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Abstract

The present paper illustrates how continuation and bifurcation methods are applied to investigate the aeroelastic
stability of helicopter blades over a range of flight and control parameters. The paper first compares the bifurcation
results for flap-lag instability to those available in the literature, which are obtained using conventional methods. In
this case, the continuation analysis is applied to a simple rotor system incorporating a rigid blade with flap and lag
degrees of freedom with root springs to model the stiffness of hinges. The continuation analysis is then carried out
to investigate the aeroelastic stability of rotor blades, where modal representation of the blade flexibility is used. The
analysis is performed in hover and forward flight, within andbeyond operating flight conditions. The significance of
the typical bifurcations that the blade behaviour undergoes is discussed.

NOMENCLATURE

′ Differentiation with azimuth angle.

(˙) Differentiation with time.

Alat ,Blong Lateral and longitudinal cyclic pitch angles.

CT Rotor thrust coefficient.

CL, CD, CM Elemental lift, drag and pitching moment coefficients.

Cd0 Blade profile drag coefficient.

L, D Elemental aerodynamic flapwise, lagwise force com-
ponents, positive upward and forward respectively.

L0, D0 Elemental aerodynamic flapwise and lagwise force
components computed when the blade’s modes are
evaluated, positive upward and backward respectively.

M Elemental aerodynamic pitching moment about the
section shear centre, positive nose up.

M0 Elemental aerodynamic pitching moment computed
when the blade’s modes are evaluated, positive nose
up.

Ma Elemental Mach number.

NB Number of blades.

Qqi Generalised force of modei.

R Rotor radius.

T Rotor oscillation period.

Ti , Tav Rotor instantaneous and average thrust.

Treq Required rotor thrust.

UP, UT Perpendicular and tangential components of the ele-
mental flow velocity.

Ω Rotor speed.

Θ Blade pitch due to twist deformation.

α Elemental angle of attack.

αs Rotor shaft angle.

R̄ Elastic coupling parameter.

f̄ Helicopter flat plate drag area.

β Flap angle, positive upward.

βa1,req, βb1,req Required lateral and longitudinal flapping angles.

βpc Precone angle.

δr Width of the blade element.

δ Parameter vector describing the rotor and flow proper-
ties.

η negative real part of the eigenvalue associated with the
lag degree-of-freedom.
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γ Lock number.

λ Inflow ratio.

µ Advance ratio.

ν0, νs, νc Average, lateral and longitudinal induced velocity
components.

νi Induced velocity at positionr and azimuthψ.

ωβ,ωζ Non-rotating flap and lead-lag frequencies.

ωqi Modal frequency of modei.

φ Inflow angle.

ψ Azimuth angle.

σ Rotor solidity.

θcol Collective pitch angle.

θpre.twist Blade local built-in twist.

ζ Lag angle, positive forward.

c Blade elemental chord.

p Dimensionless rotating flapping frequency atθ = 0,

p=
√

1+ω2
β.

qi Generalised displacement of modei.

r Elemental radial position.

t Time.

u,y Harmonic oscillator states,u = sin(Ω t) and y =
cos(Ω t).

wi ,vi ,ti Flap, lag, and torsion mode shapes of modei.

x State vector.

Ii Modal mass of modei.

INTRODUCTION

The stability of a helicopter rotor blade is a complex
dynamical problem, involving aerodynamic, structural,
material and geometric nonlinearities. Furthermore, the
trend towards higher performance gains and lower vibra-
tion and noise levels has led to the development of more
complex rotor systems, which incorporate novel designs
features, utilizing for example: composite materials, ac-
tive lag dampers and active trailing edge flaps. These
features tend to increase the levels of nonlinearity in the
rotor system, which means that a proper nonlinear analy-
sis of the blade dynamics is required. Until this time, dif-
ferent mathematical techniques have been used to study
the aeromechanical and aeroelastic blade stability, at dif-
ferent flight regimes. These techniques include time his-
tory simulation (time integration techniques) [1], para-
metric resonance analyses [2, 3, 4, 5], perturbation meth-
ods [6, 7] and Floquet analysis [7, 8, 9]. In fact, the he-
licopter blade aeromechanical and aeroelastic stability is
well understood in both the academic and industrial sec-
tors, including cases of very high tip speed ratios. Exten-
sive reviews in the field are those by Friedmann [10, 11],
Bielawa [12] and Chopra [13].

However, many of the above stability methods de-
pend on assumptions that are questionable for newer ro-
tor configurations, or may not provide the complete sta-
bility picture. For example, the methods can predict the
local stability of the blade, but the regions of attraction
in that case are not defined. In other words, the blades
might be stable for small disturbances but not necessar-
ily for large ones; and hence the outcome in the event of
a large disturbance inducing instability is not indicated.

In recent years, the stability of rotors in autorotation
was investigated by Rezguiet al. and Lowenberget al.
using nonlinear dynamics theory implemented numeri-
cally in the form of continuation and bifurcation meth-
ods [14, 15, 16, 17]. The studies showed that these tech-
niques are crucial in the identification of the instability
scenarios of rotors in autorotation including but not ex-
clusive to blade sailing, high speed instability, control
input-induced instability and lightly loaded rotor insta-
bility. The analysis showed the presence of different bi-
furcation points which establish the coexistence of stable
and unstable periodic solutions over a range of param-
eters. The analysis was complemented by wind tunnel
testing, the results of which exhibited substantial agree-
ment with those obtained from bifurcation analysis, in-
cluding an unexpected asymmetric form of stable autoro-
tation.

In the present paper, the continuation and bifurcation
methods are applied to investigate the aeroelastic stabil-
ity of a helicopter blade over a range of flight and control
parameters. The analysis first investigates the stability of
a rigid blade model and compares the bifurcation results
to those available in the literature, which are obtained
using conventional methods. In this case the blades are
modelled to incorporate rigid lag and flap degrees of free-
dom with root springs to represent the stiffness of hinges.
The continuation analysis was then carried out to investi-
gate the aeroelastic stability of rotor blades, where modal
representation of the blade flexibility is used.

CONTINUATION AND BIFURCATION

METHODS FOR BLADE STABILITY

The basic idea of the continuation techniques is the cal-
culation of the steady solutions of a dynamical system as
one of its parameters, called the continuation parameter,
is varied across a pre-defined range. The computed so-
lutions construct a number of equilibrium branches that
could be either stable or unstable. To determine the sta-
bility, either an Eigen or Floquet analysis is carried out
at each computed solution, depending on the nature of
this solution. For instance, in hover the blade behaviour
can be said to be in equilibrium (fixed points), hence an
eigen analysis is carried out for stability. Whereas, in
forward flight, the blades behave in a periodic manner
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(limit cycles) due to the rotor lift asymmetry, hence Flo-
quet theory is used to determine the stability.

Bifurcation is the qualitative change in the system be-
haviour as a parameter is varied. In other words, when
the stability of a system is changed or lost, the system
bifurcates. The points at which these stability changes
happen are called bifurcation points. When the system
is nonlinear, new solution branches may emerge from
the bifurcation points, leading to the presence of multi-
ple solutions for the same set of system parameters. The
identification of these different solution branches helps
to uncover the global dynamics of the system. Particu-
lar interest is when the blades, for example, are locally
stable for small disturbances but not necessarily for large
ones, and vice-versa.

Therefore, the strategy in implementing continuation
and bifurcation methods is to follow one solution branch
as one or more parameters are varied to locate bifurca-
tion points. Then, follow the emerging branches to con-
struct a more complete picture of the system dynamics
(bifurcation diagram). The different types of bifurcations
that can occur in equilibria or periodic orbits are not dis-
cussed in this paper. However, the reader is referred to
general texs such as references [18, 19] for more back-
ground on the subject.

The continuation algorithm used in this analysis is
implemented in the continuation and bifurcation soft-
ware AUTO [20]. Besides many other types of equa-
tions, AUTO can perform extensive bifurcation analysis
of ordinary differential equations (ODEs) of the form:

ẋ(t) = f (x(t),δ), f ,x∈ ℜn (1)

subject to initial conditions, boundary conditions, and in-
tegral constraints. Herex is the state vector andδ de-
notes one or more parameters. Equation (1) is written in
the generic (nonlinear) state-space form, where the state-
derivatives are functions of the states and some param-
eters. Therefore, as far as AUTO is concerned, the dy-
namical model must be constructed in a format which al-
lows passing the state derivatives to AUTO and receiving
states and parameters from it, regardless of the environ-
ment where the system equations are coded. This soft-
ware attribute provides a stability tool which not only is
independent from the model but also able to couple with
a wide range of modelling platforms, which can be par-
ticularly beneficial in the helicopter industry.

DESCRIPTION OF NONLINEAR ROTOR

BLADE MODELS

In this paper, the continuation and bifurcation analysis
is applied to two different rotor blade models. Both are
modeled in the dynamical system form of Equation (1)
where the parameter vectorδ can hold values for blade

control angles, helicopter velocities, blade properties,
etc. Furthermore, the ODEs in Equation (1) are au-
tonomous in that the independent variablet does not ap-
pear explicitly in the equations. However, in cases where
the system is periodically forced, as in the dynamics of
rotor blades in forward flight, the independent variablet
(or the azimuth angleψ) has to be converted to a state
variable. Of course, one can always designate the timet
or azimuth angleψ as additional states, in order to trans-
form the system to an autonomous one. This can either
be achieved bẏψ = Ω, whereψ is a state or bẏt = 1,
wheret is a state and the azimuth angle can be calculated
asψ = Ω t sinceΩ can be assumed constant. However,
if the above method is used (either cases), the new time
state will monotonically increase and hence will not de-
scribe an oscillatory behaviour. Therefore, to solve this
problem, a harmonic oscillator model can be used to re-
alise the periodicity of all states. The harmonic oscillator
equations are:

u̇ = u + Ω y − u (u2+y2)
ẏ = −Ω u + y − y (u2+y2)

(2)

or

u′ = u + y − u (u2+y2)
y′ = u + y − y (u2+y2)

(3)

where theu = sin(Ω t) andy = cos(Ω t) are solutions
to Equation (2). The termsu and y can now be used
to replace any sin(Ω t), sin(ψ), cos(Ω t) or cos(ψ)
in the blade forcing equations as appropriate. Alter-
natively, the azimuth angle can be calculated using the
quadrant-arctangent function (atan2 function in MAT-
LAB or FORTRAN).

ψ = atan2(u,y)

Rigid Blade Model with Flexible Hinges

In this section, continuation and bifurcation methods are
applied to investigate the flap-lag stability of a rigid he-
licopter blade with springs attached between the blade
root and rotor shaft, in the flap and lag degrees of free-
dom. This spring model is sufficient to represent an elas-
tic blade and hub with hinge offsets. The model used
here is published by Peters [7].

Equations of Motion

The equations of motion of the rotor blade in the flap and
lag degrees of freedom are given by:

β′′+sinβcosβ(1+ζ′)2+(P−1)(β−βpc)

+Zζ = 1
Ω2I

∫ R
0 Fβrdr

cos2βζ′′−2sinβcosβ(1+ζ′)β′+Wζ
+Z(β−βpc) =

cos(β)
Ω2I

∫ R
0 Fζrdr

(4)
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whereP, Z andW are stiffness parameters which depend
on the non-rotating flap and lead-lag frequenciesωβ and
ωζ. Fβ andFζ are the force components per unit length
perpendicular and parallel, respectively, to the direction
of rotation. The expressions for the stiffness parameters
and the force components are given in reference [7].

Rotor Model in the State Space Form

The main model equations, which have been generated in
Equations (3) and (4) can be rearranged in terms of time
derivatives of the state vectorx to produce the required
state-space form for the stability analysis:

x′ =



u
y
β′

β′′

ζ′
ζ′′


= f (x,δ) where x=



u
y
β
β′

ζ
ζ′


(5)

whereδ = {µ,λ,θcol,Alat ,Blong,ωβ,ωζ, . . .}
T .

Aeroelastic Rotor Blade Model

In this section, modal representation is used for the struc-
tural blade dynamics and hence each blade is represented
by a number of general modes (eight in this analysis).
The mode shapes, frequencies, and modal masses are
computed a priori either in vacuum or at a given hover
case condition. Although the model can include the dy-
namical equations for all blades of the rotor, it is ade-
quate here to use a single bladed rotor model for the sta-
bility analysis.

The forced response equation approach is used to de-
scribe the aeroelastic dynamics of the blade. The equa-
tions used were developed in reference [21]. The formu-
lation of this equation was done in a manner such that the
orthogonality of the modes led to an equation in which
the modal response depends only on the following forc-
ing components:

1. the aerodynamic forcing;

2. time dependent terms such as the Coriolis force;

3. blade pitch dependent terms;

4. nonlinear terms not included in the formulation of
the modal equation.

For the aerodynamic forcing, a blade element tech-
nique is used for calculating the forces and moments act-
ing on the blades. This technique is based on dividing
each blade into a number of elements, then the aerody-
namic forces are computed for each element, consider-
ing them as quasi-two-dimensional aerofoils, with as-
sociated lift, drag and pitching moment characteristics.

To achieve this, elemental velocity components need to
be determined. Unsteady aerodynamics, blade/blade and
blade/airframe interactions are not considered here. To
model the inflow, a three state dynamic induced veloc-
ity model is used. The code of this model is written in
MATLAB.

Modal Response Equation

The forced response equation for each mode is:

q̈i +ω2
qi

qi =
Qqi

Ii
i = 1,2,3, ... (6)

hence

q̈i =−ω2
qi

qi +
Qqi

Ii
i = 1,2,3, ... (7)

whereωqi , Ii , qi andQqi are the modal frequency, modal
mass, generalised displacement and generalised force
terms for each modei. The differentiation( ¨ ) is done
with respect to timet. It can be noticed from equation (6)
that the elastic damping is assumed negligible and hence
is not accounted for. Each mode shape consists of flap,
lag and twist mode shape components,wi , vi and ti re-
spectively. The generalised forceQqi consists of the four
forcing terms described above and can be written as fol-
lows:

Qqi = Qaero,qi +Qtdep,qi +Qpper,qi +Qnlin,qi (8)

where the expressions for the forcing terms can be found
in [21].

Local Flow Velocities

The blade deformation due to bending and twisting af-
fects the local flow velocities and also angles of attack.
In general, the components of the resultant flow velocity
at each blade element arise from five sources, namely:
blade rotation, free stream due to the helicopter move-
ment, rotor induced velocity, rates of blade bending and
rates of change of the predeformed blade coordinates.
Furthermore, the resultant flow velocity is convention-
ally resolved into components tangential (UT ) and nor-
mal (UP) to the local axes of the blade. The full expres-
sions of these components depend on many variables, in-
cluding the positions of the blade elements before and
after deformation, and can be very long. Hence, they are
not presented here but can be found in [21].

Blade Aerodynamics

The aerodynamic forcingQaero,qi in Equation (8) is the
most complex term to evaluate in comparison to the rest
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of the forcing terms. This is due to the complicated na-
ture of the flow field around the aerofoil section. The
general form ofQaero,qi is given by the integral:

Qaero,qi =
∫ R

0

[
d(L−L0)

dr wi +
d(D+D0)

dr vi

+d(M−M0)
dr ti

]
dr

(9)

where the three terms on the right hand side represent
the force distribution in the flapwise and lagwise direc-
tion and the pitching moment distribution respectively.

To evaluate the above aerodynamic loads, the ele-
mental lift and drag forces and pitching moment need
first to be calculated. In this analysis, the blade ele-
ment method is adopted an hence two-dimensional quasi-
steady flow is assumed. The expression for the elemental
lift, drag and pitching moment are given as:

δL =
1
2

ρU2cδrCL(α,Ma, r) (10)

δD =
1
2

ρU2cδrCD(α,Ma, r) (11)

δM =
1
2

ρU2c2δrCM(α,Ma, r) (12)

whereρ, c,U =
√

U2
P+U2

T , δr,CL,CD andCM are the lo-
cal air density, the blade elemental chord, the elemental
resultant flow velocity, the width of the blade element,
and the lift, drag and pitching moment coefficients at
each element respectively.α and Ma are the elemen-
tal angle of attack and Mach number respectively. The
aerodynamic force and moment coefficients for each in-
dividual blade element are calculated numerically using
nonlinear look-up tables. Experimental data for chosen
aerofoil sections are used. These tables provide data for
a 360◦ range of angle of attack and local Mach numbers
of up to 0.85. The local angle of attack is given by:

α = θ+φ+θquasi (13)

whereθ is the elemental pitch angle,θquasi=
cθ̇
2U is the

aerodynamic quasi-steady effect on pitch angle andφ is
the elemental inflow angle, which can be calculated as
follows:

φ = atan2(UP,UT)

The local pitch angleθ is a combination of all the
local pitch angle contributions, i.e.:

θ = θcol −Alat cos(ψ)−Blongsin(ψ)+θpre.twist +Θ

whereθcol, Alat ,Blong, θpre.twist andΘ are the blade col-
lective pitch, the lateral cyclic, the longitudinal cyclic,
the blade local built-in twist and the blade pitch due to
twist deformation.

Finally, the local forces acting on a blade element in
the blade coordinate system can therefore be determined
from the elemental lift and drag forces.

L = δL sinφ−δD cosφ
D =−δL cosφ−δD sinφ (14)

whereas, the local elemental aerodynamic pitching mo-
ment is simply defined as:

M = δM (15)

The rotor instantaneous thrustTi can be evaluated
simply by summing all elemental vertical forcesL and
multiplying it by the number of bladesNB. i.e.

Ti = NB
N

∑
elem=1

L (16)

This value of thrust is only used to estimate the induced
velocity within the rotor model. The correct thrust value,
which is used for performance and trimming procedures,
has to be averaged out across one rotor revolution.

Tav =
1
2π

∫ 2π

0
Ti dψ (17)

Induced Velocity Model

The inflow is captured via a 3-state Pitt-Peters dynamic
wake model [22, 23, 24]. This model permits the vari-
ations of the induced velocity in both the radial and az-
imuthal position. Furthermore, it allows the lag dynam-
ics associated with moving a volume of air to be mod-
elled. The inflow model is given for three states as fol-
lows:

νi (r,ψ) = ν0+
r
R
(νssinψ+νccosψ) (18)

whereνi is the induced velocity at an element of radius
r and azimuth positionψ. The induced velocity compo-
nentsν0, νs andνc are given in the wind axes by:

[τ]

 ν̇0

ν̇s

ν̇c


w

=−

 ν0

νs

νc


w

+[L]

 Taero

Laero

Maero


w

(19)

Taero, Laero and Maero are the thrust, the aerodynamic
rolling and pitching moments respectively in the wind
axis and expressions for the matrices[τ] and [L] can be
found in [22, 23, 24].

Rotor Model in the State Space Form

The main model equations, which have been generated
in Equations (2), (7) and (19), can be rearranged in terms
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of time derivatives of the state vectorx to produce the
required state space form:

ẋ=



u̇
ẏ
ν̇0

ν̇s

ν̇c

q̇1

q̈1
...

q̇8

q̈8



= f (x,δ) where x=



u
y
ν0

νs

νc

q1

q̇1
...

q8

q̇8



(20)

CONTINUATION AND BIFURCATION

RESULTS

Rigid Blade Model with Flexible Hinges

In order to find the steady state or periodic solutions for
the rigid blade model as given in Equation (5), the inflow
ratio λ and the control anglesθcol, Alat andBlong need to
be known for a given set ofµ, ωβ, etc. Of course, the
analysis can be carried out at a prescribed values ofλ,
θcol, Alat and Blong. However, the conventional way is
to computeλ based on a momentum theory assumption,
and find the control angles which satisfy the intended
trim requirements.

Unlike many analyses, where rotor trimming is car-
ried out first (using the harmonic balance method for
example) prior to any stability calculations, AUTO can
compute solutions and their stability simultaneously for
given boundary or integral conditions. This means that
the continuation and trimming procedure can be done in
parallel. In fact, the eigenvalues and Floquet multipli-
ers are computed at negligible extra cost to the continua-
tion analysis. To findλ, θcol, Alat andBlong four integral
boundary conditions are constructed as follows:

1. λ is obtained by equating the thrust calculated by
integrating the vertical force along the blade to the
thrust from simple momentum theory:

2ν
√

µ2+λ2−
σa
2πγ

cosβ
∫ 2π

0

1
Ω2I

∫ R

0
Fβrdrdψ = 0

(21)
where the induced velocityν is given by:

ν = λ−µαs

andαs is the rotor shaft angle, which can be ob-
tained from the propulsive time condition

αs =
µ2 f̄
2CT

where f̄ is the helicopter flat plate drag area.f̄ can
be set to zero if propulsive trim is not required.

2. θcol is obtained by equating the calculated thrust
obtained by integrating the vertical force along the
blade to the required thrust:

CT,req−
σa
2πγ

cosβ
∫ 2π

0

1
Ω2I

∫ R

0
Fβrdrdψ = 0

(22)

3 & 4 To find Alat and Blong, moment trim condition is
assumed at the rotor hub. This condition is ob-
tained by suppressing the first harmonic compo-
nents of the flapping angle using the cyclic pitch
angles. This is implemented as follows:

∫ 2π

0
β sinψ dψ =

∫ 2π

0
β u dψ = 0 (23)

∫ 2π

0
β cosψ dψ =

∫ 2π

0
β y dψ = 0 (24)

It should be noted that high harmonic components
of the blade flapping angle are not suppressed by
Equations (23) and (24).
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Figure 1: Lag damping variation with advance ratio. p= 1.15,
ωζ = 1.4, R̄= 0, γ = 5, σ = 0.05, Cd0 = 0.01, CT/σ = 0.2.

The rigid blade model was coded in MATLAB, and
AUTO was supplied with the state-space equations of
the model and the four integral conditions, i.e. equa-
tions (5), (21), (22), (23) and (24). The continuation was
performed at two cases of trim condition. The first is
a propulsive trim atf̄ = 0.01 and the second is a mo-
ment trimmed condition in which̄f = 0. In order to
compare the continuation results with those published by
Peters [7], the damping parameterη associated with the
lag degree of freedom is extracted from the computed
Floquet multipliersϑ. To findη the logarithm of the Flo-
quet multiplier associated with the lag mode is evaluated
to find the equivalent eigenvalue. Thenη is simply the
negative real part of this eigenvalue (η =−ℜ(lnϑ)).

Figure 1 shows the variation of lag damping with ad-
vance ratio forf̄ = 0 and f̄ = 0.01. Like the predictions
of Peters, the results illustrate that the lag mode becomes
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unstable at certain ranges of advance ratios. The damp-
ing graph for the casēf = 0.01 is identical to the graph
predicted by Peters. However, for the casef̄ = 0, al-
thoughη becomes negative at the sameµ predicted by
Peters (≈ 0.16), the value at whichη becomes positive
again is higher when using the continuation method (≈
0.73 compared to≈ 0.49). This discrepancy is thought to
be due to the different trimming procedures. Peters used
the harmonic balance method where second and higher
harmonics of the blade flapping were assumed negligi-
ble, whereas no such assumptions were used in the con-
tinuation analysis. In fact, although the first flap harmon-
ics were suppressed to ensure moment trim requirement,
it can be shown that the second flap harmonics are large
for µ> 0.4, when the trimming is achieved using the con-
tinuation approach. Therefore, the values of the control
angles evaluated by the two approaches can be different.
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Figure 2: Bifurcation diagrams for the cases f̄ = 0.01 and
f̄ = 0. Continuation parameter = µ. Solid line: stable peri-
odic branch, dashed line: unstable periodic branch. For the
flap and lag angles, only the peak values of the oscillations in
one cycle are plotted. TR denotes torus bifurcations.

Figure 2 depicts the bifurcation diagrams for the
cases off̄ = 0.01 and f̄ = 0 respectively. The variation
of inflow ratio λ computed by AUTO is also plotted for
completeness. The bifurcation diagrams show that the
change in stability of the periodic branches, as previously
predicted byη changing sign in Figure 1, corresponds
to the presence oftorus (Neimark-Sacker)bifurcation
points. This type of bifurcation occurs when a pair of
complex conjugates of the Floquet multipliers cross the
unit circle (in the real and imaginary plane) at a non zero

real part. Furthermore, a new secondary quasi-periodic
branch (branch of invariant tori) emerge from the bifur-
cation points. To investigate this further, the rotor model
was simulated in time from the unstable branch atµ= 0.5
for the case off̄ = 0. The appropriate values forλ, θcol,
Alat andBlong were used. Figure 3 illustrates that the flap-
ping angle oscillation starts from the unstable periodic
solution (limit cycle) and then diverges to a stable quasi-
periodic solution. The unstable periodic solution has a
time period of 1 rev (2π rad), while it is not possible to
identify an oscillation period for the stable quasi-periodic
behaviour of the blade flapping motion. To further ver-
ify that the solution is quasi-periodic, a segment of the
time response was plotted in both (ψ,β, β̇) and (ψ,ζ, ζ̇)
cylindrical coordinate systems. It can be shown that so-
lution trajectories trace the surface of a torus but do not
connect.
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Figure 3: Time simulation from unstable branch at µ= 0.5 and
f̄ = 0. p= 1.15, ωζ = 1.4, R̄= 0, γ = 5, σ = 0.05, Cd0 = 0.01,
CT/σ = 0.2.

(a) Flap DOF (b) Lag DOF

Figure 4: Segment of the stable quasi-periodic solution traces
a surface of a torus in a cylindrical coordinate frame of axes.
µ= 0.5, f̄ = 0, p = 1.15, ωζ = 1.4, R̄= 0, γ = 5, σ = 0.05,
Cd0 = 0.01, CT/σ = 0.2.

Two more characteristics of the unstable periodic
branch can be observed from Figure 3. First, it can be
seen that the second harmonics are evident in the flap-
ping motion and are not suppressed. Second, the time
taken for the flapping motion to clearly diverge from the
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unstable periodic orbit toward the quasi-periodic solution
is very high (about 400 revolutions), which may lead the
solutions to appear to be stable. This means that a good
level of accuracy in the stability method is necessary to
predict the correct stability for this system at this param-
eter combination. Figure 2-(b) also illustrates the pres-
ence ofperiod doublingbifurcations at high advance ra-
tios. The first bifurcation occurs atµ ≈ 0.9 where the
main stable periodic branch becomes unstable, whereas
the second bifurcation is at an even higher value ofµ. Pe-
riod doubling bifurcation occurs when one Floquet multi-
plier equals−1 with zero imaginary part. After the bifur-
cation point, the main periodic branch changes stability
and a new secondary periodic branch emerges. The peri-
odic solutions of this secondary branch have double the
period of the solutions of the main branch. To illustrate
this point, the rotor model was simulated in time from the
unstable branch atµ= 1 for the case of̄f = 0. The appro-
priate values forλ, θcol, Alat andBlong were used. Fig-
ure 5 illustrates that the flapping angle oscillation starts
from the unstable periodic solution (limit cycle) and then
diverges to another stable periodic solution. The unstable
main periodic solution has a time period of 1 rev, while
the other secondary periodic solution has a time period
of 2 rev (3 cycles between 1584 and 1590 rev).
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Figure 5: Time simulation from unstable branch at µ= 1.0 and
f̄ = 0. p= 1.15, ωζ = 1.4, R̄= 0, γ = 5, σ = 0.05, Cd0 = 0.01,
CT/σ = 0.2.

Aeroelastic Rotor Blade Model

Similar to the rigid blade analysis, the rotor trim condi-
tions were also embedded within the continuation proce-
dure. Since a dynamic inflow model is used in this case,
only three integral conditions were needed to be speci-
fied. These can be described as follows:

Tav =
1
2π

∫ 2π

0
Ti dψ = Treq (25)

1
π

∫ 2π

0
β sin(ψ) dψ =

1
π

∫ 2π

0
β u dψ = βa1,req (26)

1
π

∫ 2π

0
β cos(ψ) dψ =

1
π

∫ 2π

0
β y dψ = βb1,req (27)

The rotor model was configured to have realistic
blade and flight characteristics. Figure 6 illustrates the
continuation results when the advance ratio was used as
the continuation parameter. Only the peak values of os-
cillatory modal displacements of the first two modes are
plotted. The bifurcation diagrams show that whenµ is
between approximately 1.03 and 1.19 the periodic branch
is unstable, due to the presence of two torus bifurca-
tions. To further scrutinise the results, the variation of the
damping of the modes was investigated from the com-
puted Floquet multipliers. It was found that the unstable
periodic branch corresponds to the range of advance ra-
tios when the damping of the first lag mode (mode 1) is
negative. Hence, this indicates that this instability may
be of the flap-lag type similar to the one obtained in the
previous section.
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Figure 6: Bifurcation Diagram for forward flight case. Continu-
ation parameter = µ. Solid line: stable periodic branch, dashed
line: unstable periodic branch. Only the peak values of the
oscillations in one cycle are plotted. TR denotes torus bifurca-
tions.

It should noted that although the model might not be
suited for flight conditions of very high advance ratios
(µ> 0.5 for example), it is customary when performing
continuation analysis to extend the continuation param-
eter beyond the physical range. The reason for this is
to search for any bifurcation points that might lead to
new solution branches, which return back to the physi-
cal range. For the case investigated in Figure 6, the only
secondary branch found was the quasi-periodic branch,
for 1.03≤ µ≤ 1.19 emerging from the torus bifurcations
points.

Continuation runs were also carried out in the hover
case over a range of collective pitch angles. The resulting
bifurcation diagrams are depicted in Figure 7. In stable
hover condition, the blade is in steady state situation and
hence its behaviour is not periodic. For this reason there
is no need to use neither the harmonic oscillator method,
since there is no periodic forcing to the system, nor to
trim the rotor to certain flapping angle components. Fur-
thermore, since the collective pitch is used as the contin-
uation parameter, which will directly affect rotor thrust,
the integral thrust condition is not necessary for this case.
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Figure 7: Bifurcation Diagram for hover case. Continuation pa-
rameter = θcol. Black solid line: stable periodic branch, black
dashed line: unstable periodic branch, gray solid line: sta-
ble equilibrium branch, dotted gray line: unstable equilibrium
branch. Only the peak values of the periodic oscillations in one
cycle are plotted. TR, HP and LP denotes torus, Hopf and limit
point (fold) bifurcations respectively.

As θcol is increased from 0◦, there is only one stable
equilibrium (hover) branch, which becomes unstable be-
tween 19.8◦ and 23◦. This equilibrium branch also dista-
bilises atθcol higher than 23◦. In the first instability case,
the main branch changes stability at two Hopf bifurcation
points located at 19.8◦ and 23◦. This type of bifurca-
tion occurs when a complex conjugate pair of eigenval-
ues cross the imaginary axis, of the real and imaginary
plane, with non zero imaginary parts. Hopf bifurcation
is also associated with the birth of secondary periodic
solutions. In Figure 7, both Hopf points are subcritical
leading to the birth of unstable periodic solutions, which
co-exist with sections of the stable equilibrium branch.
Subcritical Hopf is a hard bifurcation which will lead to
the solutions to jump to another attractor just after the bi-
furcation point. This jump can be very hazardous. The
unstable periodic branch emerging from the Hopf point
at θcol = 19.8◦ extends very slightly asθcol is reduced

and then it folds back at a limit point (fold bifurcation)
at θcol = 19.6◦. This bifurcation point occurs when one
Floquet multiplier crosses the unit circle at a value of 1.
The solution then becomes stables and extends asθcol

is increased. Furthermore, this stable periodic branch
changes stability a few times in the vicinity ofθcol = 23◦

due to the existence of three other fold bifurcation points,
until it merges with the main equilibrium branch at the
Hopf point located atθcol = 23◦. It can be shown that
if the blade is disturbed from the unstable equilibrium
branch, it will always get attracted to the stable periodic
branch. In other words, if the pitch angle is between
19.8◦ and 23◦, the blade will eventually behave in a peri-
odic manner.

The Hopf point atθcol = 19.8◦ is found to be asso-
ciated with the first flap mode becoming unstable, which
stabilises again atθcol = 23◦. It was also found that other
two flap modes lose and gain stability within the same
range of pitch angles. This is depicted by other four
Hopf bifurcation points within the unstable equilibrium
branch. The unstable periodic branch which emerge from
two of these points is plotted in Figure 7. This branch
also experience torus bifurcations.

Figure 7 also illustrates the existence of a subcriti-
cal Hopf and limit point bifurcation, which fold the sec-
ondary unstable periodic branch into a stable periodic
one. If the pich angle is increased beyond 27.23◦, the
solutions will jump to the stable periodic branch. It can
be also seen that in the rangeθcol = 27.07◦ to 27.23◦

the blade can behave either in a stable equilibrium or in
a stable periodic manner, depending on the perturbation
levels subjected to the blade. Although this pitch range
is small and non-operational, it provides a good example
on how important the construction of the bifurcation di-
agram is in predicting the global nonlinear dynamics of
the blade behaviour.

CONCLUSION

This paper presented an implementation of continuation
and bifurcation methods in studying the aeroelastic sta-
bility of helicopter blades over a range of advance ratios
and blade pitch angles. The set up for the continuation
analysis and the general blade modelling layout were de-
scribed for two different nonlinear blade models. These
aeroelastic models were constructed in a generic state
space form, where the harmonic oscillator approach was
used to transform the periodically forced equations into
autonomous ones. Furthermore, the paper described how
the trimming procedure is implemented within the con-
tinuation analysis, in which the appropriate integral con-
ditions describing the trim requirements were presented.

The continuation analysis was first applied to a sim-
ple rotor system incorporating rigid blade with flap and
lag degrees of freedom with root springs to model the
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stiffness of hinges. The continuation results were com-
pared to published blade flap-lag stability data and ex-
plained in the light of bifurcation theory. One of the
key advantages of the method was the ability to identify
the types of bifurcations which led to blade instabilities.
This in turn helped in predicting the new secondary pe-
riodic branches, leading to a better understanding of the
global blade dynamics. The bifurcations discussed for
this model were torus and period doubling bifurcations.

The continuation and bifurcation analysis was also
applied to investigate the aeroelastic stability of a flexi-
ble rotor blade, where in this case modal representation
of the blade flexibility is used. This representation is
widely adopted in the helicopter industry. The continua-
tion results were also explained in the light of bifurcation
theory for both forward flight and hover conditions. The
results illustrated that even in the hover case the global
nonlinear dynamics of the blade are quite complex. The
bifurcations discussed in this case were Hopf, fold and
torus bifurcations.

The analysis presented in this paper not only illus-
trated that continuation and bifurcation methods are ap-
plicable to studying the blade aeroelastic stability, but
also confirmed that the dynamics of the blade behaviour
are very complex and nonlinear, even in the hover con-
dition. Although most of the complex behaviour of the
blade was found at a non-operational parameter range,
the continuation and bifurcation tools were essential in
uncovering the global blade dynamics when multiple so-
lutions coexist. Therefore, these tools offer considerable
advantages in aeroelastic stability analyses of future ro-
tor configurations, in particular, when the nonlinearity is
significant. They are likely to offer valuable efficiencies
for analyses of, for example, blades incorporating active
trailing edge flaps or semi-active lag dampers.
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