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1 Introduction 

In this paper we report on the development of a novel numerical procedure that has 
been applied to the study of unsteady rotor flow. The method uses an essentially 
multidimensional, residual distribution approach [3] on unstructured tetrahedral 
grids. An eigenmode analysis of the convective part of the flow equations furnishes 
a truly multidimensional proceure to split residuals on each cell so as to ensure 
upwinding. Turbulent effects are included by LES with an adaptation of Germano 
dynamic subgrid scale stress model. Mult.igrid acceleration, based upon a sequence 
of nested tetrahedral grids, is used to accelerate the computation. The adaptation of 
the Germano SGS model is applied at each multigrid level, thus acting as a physically 
based prolongation and restriction operator for the viscid part of the multigrid 
procedure. This adaptation together with the eigenmode based residual distribution 
procedure serve to ensme good acceleration properties from the multigrid procedure. 
The code implementing thcse concepts has been developed by the second author and 
is named OCTLES (http://www.propulsion.pub.ro/OCTLES/index.html). The 
code has been validated on a number of the LES test. cases suggested in a recent 
AGARD report. on this subject. [2]. The test cases included flows with secondary 
effects such as rotation and curvature. 

An application to the case of a twisted rotor blade is presented. The tip is in 
transonic flow and a portion of the inboard part. of the blade has stalled flow. The 
capabilities of the code to simulate this complicated, three dimensional flow field 
are well demonstrated by this test. case. After presentation of the three-dimensional 
flow a two-dimensional blade vortex interaction problem is studied with a view toes
tablishing possible benefits of using porous airfoils. The Kirchhoff surface technique 
is used to compute the far field acoustic radiation. Computation of the Kirchhoff 
integrals is carried out by solving an equivalent initial value problem. This has 
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the advantage of allowing full space and time adaptivity and thus lowering compu
tational costs. Typical acoustic signatures are presented. There appears to be a 
modest benefit to be gained by use of porous airfoils, with a reduction of 10-15% 
of peak acoustic pressure being observed in some cases. There is increased spectral 
content. in the acoustic signature. This is thought to be associated modification of 
the shock structures on the porous airfoil. 

2 Numerical procedures 

2.1 Residual distribution schemes 

Most of the numeric discretization procedures that are in wide--spread use today 
are extensions of schemes derived for the one--dimensional flow equations. These 
are then extended to multidimensional flow, typically by directional splitting. This 
introduces a numerical bias in the essentially three-dimensional flow physics. Re
cently, a number of investigations have addressed the problem of obtaining a true 
multidimensional description of flow phenomena. Cnrrent research activity at the 
Faculty of Aerospace Engineering, "Politehnica" University, Bucharest is focused on 
these types of schemes with encouraging initial results [6]. Since the important part 
of the flow equations for ensuring multidimensional discretization is the convection 
operator the theoretical development is carried out for the Euler equations. 

q, + fx + 9y + hz = 0, q = [ p l m n c r (1) 

u2 + v2 + w2 
l = pu, m = pv, n = pw, E = pE = pe + p 

2 
(2) 

l m n 
P + z2; P mljp nl/ p 

!= lm/p g= p+m2jp h= nmjp (3) 
ln/ p mnjp p+ n2jp 

l(p+c)/p m(p+c)/p n(p +c)/ p 

A discretization of the flow field into tetrahedral elements is carried out. A 
piecewise linear representation of the flow variables along each tetrahedral element 
is used. The flow variables are stored at each node. The piecewise linear rep
resentation along each cell allows an exact formulation [8] of the linearized time 
evolution problem as the superposition of waves corresponding to the eigenmodes 
of the convective part of the flow equations. The wave propagation directions may 
be oriented at arbitrary directions in the cell thus allowing true multidimensional 
transmission of information in a time step. This is sometimes too costly in terms of 
computer time and a simplified, partially multidimensional approach may be used 
whereby the residue over a cell is distributed to the cell nodes in accordance with 
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some scheme reflecting the true wave propagation direction. In contrast with the 
standard finite volume scheme, Riemann problems along each cell boundary are not 
solved; the Riemann problem procedure introduces a bias in favor of the boundary 
normal direction that is avoided in a residual distribution scheme. 

The unsteady equations are solved in time. The basic time stepping scheme may 
be written as 

(4) 

where i is the node index and the sum is carried out over all tetrahedra adjoining the 
node i. Intermediate time steps, as given by a second order Runge-Kutta scheme, 
were used in this work. The coefficients f3"T are called distribution coefficients [3] 
and satisfy a normalization condition I;;=l (3~ = 1. The fluctuation 

<Pr = - j F · iidA = - {9 F ( u ( x)) dV (5) 

Sy Vr 

has been introduced. The coefficients f3"T specify how much of the fluctuation is 
to be advected towards node i. The amount to be advected is done in accordance 
with physical criteria of ensuring upwind dependence. For this an e:igenmode de
composition is required. As usual, :it is more convenient to find carry out the Euler 
eigensystem decomposition in the primitive variables Q = [ p u v w p ] T for 

which the Euler equations are Q, + FQ · VQ = f. In this work the generalization 
of the simple 1-D N distribution [1] of the fluctuation developed in [4] has been 
adopted. The fluctuation distributed to node i is 

(6) 

where Kf = (Ail.x,i + Bil.y.i + Cil.z,i) /2 and (hx,i,il.y,i,il.z,i) is the inward pointing 
normal of magnitude equal to the area of a cell face. The reference inflow state Q;n 
is determined by solving 

(7) 

The K+, K- matrices refer to the decomposition with respect to the signs of the 
eigenvalues. The decomposition is carried out in primitive variables and the dis
tributed fluctuations are transformed into conservative variables using the transfor
mation matrix !VI= 8qj8Q. 

2.2 Viscous effects 

Viscosity effects do not affect the basic multidimensional splitting procedure pre
sented above. These effects are included using a standard Galerkin formulation in 
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the computation. To ease notation we present the procedure as applied to the simple 
scalar diffusion eqnation 

au -- -'- .\. · Vu = v6.u 
at ' 

The procedure may be easily extended to the fnll Navier-Stokes equations. 
ing over a control volume (the dual median cell) D we obtain 

r au r- r 
Jn at w;dll + Jn .>. · 'Vuw;dll = Jn v6.uw;dll 

(8) 

Int.egrat-

(9) 

with w a weight. function describing the residual procedure presented above. In order 
t.o eliminate the second order derivative (inappropriate in as much as we are using 
a piecewise linear representation of the flow variables) we integrate by parts 

r au w;dD + 2:= r ;;: . \iuw;dll = f w au doD- 2:= v r VW; . \iud[l (10) 
ln at T lr On T lr 

The viscosity term contains now only first. order derivatives. vVe introduce a Galer kin 
representation for the viscous term 

u = 2:= U;N; (11) 

where N; are the standard shape functions associated with linear interpolation over 
a cell. 

2.3 Turbulence model 

The effects of turbulence wen' included through the dynamic snbgrid scale stress 
(SGS) ideas of Germano [5]. Two filtering operations corresponding to successive 
levels of the embedded tetrahedral grids are considered. The first. is the usnal grid 
filtering operation denoted usnally by . By applying this filter subgrid turbulent. 
stresses appear in the Na,·ier-Stokes eqnat.ions. These are denoted by r;1. The 
second is called a test. filter and typically nses a filter width larger (e.g., twice) of 
the grid filter. The standard notation is~ New turbulent. SGS stresses appear which 
shall be denoted by T;1. The turbulent stresses are linked by the Germano identities 
£;1 = T;1 - f;1 with £;1 = 1f(iij - u;u1. By applying the same, eddy viscosity 
turbulence model at both scales a procedure may be established for dynamically 
computing the eddy viscosity coefficient so as to reflect local flow conditions. 

(12) 

(13) 
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( 
Typically, the above equations are used in 

8 ~ 
£t1 = .C;J- ; .Ckk = -2Ca;1 + 2C(3;1 (14) 

a system of 5 equations from which C may be determined by a least squares technique 
for instance [7]. Given that there are no homogeneous directions in the type of 
flow considered here, the least squares average has been carried out over families of 
embedded tetrahedra. Though empiric, this procednre has shown accnracy sufficient 
for engineering computation when applied to LES test cases. In conjunction with 
the multigrid acceleration procedure we apply the Germano identities at each pair 
of grid levels in complete V cyde. In effect, the dynamic SGS model is used to 
provide the restriction and prolongation operators of the multigrid procednre. This 
has been observed to allow sufficient smoothing of the operators to avoid oscillations 
in the V cycle computation. 

2.4 Resolution requirements 

An important aspect of extending LES simulations to the large Reynolds number 
flows encmmtered in technical applications is the determination of the appropriate 
resolution requirements. In the present work a full resolution of the complete tur
bulent flow field around the rotor blade was too costly in computer resources to 
carry out. In order to achieve some progress in the investigation of the applica
bility of the LES technique to practical aerodynamic problems a hybrid approach 
has been adopted here. Grid refinement criteria were set to ensure full resolution 
of the boundary layer of the blade. This involves computing the local values of 
y+, u+ for tetrahedra close (less than a tenth of a chord length) to a solid surface. 
In this region a more stringent criterion is set for the maximum allowed gradient 
of the flow variables. Typically, the adaptive grid procednre produces about 12-18 
grid points along a normal to the blade surface for the region y+ E [0, 1000]. Fur
ther away from the blade surface the resolution achieved by the grids used in this 
work are not fine enough to be said to carry out an LES simulation. Rather the 
turbulence model away from the blade surface is of the eddy-viscosity type. This 
accounts for some the observed under-resolution of the large scale coherent struc
tures downstream of the blade. The number of nodes varies during the course of 
the computation since they are dynamically added and deleted in order to satisfy 
imposed gradient requirements. 

3 Application to a twisted NACA 0012 rotor 

The procedures outlined above are applied to a rotor blade undergoing a vertical 
descent at an angle of a = 20°. The blade is of rectangular planform between radii 
R0 = 0.5 m ~i R1 = 6.0 m. The airfoil chord is b = 0.2 m and the rotational speed is 
Q =50 rad/s. The helicopter forward velocity is V = 20 m/s. The blade is considered 
rigid but with a total torsion of 20° from 1mb to tip. The blade rotation plane is 
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rotated by ~I = -10° with respect to the forward flight direction. To visualize the 
flow field we choose five sections as outlined in the following table: 

Section R (m) Local angle of attack Mach Reynolds 
1 0.500 100 0.07 0.5·107 

2 1.875 15° 0.23 1.6·107 

3 3.250 20° 0.47 3.2·107 

4 4.625 25° 0.72 4.9·10 7 

5 6.000 30° 0.88 6.0·107 

The exterior computational boundary is limited by two parabolic cylinders whose 
extremal coordinates are (-5,0), (10,0), (5,10), (5,-10) in planes perpendicular to the 
blade span. The computational domain is constrncted by carrying out a Delaunay 
triangularization in 100 planes perpendicular to the span. Corresponding nodes in 
two adjacent planes are then joined in order to form a triangular base prism. This is 
afterwards split into two tetrahedra. A sample section through the grid is presented 
in figure l. The average number of nodes during the computation was 1.63 ·106 A 
dual CPU workstation with 256MB of memory and sustained rate of 74 l\IFLOPS 
was used. The full computation required 148 hours. 

The flow is visualized by presentation of lines of constant pressure and Mach 
number (fig. 2,3). The figures presented below were constructed for 7./J = 0°. Inves
tigation of the flow results reveal the following 

l. the flow is transonic starting from R = 4.1 m; 

2. the tip mean flow is steady; 

3. a periodic shedding of vorticity is seen to occur on an inboard portion of the 
rotor blade from R = 1.72 m at R = 2.14 m; 

4 A BVI example 

We now consider an example of the blade-vortex interaction problem. We are in
terested in the possibility of controlling noise emissions by using porous airfoils. In 
order to get a preliminary assesment of this effect we shall carry out an essentially 
two-dimensional simulation with the span dimension reduced to single layer of an
cestor cells. This imposes a spatial resolution cutoff for the turbulent eddies along 
the span. The single layer of ancestor cells was chosen to be 1/10 of the chord in 
depth. The modification of the turbulence fluctuations by the airfoils porosity is an 
unknown effect at present. The numerical simulation atttempted here is intended 
as a first attack on this problem. 

A NACA 0012 airfoil at zero incidence is subjected to a flow perturbation induced 
by a vortex of nondimensional intensity r = -0.05 (reference units are the upstream 
flow velocity and the blade chord) of radius r = 0.5. The Reynolds number is taken 
Re = 105 . 
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Porosity is modeled by imposing the boundary conditions 

(15) 

over selected portions of the airfoil. In the present simulation two portions of 0.02 
chordwise extent were considered; one is positioned at x = 0.85 the other at x = 0.2. 
The pressure difference between these two stations drives a flow through the airfoil 
itself. This flow is assumed to be governed by Darcy's law 

Q = kA L'lp* 
L 

(16) 

The porosity coefficient was taken as k = 10-2 The perturbation induced upon 
the mean flow is evidenced by comparison of the following two iso lviach line plots. 
There is a perceptible weakening of the shock when porous flow is considered (fig. 
4,5). The interest for aeroacoustic applications is whether the effect is important 
and stable enough to lead to an overall reduction in emitted noise. 

The aerodynamic data that has been obtained is now used to estimate the acous
tic signature in the far field at a distance of 20 chords from the leading edge at 4 
angular positions o: = 0, 30, 60, 90 degrees as shown in fig. 6. 

The acoustic field is computed using the Kirchhoff surface technique. The inte
gral 

_ 1 [ p fJr 1 fJp 1 fJr fJp] 4np(x, t) = --- -- + --- dS. 
5 r 2 fJn r fJn aor fJn fJr 
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is evaluated numerically by using the approximation 

N 
_ "\"' [ p fJr 1 fJp 1 fJr fJp] 

4np(x, t) = L.., -;;-- -- + --- L'-.S; 
r- on T on aoT fJn OT . 

i=l T,1 

(18) 

Here r is the retarded time, T = t - r / a0 and r is the vector from a point on the 
Kirchhoff surface to the observation point.. The Kirchhoff surface is taken as circle 
of radius 7 enclosing the airfoil. The acoustic signatures obtained for the two cases 
- solid and porous airfoils - are presented in fig. 7. 

The following conclusions may be drawn: 

1. There is a modest (10-15%) decrease in the peak acoustic pressures for the 
porous airfoil; 

2. the acoustic signal inereases in length; 

3. the spectral content of the acoustic signal is increased. 

These effects are though at this stage to be mainly caused by the lag in re
establishment of the shock position on the suction side of the airfoil. 
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5 Conclusions 

A novel numerical procedure for the simulation of unsteady rotor flows has been 
presented. The procedure presents the following advantages: 

1. Ability to treat general geometric shapes by use of an unstructured discretiza
tion; 

2. Multidimensional numerical scheme (i.e., not based on dimensional splitting), 
thus minimizing spurious numerical modes; 

3. Self adjusting, dynamic turbulence model. 
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Fig. 1. Section through the 
computational grid at rotor 

hub, R = 0.5 m (angle of 
attack a = 10°). 

Fig. 2. Iso-lvlach lines in Section 2 
at a = 15° showing detached hub 

flow. 
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Fig. 3. Iso-lllaeh lines in Seetion 5 
at a = 30° showing transonic: tip 

flow. 



Fig. 4. Izo-Mach lines, vortex-blade 
interaction computation, solid 

airfoil. 
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Fig. 6. Points used in evaluation 
of acoustic field from BVI. 
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Fig. 5. Izo-Mach lines, vortex-blade 

interaction computation, porous 
airfoil, same physical time as 

previous figure .. 
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Fig. 7. Acoustic pressure at a = 0 
degrees (continuous line - solid airfoil, 

dotted line - porous airfoil). 
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