically inderterminate system (1),

The BMR hub design presented in Fig. 1 (ag
a schematic laoyut) and in Fig. 4-0 as mechanical
models used for the analysis contains beams under
tenstle loads caused by the longitudinal (centrifugal)
force. To determine the stress produced in these
beants, we have to solve the following differentizl
equation alongside system ol equations (1).

of
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EI ¢'V-Nq"=0 (2)

The solution of this equation has the
following form:

q=Cre¥* 4+ Coe ™%+ Cax+Ca (3)

Here G are unknown constants.

In the analysis the beam of variable cross-
section is presented as a beam consisting of the n-
segments of constant cross-section each. It s
necessary to meet the boundary conditions for each
scgment. They have the following form for the

inboard built-in segment:

q=0;
q'=0.

As for the outboard free segment to which forces and
momments are applied, the boundary conditions are as
follows:

EIqm'NQ]=Q;
Elq"=M.

Here g is the generalized co-ordinate along which
bending is considered. Besides, it is nccessary o
satisly the conjugation conditions of adjacent
scgmertts loaded by concentrated forces and moments.

Gn{ln)=gms1(0);

Qi m{Im)=q'=1(0);

Eln q"m{lm)=EIm+l (}”mﬂ(O)‘*’MmH;
EL qli]m(lm):EImn (]musu(O)'Pnul,

L is the length of the m-th beam segment.
Thus we obtain a linear algebraic system of
43 equations containing unknown cocflicients Cim
(m=l.z; 1=1,4), that can be solved by using
conventional mathematical means.By applying unit
forees and moments to the end face of the analytical
model presenting the main rotor hub (Fig. 4-6, right)
and solving systems of equations (1) and (2), we
obtain the matrix of rigidity for the hub sleeve at its
attachment point to the blade.

where

C.‘(.‘( Cxx-‘ CXY ny’ C.\"b
Cx’x Cx’x’ Cx’\' C.\"\" Cx‘-b
C=Cx Cp Cyw C, Cu
Cv’x Cv’x' C\"Y Cv’v’ C\"=b
wa Ctb.‘(" Cor Cm\" C"-“I‘



Each matiix element Cqrge is stress produced
in the direction of the q--th force factor during unit
deflection in the qu direction. The respective forces
and muments at the blade root {where the blade is
atlached to the hub) can be calculated by using the
following formula:

F=C-q,
where
Qx X
M, x!
F=1Qy q=\y
My y"
M, P

x and x/ are chordwise linear and angunlar hub

deflection at the blade-to-hub attachment,

y and ¥y are flapwise linear and angular hub

deflection,

and ¢ is the blade torsional deflection,

The rigidity matrix obtained in this case is
used for analysing blade and forced
osciilations.

When analysing forced oscillations, the blade
is  presented  as elements  with
paramelers. Acrodynamic lorces are calculated by
using the lift coefficient, drag and torque as functions
of the blade airfoil angle of attack and Mach number
obtained from the wind tunnel results (Ref 3).

natural

finite discrete

alysis Used Obtain Relative T .
. 1 dwi T

acroelastic and mechanical
instability of rotor oscillations, it is nccessaty (o

To eliminate

provide a sufficient level of damping lor blade
chordwise osclilations. From Fig 2 it can be scen that
the damper works at cull displacements refative 1o the
13. To calculate rotor blade
damping, we can wse a model of a viscoelastic body
shown in Fig 7 (Ref 1).

hub  (see also Fig
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Fig. 7. Model of Viscoelastic Body.

The coefficient of oscillatory energy
absorption is defined in the following expression:

y-E @

P
E. is the energy absorbed by the damper,
E, is the kinetic energy produced by the
blade motion.
Let us consider a linear damper; for it

where

M,=k-£ - ©

Here  Mb is the damper moment,
k is the proportionality factor,
and £ is the angular velocity of blade
chordwise oscillations.
The energy absorbed by the damper during a
period of oscillations T=27 can be defined as
i

E,= [Mndg ©)

[

By substitating the damper moment from equation (5)
in cquation (6) and proceeding from the assumption
that

E=Losinpt,
after simple transformations we obtain
Eu=nk E,oz P )

Here  p is the oscillation frequency equal to the
main rotor angular velocity,
The kinetic energy of blade oscillations in
e first mode is defined by the formula;

2l
E, = %ngmixf (&)
2 -
where  xi s the first mode of natural gscillations,
z1 is the number of elements into wihich the
blade ts divided in the analysis,
1y i5 the mass of the i-th element.
By making substitutions (7) and {8) in (4},



we obtain:

2rkE? ')

zl
1
1’2“‘1"1
i=}

WP o=

Dynamic stiffness of a single-mass oscillatory
system can be expressed as (Ref 2)

cum-m[)2+iphe+(!i,

nt is the mass,

p is the oscillation {requency,

- is a damping ceefficient,

¢ is the system spring rate

and i is an imaginary unit,

Fig 8 shows this value in the vector form.

where

C.=ph,

-mp*

Fig. 8. Yector Diagram of Dynamic Stiffness,

Pamper stiflness con be defined through a
tangent of the loss angle:

cx=catgd (10)

The relative damping coefficient is derived
from the {ollowing lormula (Ref 2):
e (11
4
After substituting the expressions for ' and
c2 from (9) and (10) respectively in cquation (11}, we
finally obtain

— _ lgbe, 2'32

n — (12)
2p° ) mx]
i=l

Let us replace angular displacements of the
damper by lincar ones in expression (12).

A linear displacement of the damper can be
expressed in tenms of an angular displacement as
follows:
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Ax=ltgéxIE,

where 1 is the distance from the damper to the
cquivalent lead-lag damper,

Then we obtain

tgd - szm

2p2imxf

1=1

n=

Let vs determine the required volume of
rabber in an clastomeris damper. The load applied to
the damper is equal to

F=C:"Ax {i3)
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Fig. 9. Schematic of Elastomeric

Deformation.

Damper

The load equals the resistance of the damper
rubber pack (Fig 9).

=18

Here  wis the shearing stress in the rubber pack
and S is the shearing area.
=Gt

where G is the shearing modulus.

Fp:C oS ( 14)

Equating cxpression {13) to expression (14), we
oblain

GuS=C:"Ax



From which

GaS _GS
Ax h

lin _.
C' =

Thus, the required value of stiffness in the
formula for relative damping is defined by linear
dimensions of the rmubber pack and the rbber
stiffness.

Analytical Results.

Some results of the rotor damping analysis,
as well as the structural analysis of the flexible beam
made for an experimental bearingless main rotor
intended for a light helicopter are given below (Fig.
103.

Fig. 10. Experimental Bearingless Rotor Hub.

The most critical member in the structure of
a bearingless rotor from the point of view of its
function is the flexible beam made cither of an alloy
or & composite material (see Figs 1 and [0). [
elastic properties detcemine, o a large extent, blade
flapping, hub  moment  value, and, therefore,
helicopter handling qualities, i.e. mancuverability and
controllability. At the same time it is the most highly
loaded structural member.

fn this connection, a problem of selecting
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flexible beam design parameters (from the point of
view of iis geometry and rigidity) arises because
these parmeters will greatly affect deflection levels,
constant and alternating steesses in the flexible beam
and the blade. The hub strength is determined by the
loads applied in main {light conditions and during
parking.

To find the algorithm for calculating the
strength of the flexible beam during the process of
design paramelzic analysis is a multistep task.

The first step is to calculate the deformation
and constant stresses produced by the centrifugal
force and blade droop caused by gravity during
parking. The stresses produced by the blade droop
can achieve quite a great value thus necessitating an
introduction of special devices (blade droop stops)
which make the design more complicated and result
in a weight penalty. Therefore, it is desirable to
climinate them. It can be done by increasing the hub
sleeve flapwise rigidity in bending. However, the
increased rigidity resulis in a rise of in-flight
alternating bending stresses defining the rotor service
life.

The second step in the parametric analysis is
to calculate alternating stresses by using the above
menticned procedures. Thus, the requirements for
rigidity of the hub sleeve and blade root are
esscutially contradictory and they are a  typical
oplimization problem.

~
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Fig. 11. Initial Configuration of Flexible Beam.

Fig [l presents the initial configuration of
the flexible beam taken [rom a drawing made at the
initial stage of the hub designing (Fig 10).

Figs 12 and 13 show the lengthwise
distribution of thickoess and widith of the ftlexible
beam lor the initial design,
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The estimated cquivalent

chordwise aliernating stresses in the beam was equal
to oy=11 kg/mm?. It is quite a challenge to achicve an
acceplable service life for composite materials.

The in-plane equivalent alicruating stresses in
the beam turned out (¢ be ox=0.4 kg/mum?.

Fig. 14. Beam Configuration after Optimization.

The calculations made by using the above
mentioned procedures allowed us 1o obtain the beam
configuration shown in Fig 14, Figs 1S and 16 present
the beam lengthwisc distribwtion of thickness and
width.
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Fig. 16. Lengthwise Distribution of Beam Optimized
Width.

The {lap and in-plane equivilent stresses
were oy=0 kg/mn? and ox=0.3 kg/nun? respectively,
At the same time, the stresses produced by the blade
droop decreased. Quite 2 long service life can be
achieved for structures having equivalent stresses of
this order,

Fig. 17 shows the relative damping
coeflicient versus stiffness of the damper; the data
were  obtained by using  the above  amalytical
procedures,
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Fig. 17. Relative Damping Coefficient Versus

Damper Stiffness.



The diagram in Fig 18 was plotted to define
the damper optimal stiffness.
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Fig. 18. Relative Damping Versus Damper Stiffness.

It can be seen from the diagram, thal
maximum damping is obtained for stiffness equal to
100 kg/mm. Fig. 19 shows the blade relative
chordwise natural frequency when oscillating in the
first mode versus the damper stiffness.
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Fig. 19. Blade Relative Chordwise Natural

Frequency Versus Damper Stiffness.

Proceeding from the analytical results, the
damper  sliffness  was  chosen to be cqual to
100 kg/mm with the values of p,, and &, being 0.67
and 0.035 respectively for “'=0.2.

The damping value obtained is sufficient for
eliminating all kinds of acroelastic and mechanical
instability.

Insufficient blade chordwise damping can
fead 1o grave consequences,

This is how the main rotor b incorporating
a torsion strap pack has been developed for the Mi-
34. Elastomeric dampers were 1o suppress blade
chordwise oscillations. The damper design and the
poiertics of tubber used there aliowed us to obtain
the  following  refative  damping  coelficient:

i, = 0,015 + 0,02
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During flight tests in some flight conditions
the blade chordwise loads recorded revealed the
presence of the blade natural frequencies which was a
sign of an insufficient level of damping.

In addition, there was a strong blade
torsional-chordwise oscillation coupling, The flight
and ground tests conducted later revealed this
coupling (Fig 20).
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Fig. 20. Chordwise Bending and Torsional Moments
Versus Frequency for a Hub Incorporating
Elastomeric Dampers.

A low level of chordwise damping and the
presence of coupling of the blade chordwise and
control systern oscitlations caused instability of blade-
control system oscillatons in one of the (st flights.

This required a modification of the main
roior hub. Hydraulic dampers were installed alongside
the elastomeric ones. Their installation increased the
refative chordwise damping cocfficient np o n«=0.08-
0.12. The mwode of the blade and control system
oscillations was also changed. It can be seen from Fig
21 that (here is no coupling of blade chordwise
bending with torsion in the modified hub. Further
flight tesiing revealed that the helicopter was free
from the instability found out earlier.
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Fig. 21. Chordwise Bending and Torsional Moments
Versus Frequency for a Hub Incorporating
Elastomeric and Hydraulic Dampers.

When the tests were completed, the Mi-34
helicopter was certified and put in production.
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