
Paper 068 

DYNAMIC INVERSION CONTROL FOR A COAXIAL HELICOPTER UAV 

 

S. Loechelt, W. Alles, D. Moormann 

Department of Flight Dynamics, RWTH Aachen University 

Wuellnerstraße 7, 52062 Aachen, Germany 

loechelt@dynamik.rwth-aachen.de 

 

Abstract 

Helicopters offer unique flying capabilities benefici-

ary for UAVs operating in urban and obstacle rich 

environments. To exploit these flying characteris-

tics, advanced control systems are needed as the 

flying characteristics come with natural instability 

and complex flight dynamics. Helicopters therefore 

present a formidable control problem, so that a lot of 

different control approaches have been and are still 

researched. One very promising method in this con-

text, which is gaining wider use in the control theory 

for a wide array of problems, is Dynamic Inversion. 

The basic idea is to compensate the dynamics of the 

plant by incorporating the inverted plant dynamics 

into the controller. This enables full control of the 

system, where not only states can be commanded 

directly but also state transitions are under continu-

ous control. For unstable systems as helicopters with 

changing dynamics, stabilizing and adapting ele-

ments have to be included to allow for inversion. A 

Dynamic Inversion control approach for a coaxial 

helicopter UAV is presented within this contribution. 

Introduction 

The Department of Flight Dynamics of the RWTH 

Aachen University has for several years been working 

on modelling, simulation and design of an unmanned 

coaxial helicopter's Flight Guidance and Control Sys-

tem (FGCS). In connection to a collaboration with 

EADS Innovation Works, Munich, a complete simula-

tion environment and a Flight Guidance and Control 

System enabling autonomous operation for a coaxial 

helicopter UAV with a take-off mass of 200 kg has 

been set up, see Fig. 1. 

 

 

Fig. 1: SHARC coaxial helicopter UAV [EADS]. 

 

The main focus of this contribution is the description 

of the employed simulation and its use for the investi-

gation of the potential benefits of Dynamic Inversion 

control for flight guidance and control of the above 

mentioned SHARC helicopter. A main aspect is 

hereby the research of the dynamic properties und the 

associated consequences put upon the Flight Guid-

ance and control system as well as the benefits of the 

coaxial helicopter’s more symmetric design compared 

to the main and tail rotor configuration. 

Dynamic Inversion 

Dynamic Inversion is a control methodology by which 

the plant’s dynamics are inverted by the controller 

and thus compensated, so that states and their associ-

ated trajectories can be directly commanded by a ref-

erence model. In case of a perfect inversion it is there-

fore possible to continuously and fully control the 

system and its states. Dynamic Inversion allows for 

full exploitation of the flight envelope and further-

more is the base for model following controller, 

where the plant’s characteristic are replaced by model 

characteristics to be addressed.  

Limitations to Dynamic Inversion 

Although Dynamic Inversion offers a lot of benefits 

there are a number of shortcomings connected to its 

implementation. First of all, the perfectly accurate 

model of the to be inverted plant is not known, so that 

there are always discrepancies which can strongly 

influence the usability of Dynamic Inversion. Fur-

thermore, under-actuated systems pose a problem as 

not all states can be directly addressed by the control 

inputs. As physical systems are strictly proper due to 

inertia, their inverse would be improper, which is not 

allowed as it would mean that the nominators order is 

higher than its denominators order, and thus the sys-

tem would be able to change abruptly its states.  

Theory of Dynamic Inversion 

In Dynamic Inversion there is a linear approach and a 

non-linear approach. Non-linear Dynamic Inversion 

works by inversion of non-linear equations of motion 

compromising non-linear effects and geometric trans-



formations [1]. Linear Dynamic Inversion is most 

conveniently performed as it is based on linear control 

theory which also nowadays forms the base for con-

trollability and stability investigations. This is espe-

cially true in context to aerospace applications which 

are traditionally connected with higher conservatism 

due to safety issues. The following linear inversion 

scheme is described in [2] and fits in its algebraic 

form all problems given in state space form. It is the 

basis of the inversion controller used for the coaxial 

helicopter UAV in context of this contribution. 

 

Starting from the linear state space formulation of a 

MIMO dynamic system, the state matrix can be ex-

pressed as: 

 

(1) BuAxx +=&  

(2) DuCxy +=  

 

Hereby A is the system matrix, B is the control matrix, 

C is the output matrix and D is the direct feed- 

through matrix. x represents the state vector and u the 

control vector of the system. 

 

For a perfect inversion the serial connection of a 

transfer system G and its perfect inverse G
*
 generate a 

unity transfer system without any dynamics with 

u=y*, see Fig. 2. 

 

 

Fig. 2: Perfect Inversion [2]. 

 

If the feed through matrix is regular, then the inver-

sion law can be directly built by solving the second 

state equation for u and substituting it in the equation 

for x, which yields: 
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With the inverse transfer system coupled to it after-

wards, its respective equations become: 
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The relevant matrices can thus directly be found by a 

coefficient comparison as input u and output y of the 

system are exchanged, leading to: 
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The relevant matrices are found by a comparison of 

coefficients: 
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The calculation of these matrices can be easily per-

formed as algebraic expressions by introducing the 

Laplace variable s as symbolic equation and solving it 

with MATLAB through the inv command. 

Inversion of strictly proper systems 

While before presented case is admittedly easy, a 

problem arises from real physics systems which are 

strictly proper. For this reason, the inversion cannot 

be performed directly as the inversion would be im-

proper in consequence.  

 

One possibility to overcome this problem is the intro-

duction of “propering” filters causing the transfer 

function to be bi-proper and thus invertible. As these 

filters include additional zeros in the original transfer 

function, they should be kept small not to alter the 

system’s behaviour. Although accordingly small val-

ues for the time constants T in within the filters are 

preferred, they can cause some problems during nu-

merical simulation as they increase the stiffness of the 

system [2]. The magnitude should therefore be some 

orders smaller than that of the smallest pole.  

 

Another possibility quoted in [2] is the use of a highly 

parameterized controller gain in an additional control 

loop connected to the plant’s model which also gener-

ates a perfect inverse as implicit method. This ap-

proach is however not used in the following. 

 

Through the inclusion of filters and the representation 

of the dynamics with the Laplace variable s the inver-

sion can be calculated algebraically and then brought 

to numerical form for use in simulations. 

Dynamic Inversion of unstable systems 

Stable systems can be more easily dynamically in-

verted than unstable ones. Although it is directly pos-

sible to apply Dynamic Inversion to latter ones nu-

merical deviation issues quickly lead to instability. 

This especially applies when the model fits the plant 

poorly. 

 



One approach to allow for Dynamic Inversion of un-

stable systems is to include a stabilizing controller 

into the plant acting parallel to the Dynamic Inver-

sion. As this controller just has to guarantee stability 

it is not necessary to operate with a high gain or to be 

designed optimally and a proportional controller is 

sufficient [2]. In this context the stabilizing controller 

will avoid too high deviations from the operation 

point while the Dynamic Inversion is mainly respon-

sible for command compliance. 

Imperfect model and adaptation 

As it is impossible to perfectly match plant and 

plant’s model used for linear inversion there are dif-

ferent approaches allowing for compensation of in-

version errors accompanied with this incomplete 

knowledge of the plant’s characteristic. Next to Ro-

bust Control aiming at ensuring stability and perform-

ance in the face of uncertainties one very important 

approach is the use of Adaptive Control. While there 

is not only the problem of changing characteristics 

which could be tackled in a classic controller by ap-

propriate gain scheduling, but mainly the lack of in-

formation or even misinformation on the plant adap-

tive elements have to autonomously react on these 

deficiencies.  

Neural Networks 

Very important in the context of adaptation are Artifi-

cial Neural Networks (ANN) allowing for a represen-

tation of these effects and comprising a learning ca-

pability to adapt to changing scenarios. They consist 

of neurons made up by an activation function as basic 

elements which are connected by weights. The net 

learns by adjusting the weights. For this learning al-

gorithms as for example back propagation are used. 

As ANN can theoretically according to their size and 

structure model any system they provide a very use-

able base for compensating unknown effects in con-

text to Dynamic Inversion where they are used as 

online networks continuously updating their weight-

ings[3,4]. 

 

With Neural Networks comes the problem that the 

adaptation can cause the control inputs to become so 

large that real effects as actuator rate limiting or de-

flection limits and limited control power prevent the 

system to execute the adaptations commanded by the 

neural net. One possibility to avoid this problem is 

Pseudo Control Hedging (PCH) [5]. Hereby the 

plant’s characteristics that are not meant to be seen by 

the Neural Net, as they would cause an adaptation 

latter one would not be able to execute, are masked 

from the Neural Network. This ensures that the plant 

runs within its operational limits and can conduct the 

required commands and even adapt in the presence of 

input saturation. 

Dynamic Inversion for Helicopters 

In context to non-linear inversion, very often the rota-

tional dynamics are separated from the translational 

dynamics, and the relevant transformation matrices 

are used to describe the nonlinear interaction between 

them. Especially in the case of helicopters, where 

there is a strong interconnection between rotational 

and translational dynamics, this way seems useful. In 

fact, rotational dynamics can be perceived as a kind of 

actuator for translational dynamics[1, 7]. This be-

comes clear as the main rotor, which is a dynamic 

system for itself though with a higher magnitude of 

bandwidth compared to the rigid body dynamics, 

causes the thrust, which is scaled by the collective 

pitch and directed in pitch and roll attitude by the 

respective cyclic controls. Thus, through the tilting of 

the thrust vector, acceleration in the horizontal can be 

caused. 

 

In many publications Dynamic Inversion is limited to 

this rotational dynamics [1, 4] as here most of the 

helicopters dynamics are inherent and the vertical and 

yaw motion are relatively easy to control as they pos-

sess first order dynamics. The outer control loops are 

accordingly put up by classic controller synthesis and 

the overall cascade structure. As the outer control 

loops are used for translational dynamics and thus 

velocity and position control, it can be useful to ex-

tend the dynamic version to this part of the controller 

structure. In [6] this is pursued to ensure execution of 

a defined trajectory with high bandwidth and agility. 

Hereby the classic bandwidth separation between 

inner and outer loop can be decreased allowing better 

manoeuvrability in the translational regime. The cas-

cade structure is maintained but for each control loop 

Dynamic Inversion is used. For this reason the track-

ing of commands and disturbance rejection can be 

improved compared to a classical design. 

 

The approach to use a simple linear model for inver-

sion and combine it with a neural network is pursued 

in [8] for an unmanned RMAX helicopter. It is there-

fore similar to the here employed one.  

Modelling 

The basis for the investigation is a dedicated simula-

tion model of the helicopter consisting of rotor and 

fuselage aerodynamics. 

 

The coaxial helicopter is modelled with a 6-DOF 

simulation expanded by the flapping motion of the 

individual blades as primary rotor dynamic and thus 

input to the rigid body motion of the helicopter. The 

rotor aerodynamics is calculated by the use of the 

Blade Element Theory, whereby experimental data for 

the induced velocities in the rotor area for coaxial 

helicopters is available from former research pro-



grams on this topic at EADS. In addition, the results 

are validated by a second modelling approach utiliz-

ing a vortex method as “Free-Wake Time Marching” 

simulation, which allows the calculation of transient 

rotor aerodynamics and the influence of control and 

disturbance inputs to the rotor, see Fig. 2. The rotor is 

seen as a dynamic system causing forces and mo-

ments on the helicopter. The fuselage aerodynamics 

are simplified by the use of drag surfaces, which is a 

valid approach, especially for the near hover flight, 

see also [9]. 

 

 

Fig. 3: Coaxial rotor with wake (shown only for 

one upper blade) in hover flight. Circulation in 

red, blade thrust in green and induced velocities in 

blue. 

Control System 

The Flight Guidance and Control System possesses a 

classic cascade structure with stacked control loops 

reaching form the Basic Controller (inner loop) to the 

Mission Controller (outer loop) commanding the 

Flight Guidance. Since the prevailing dynamics of the 

helicopter are dealt with by the Basic Controller with 

controlled states of pitch and roll attitude as well as 

vertical velocity and yaw rate, different control strate-

gies have been investigated. These include classic 

analytical Pole Zero Placement, which is especially 

suitable for the near hover flight as well as Robust 

Control by the H-infinity method allowing a robust 

response to uncertainties and changes in flight dy-

namic properties which are typical for helicopters 

throughout the flight envelope. The Mission Control 

by the Department of Flight Dynamic is a tailored 

test-system for the evaluation of the control system. It 

allows the controllers to be commanded and config-

ured (controller gains, limiters etc.) and enables the 

automatic performance of predefined flight manoeu-

vres as for example defined in ADS-33E-PRF. It is set 

up as state machine under Stateflow, a 

MATLAB/Simulink toolbox. Details can be found in 

[9]. 

 

 

Fig. 4: Overall structure of the FCGS. 

 

Application of Dynamic Inversion to 

the coaxial helicopter UAV 

For the coaxial helicopter a linear Dynamic Inversion 

as described in [2] was chosen. Controlled variables 

include vertical and yaw rate and in contrast to latter 

one not the angular rates for pitch and role but atti-

tude angles. Therefore, the structure of the control 

system remains unchanged with the Basic Controller 

with analytic pole placement replaced by a Dynamic 

Inversion controller. To account for model deficien-

cies, a neural network was implemented. The struc-

ture of the Basic Controller with Dynamic Inversion 

is shown in Fig. 5. 

 

 

Fig. 5: Scheme for Basic Controller with stabiliz-

ing proportional controller and adaptive Neural 

Network for Dynamic Inversion. 

 

For the design of the Dynamic Inversion, a state space 

system comprising the translational velocities u , v, w, 

the rotational rates p, q, r and the attitude angles Φ 

and Θ were used. The corresponding input and state 

vector u and x (x=y)are: 

 

[ ]T
rqpwvu ΘΦ=x

,

[ ]T

Tcscoll δϑϑϑ=u
. 

As command reference first order plants with 0.1 

seconds time constant were used for yawing and ver-

tical motion, while second order models with the 

same time constant were used for pitch and roll angle. 

 



Due to the reduced couplings in control inputs for the 

more symmetrical coaxial configuration it was de-

cided to reduce the control matrix B to main control 

effects, leaving the four primary control Inputs. Addi-

tionally, the couplings between longitudinal and lat-

eral dynamics were neglected, see also following sig-

nal flow diagrams, Fig. 6-7. 

 

 

Fig. 6: Signal flow diagram for Longitudinal Mo-

tion as used in linear Dynamic Inversion. 

 

Fig. 7: Signal flow diagram for Lateral Motion as 

used in linear Dynamic Inversion. 

 

As the neural network identifies the plant, its output 

can be used as additional input to the Dynamic Inver-

sion reducing the inversion error. The dynamics of the 

systems are therefore incorporated in the inversion, 

while the parameters are maintained by the Neural 

Network. In the easiest form, the Neural Network has 

an input layer, one hidden layer and output layer. The 

hidden layer is built by a sigmoid activation functions 

as these have the advantage of upper and lower bound 

and they are continuously differentiable. The output 

layer is given as linear function. The activation func-

tion within the hidden layer for a single neuron is: 

 

(7) 
ze1

1
)z(
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The structure of the net can be seen in the following 

figure. For the learning of the net the back-

propagation algorithm is used [3]. Due to the MIMO 

system the network can be described by matrices sim-

plifying its calculation online during simulation. As-

pects of bounds, stability and PCH are not to be ad-

dressed here. The relevant theory can be found in the 

literature [3-5]. 
 

 

Fig. 8: Neural Network with input, hidden and 

output layer and relevant weighting matrices V
T 

and W
T 

[10]. 

 

The output y of the net can be calculated by using the 

relevant inputs x in conjunction with the weighting 

matrices and the activation functions resulting in: 

 

(8) ))xV(W(y TT

12
σσ= . 

 

If the output layer is linear then the expression simpli-

fies to the term within brackets. For simulation a sig-

moid hidden layer and a linear output layer is used. 

Simulation 

In the following a Dynamic Inversion controller in 

combination with a stabilizing proportional controller 

and an adaptive online Neural Network was investi-

gated in linear and non-linear Simulation. For latter 

on the blade element method was used for the rotor 

aerodynamics. 

Linear Simulation 

To setup the controller, the linear Dynamic Inversion 

was first conducted with a linear plant model. As 

stabilizing element for the plant a simple proportional 

controller with not optimized parameters was used. 

To account for model deficiencies a Neural Network 

was setup and the learning rate adapted within the 

simulation. The Neural Network was fed with com-

manded states, its derivatives and the error between 

commanded and measured states as well as latter ab-

solute values. The learning rate was adjusted empiri-

cally within the simulation. 

 

The following Fig. 9-12 show the results for this in-

version simulation for different elements of the con-

trol setup active. It can be seen that due to numerical 



reasons the simulation becomes unstable when no 

stabilizing controller is used. The controller therefore 

allows for nominal performance, when the plant’s 

model used for the Dynamic Inversion design equals 

the plant. The commands are then perfectly matched. 

In the presence of deficiencies, the inversion cannot 

longer be perfectly accomplished and deviations ap-

pear. By inclusion of a Neural Network acting on the 

Dynamic Inversion, these deviations can be compen-

sated through an online adaptation. 

 

 

Fig. 9: Step inputs to controlled system with inver-

sion only and following instability due to numerics. 

 

 

Fig. 10: Step inputs to controlled system with in-

version and stabilizing proportional controller. 

 

In the last case with adaption the plant’s dynamic and 

control input matrix elements were changed randomly 

by +/- 100 %. The results are shown for stabilizing 

controller only and stabilizing controller with Neural 

Network adaptation in Fig. 11-12. 

 

The Neural Network is able to compensate the oscilla-

tion and to maintain the states close to the com-

manded values whereas in the case with proportional 

controller only the system response clearly deterio-

rates.  

 

The results showed good compliance due to the adap-

tive Neural Network also for from the model differing 

plants underlining the justification of this approach in 

combining Dynamic Inversion control with a stabiliz-

ing controller and a Neural Network for adaptations. 

 
 

 

Fig. 11: Step inputs to controlled system with sta-

bilizing proportional controller in presence of 

model deviation. 

 

Fig. 12: Step inputs to controlled system with sta-

bilising proportional controller and adapting 

online Neural Network in presence of model devia-

tion. 

Non-linear Simulation 

The control system evaluated as Basic Controller in 

the linear simulation was transferred in the non-linear 

simulation and incorporated within the overall FCGS. 

 

By incorporating the controller into this more general 

simulation non-linearity, non-modelled dynamics 

(blade flapping) resulting in a compared to the plant 

reduced order model used for inversion, as well as 

real effects in form of actuator dynamics are intro-

duced. These cause errors in the control system and 

lead to deviations from the commanded reference 



states.  

 

As test a sinus command was given for the Θ angle 

with an amplitude of +/-10 deg and a frequency of 

ω=3 rad/sec starting at zero seconds. Due to the dis-

crepancies between model and plant the Dynamic 

Inversion with proportional controller only was not 

able to generate the commanded oscillation and shows 

unstable behaviour despite the proportional controller, 

see Fig. 13. 

 

 

Fig. 13: Non-linear simulation of longitudinal mo-

tion for pitch oscillation with inversion and stabi-

lizing controller only leading to divergence. 

 

In the second case a Neural Network with V being a  

8x13 and W being a 4x9 matrix was used for adapta-

tion. Although not perfectly matching the amplitude, 

the curves adapt quickly to the command and the Neu-

ral Net even improves stability, see Fig. 14. 

 

 

Fig. 14: Non-linear simulation of longitudinal mo-

tion for pitch oscillation with inversion, stabilizing 

controller and online Neural Network. 

 

Due to the stabilizing controller and the adaptivity of 

the Neural Network the controller remains robust and 

clearly adapts to the changing plant characteristics. 

 

However, the dynamic structure is important for the 

accuracy of the Dynamic Inversion. The inversion of 

a system with a reduced order model has it limitations 

also a simple Neural Network without incorporated 

dynamics as used in this context cannot overcome. 

Nevertheless, even with these limitations it is possible 

to build a basic adaptive inversion controller with by 

simple elements. 

Conclusion and Outlook 

Together with the identified dynamic properties of the 

helicopter the necessary steps for the implementation 

of a Dynamic Inversion control for operation of an 

unmanned helicopter were presented. It is shown that 

the use of insight into the dynamic properties and 

their evolution throughout manoeuvres Dynamic In-

version allows a beneficiary control of the helicopter 

with the possibility to generate explicitly specified 

state trajectories by reference models.  

 

The problems of stability and model discrepancy were 

addressed by the inclusion of a proportional controller 

and a Neural Network. The results in the linear and 

non-linear simulation show the benefits of this ap-

proach.  

 

For highest accuracy the model order should comply 

with the system’s dynamic order or posses adequate 

adaptation capabilities to account for the model dis-

crepancy. The inversion possesses the order of the 

nominal system while the neural net allows for adap-

tation of its parameters. However, a simple net with-

out dynamics acting on the Dynamic Inversion can 

therefore not compensate missing dynamics within 

the inversion model. 

 

Future work will focus on extension of this approach 

by non-linear Dynamic Inversion and improved Neu-

ral Networks accounting for dynamics. Furthermore, 

with increased bandwidth the PCH will be included in 

the design. 

 

Nomenclature 

A Dynamic matrix 

ANN Artificial Neural Network 

B Input matrix 

C Output matrix 

D Feed-through matrix 

G Plant 

DOF Degree of Freedom 
FCGS Flight Control and Guidance System 

H Height above ground 

Li Roll body-fixed Moment-Derivative with  

respective index i 



Mi  Pich body-fixed Moment-Derivative with  

respective index i 

MIMO Multiple Input Multiple Output 

Ni  Yawing body-fixed Moment-Derivative with  

respective index i 

PCH Pseudo Control Hedging 

p Angular rate along body-fixed x-axis [deg/s] 

q Angular rate along body-fixed y-axis [deg/s] 

r Angular rate along body-fixed z-axis [deg/s] 

t Time [s] 

T Time constant 

u Translational velocity in body-fixed x-axis 

[m/s] 

u Input vector 

UAV Unmanned Aerial Vehicle 

v Translational velocity in body-fixed y-axis 

[m/s] 

V Weighting matrix (input to hidden layer) 

w Translational velocity in body-fixed z-axis 

[m/s] 

W Weighting matrix (hidden to output layer) 

x North position relative to origin [m] 

x State vector 

Xi  Longitudinal body-fixed Moment-Derivative 

with  respective index i 

y East position relative to origin [m] 

y Output vector 

Yi  Lateral body-fixed Moment-Derivative with  

respective index i 

z Vertical position relative to origin [m] 

Zi  Vertical body-fixed Moment-Derivative with  

respective index i 

δΤ Differential pitch [deg] 

Ω Angular velocity of blade rotation [deg/s] 

Φ Bank attitude [deg] 

ϑ0  Collective blade pitch [deg] 

ϑc Cyclic lateral pitch [deg] 

ϑs Cyclic longitudinal pitch [deg] 

Θ Pitch attitude [deg] 

Ψ Heading [deg] 

β Blade flapping angle [deg] 

σ Activation function 

θ Blade element pitch [deg] 

ω0 Controller Design Bandwidth [1/s] 

 

Indices 

* True Inverse 

c “commanded” 
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