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Abstract

This paper presents an inverse simulation methodol-
ogy based on numerical optimization. The methodology
is applied to a simplified version of the slalom maneuver
in the ADS-33D helicopter handling qualities specifica-
tion. The inverse simulation is formulated as an op-
timization problem with trajectory and dynamic con-
straints, pilot inputs as design variables, and an objec-
tive function that depends on the specific problem be-
ing solved. A maximum speed solution is described in
the paper. The results show that numerical optimiza-
tion is 2 reliable and Aexible tool for inverse simulation,
both when the required trajectory is prescribed explic-
itly and when it is defined indirectly through geomet-
ric and dynamic constraints, When the trajectory is
defined indirectly, there is not a single acceptable tra-
jectory, but rather an entire family with noticeable dif-
ferences in the helicopter dynamics and in the required
pilot inputs. Even when the trajectory is prescribed ex-
plicitly multiple solutions exist. For handling qualities
studies, the multiple solutions may provide an indication
of the amount of scatier in pilot ratings to be expected
for a given aircraft and a given maneuver. However, if
the inverse simulation is used for simulation validation,
then additional constraints may have to be placed on the
solution to make it unique.

Notation
Vv Flight speed along the trajectory
z Distance along the centerline of the maneuver,
Figure 1
Yy Lateral displacement from the centerline of the

maneuver (positive to the right), Figure 1

ye(z)  Trajectory that clears the 500 and 1000 ft
markers with v = & ft lateral displacement

Y500 Lateral displacement for z = 500 ft

z Altitude change from reference value (positive
down)

e, 81 Lateral and longitudinal cyclic pitch, refative
to trim values

6g,80:  Collective pitch of main and tail rotors,
relative to frim values

@ Roll attitude of the helicopter

L Associate Professor, Alfred Gessow Rotorcraft Cen-
ter; e-mail: celi@eng.umd.edu.

1. Introduction

Favorable handling qualities are a key objective of the
design of military and commercial helicopters alike. In
fact, reducing piloting effort improves mission eflective-
ness and enhances safety. Extensive effort has gone into
the formulation of criteria that relate subjective pilot
opinions to quantitative measures of the behavior of a
helicopter. The ADS-33D handling gqualities require-
ments [1] are a notable example. Besides a variety of
time- and frequency-domain criteria, ADS-33D includes
a. series of demonstration maneuvers “to provide an over-
all assessment of the rotorcraft’s ability to perform cer-
tain critical tasks” [1]. The computer sirnulation of these
maneuvers has received considerable attention in the last
few years. The problem is generally formulated as an in-
verse simulation, that is, the required trajectory of the
helicopter is prescribed, and the solution consists of the
time-histories of the pilot inputs that make the helicopter
fly that trajectory. Therefore, inverse simulation could
become a useful tool to assess the maneuverability and
agility characteristics of a helicopter, piloting workload,
and performance limits.

One approach to the solution of the inverse simula-
tion problem consists of recasting it inte an optimal
control problem [2] by minimizing, using gradient meth-
ods, a performance index containing the difference be-
tween required and achieved flight path, and augmented
with the aircraft ordinary differential equations (ODE)
of motion. Another method, developed by Thomson and
Bradley [3, 4], resembles a trim calculation carried out
at each time step. The sequence in which states and con-
trols are updated, and the update equations, are based
on physical and kinematic considerations. Ref. [3] is
based on a 6-degree of freedom model. The same basic
technique has been used by Whalley [5] in an interest-
ing study that included a validation through a series of
piloted simulation experiments. Hess et al. 16, 7] have
proposed an alternate technique, in which the trajectory
is divided into small steps; for a given step the initial
controls are known, and the equations of motion are in-
tegrated with guesses of the controls at the end of the
step. The errors between actual and desired trajectories
are calculated, and the controls at the end of the step are
adjusted using a Newton-Raphson technique to reduce
the errors to zere. This technique is named “integra-
tion inverse method”, as opposed to the “differentiation
inverse method” of Ref. 3] {which requires the differen-
tiation of the desired trajectory). The same technique
has been used by Rutherford and Thomson [8] and com-
pared with that of Ref. [3]. The integration method was
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found to be an order of magnitude slower than the dif
ferentiation method, but more flexible and convenient to
set up. The two methods showed comparable accuracy.

Ref. {8] discusses the occurrence of numerical insta-
bilities in both the differentiation and the integration
inverse simulation algorithms. De Matteis et ol. [9] pro-
pose a variation of the algorithm of Ref. [6], in which the
Newton-Raphson solution at every time step is replaced
by a local optimization problem. This technique elim-
inates some numerical instabilities observed in Ref. {§].
Lee and Kim [10] formulate the inverse simulation as
an optimization problem with equality constraints. A
variational approach is used to derive optimality condi-
tions, and a method of finite elements in time is used to
discretize the resulting equations. Borri et al. {11} trans-
form the equations of motion of the aircraft into alge-
braic equations using finite elements in time. The trajec-
tory constraints are also expressed in algebraic equation
form. The combined system is solved using a Newton-
Raphson technique. Finally, Yip and Leng have pro-
vided stability tests for the integration method applied
to time-invariant systems [12]. Refs. [9]-[12] do not ad-
dress helicopter problems. Except for Ref. [8], the stud-
ies previousty mentioned do not take rotor dynamics into
account.

When inverse simulation is used for helicopter han-
dling qualitics studies, it is not immediately obvious
which specific trajectory should be prescribed. In fact,
for example, A[}S-33D does not indicate precise trajec-
tories for the demonstration maneuvers. Instead, it re-
quires that certain gecmetric and dynamic conditions be
satisfied. For example, the slalom of Paragraph 4.2.6 re-
quires that the turns extend from between 50 and 100
It from the centerline [1], and that the speed be of at
least 60 knots. One of the conclusions of Ref. (5] is that
there is no guarantee that a preassigned aircraft trajec-
tory is optimal, and a pilot could perform the maneuver
better than the inverse simulation would suggest. This
conclusion applies to all the studies previously deseribed
because in all cases the trajectory is fixed.

In light of the preceding discussion, the main objee-
tives of the paper are:

1. To present a new methodology for inverse simula-
tion, based on the use of numerical optimization.
This methodology differs from those mentioned ear-
lier because it operates on a family of possible tra-
jectories (and therefore of pilot command time his-
torles} among which it selects the best, based on one
or more performance criteria. Traditional inverse
simulation with fixed prescribed trajectory ean be
recovered as a special case.

S

. To describe the application of this methodology to
a simplified version of one of the ADS-33D) demon-
stration maneuvers, namely the slalom maneuver of
Paragraph 4.2.6 of the specification.

3. To discuss some theoretical aspects and practical
implementation issues of the proposed methodology.

2. Simulation model

The mathematical model of the helicopter used in this
study is a nonlinear blade element type model that in-
cludes fuselage, rotor, and main rotor inflow dynamics.
The 6 degree of freedom rigid body motion of the aireraft
is modeled using nonlinear Euler equations. Linear aero-
dynamics is assumed for fuselage and empennage. The
blades are assumed to be rigid, with offset hinges and
root springs. Flap and lag dynamics of each blade are
modeled. The main rotor has four blades. The configu-
ration parameters are representative of a hingeless rotor
helicopter similar to the BO-105.

The coupled system of rotor, fuselage, and inflow equa-
tions of motion is written in first~order form. The state
vector has a total of 31 elements: flap and lag displace-
ments and rates for each of the 4 blades {16 states); 12
rigid body positions, velocities, rates, and attitudes; and
3 inflow states. The trim procedure is the same as in
Refs. [13, 14]. Thus, the rotor equations of motion are
transformed into a system of nonlinear algebraic equa-
ttons using a Galerkin method. The algebraic equations
enforcing force and moment equilibrium are added to
the rotor equations, and the combined system is solved
simultaneously. The solution yields the harmonics of a
Fourier series expansion of the rotor degrees of freedom,
the pitch control settings, trim attitudes and rates of
the entire helicopter, and main and tail rotor inflow.
The free flight maneuver simulation is carried out by
integrating the nonlinear equations of motion with the
variable-step, variable-order solver DASSL [15, 16].

3. General formulation of the inverse simulation
problem

The inverse simulation problem is formulated in non-
linear mathematical programming form. Therefore, the
objective is to determine a vector X of design variables
that minimizes a scalar objective function F{X), subject
to constraints ¢;(X) <0,7=1,..., M.

The vector of design variables is composed of the val-
ues of 4 pilot inputs, namely collective pitch, longitudinal
cyclic pitch, and lateral cyclic pitch for the main rotor
and eollective pitch for the tail rotor, at preassigned time
points during the maneuver, that is;

[Bo(ts) O1c(t1) G1c(t1) Boets) - ..
o Bo{tn) O1(tn) O10(tn) Boa(tn)i (1)

X' =

In this study, the times éx,k = 1,...,n will be equi-
spaced, but need not be. The controls are assumed to
vary linearly betwéen consecutive time points; at the ini-
tial time Ty they are set to their respective trim value.
Therefore, the number of design variables is equal to
N = 4n.
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The constraints are defined based on the description
of the slalom maneuver in Paragraph 4.2.6 of the ADS-
33D handling qualities specification {1]. The suggested
maneuver is shown in Figure 1. The present study will
address a simplified version of the maneuver, with only
one excursion to the right of the centerline and one to the
left, instead of two, and a total length of 1500 ft along the
centerline instead of 2500 ft. Two types of constraints
appear in the problem. The first consists of constraints
that are enforced at only one point in space or time.
The second consists of constraints that are functions of
space or time, and that have to be satisfied over the
entire maneuver. The constraints enforce the following
requirements:

1. The turns must be at least 50 feet from the center-
line at 500 and 1000 feet. This results in the two
point constraints:

g1{X) ﬂ1+y—5(—tol <90 for ¢ when z == 500 [t

(2)
g{X)=1- y—s%z <0 for ¢ when x = 1000 ft
(3)

The guantities z and y are respectively the posi-
tion along the axis of the maneuver (e.g., along a
runway), and the axis perpendicular to it (see Fig-
ure 1}.

o

The turns must be no more than 100 feet from the
centerline at 500 and 1000 feet. This results in the
two additional point constraints:

gX)=-1—- —f((% <0 for ¢t when o = 500 ft
(4)
ga{X) = -1+ % <0 for t when z = 1000 ft
(5)

3. The desired performance calls for an airspeed of at
least 60 knots during the entire maneuver, which is
expressed mathematically in the form:

ga(X;e) =1- 28 < (6)
GO

where V(¢) is the velocity of the helicopter in knots.
‘While the previous constraints were enforced at only
specified points of the trajectory, this is a continu-
ous constraint that must be satisfied throughout the
maneuver. In this study the constraint is collapsed
into one number, which is the integral of the viola-
tion over the entire maneuver

T
95(:{)-_—/0 < ga(X;t)>2 dt <0 (7)

where the bracket function is defined as

e 9452 for ga(X;2) 2 0
< 9aXit) >= { 0 for ga(Xit) < 0
)
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and the integrand is squared to make the gradient
of g5(X) continuous.

. A criterion from the previous version of the spec-

ification, ADS-33C, called for changes not greater
than 10 ft from the reference altitude during the ma-
neuver. Although the current ADS-33D specifica-
tion ne longer inchudes this criterion, the ADS-33C
limits were implemented anyway. If the maneuver
starts at a reflerence altitude z,.s this implies that
Zrof — Nz < 2(2) € Zrep + Az, with Az = 10 ft. For
convenience, the reference altitude in this study is
set to zero, which results in the constraints:

X =0 150 = 1<o
©

These two constraints are defined over the entire
maneuver and are collapsed into point constraints
in the same way as for g5(X), Eq. (7), which gives

T
g6(X) =/ <gp(X;t)>? &t <0
0
(10}
T
gr{X) ‘—‘f < g (X t) >2 @t <0
¢}

. The heading angle v is required to be within an

upper and a lower bound throughout the maneu-
ver, This requirement is not in ADS-33D, and is
included to avoid solutions that are mathematically
acceptable but practically meaningless, such as a
helicopter performing the maneuver while continu-
ously spinning about its vaw axis. Therefore, the
absolute value of the heading is required to be less
than 45 degrees, which results in the following two
continuous constraints:
Bl Pt
X 0=-22 1c0  gexy=2 140
(11)
which are collapsed into the point constraints

T
gs(X)=/ <gp(X;t) >2 dt <0
0
(12}
T
go(X) = / <gp(X;t) 5% di <0
Qg

. ADS-33 requires that the maneuver be completed

on the centerline. To satisfy this requirement, first
the following quantity is defined:

l Lmazx
2 2
= dzx 13
yave Tmaz — 1500 1500 y ( )
which is the average value of the square of the lat-
eral displacement from the centerline after the com-

pletion of the maneuver, The quantity ... is the



distance at the end of the maneuver. The simula-
tion is carried out for a prescribed time, but the
speed of the helicopter is not necessarily constant,
and therefore the actual value of z,. 15 not fixed
and depends on the particular maneuver. The con-
straint then becomes

gi0(X) = H= -1<0

(14)

which requires that the average lateral displacement
be less than 2 feet.

4. Preliminary step — Trajectory matching

Some optimization algorithms require that the initial
solution be feasible (i.e., such that all the constraints are
satisfled); others can start from an infeasible solution
(i.e., one that viclates one or more constraints) and seek
a feasible one. In general, however, it is advisable to start
from a feasible sclution. Therefore, the objective of this
preliminary step is to generate such a feasible solution
by matching a preassigned trajectory that satisfies all
the constraints. This trajectory is defined as follows:

o
72 (555) % (50)

z < 500
I © — 500\ 2 z —500\*
1- 4

7 6( 500)*(500)}

) 500 < x < 1000

] x — 1000\? £ —1000\°
1o () 1 (00)

1000 < % < 1500

. O z > 1500

(15)
plus zp{z) = 0. This trajectory satisfies all the con-
straints except for those that enforce a minimum air-
speed, Eq. {7), and bounds on the heading, Eq. (12).
The objective function for this step minimizes the devi-
ation of the actual trajectory from the required one, and
includes the constraints gs{X}, ga(X) and go(X) in the
form of penalty functions. The {formulation for this step
can be obtained from the general formulation described
in the previous section by removing all the constraints,
and defining the objective function as:

T
FX) = fo [y —vp)? + 222 dt + rsgs(X)

+rggs(X) + roge(X) — min (16)
The penalty parameters rs, rg, and rg are all set equal
to one. Therefore, the solution of this step requires the
unconstratned minimization of the augmented objective

function F(X}.

In principle, the optimization could be carried out only
until the solution satisfies all the constraints of the gen-
eral formulation, and then switch to the desired con-
strained optimization. However, in this section the op-
timization will be performed until convergence, both to
explore some important general features of the optimiza-
tion process, and also because this step provides a dif-
ferent approach to the inverse simulation problem with
fixed trajectory. The unconstrained optimization prob-
lem is solved using a BFGS [17] algorithm, as imple-
mented in the optimization code DOT {18].

Practical implementation issues
Problems due to aircraft instabilities

Without automatic stabilization all helicopters are un-
stable in hover. Some configurations, like that of the
present study, remain unstable in forward flight. This
can affect the trajectory optimization, as evidenced by
Figure 2 which shows an inverse simulation carried out
for 14 seconds of simulated time. The vector X con-
tains the four control inputs at one second intervals, for
a total of 56 elements. The figure shows the converged
solution, which clearly does not match the required tra-
jectory very well.

Figure 3 helps explain the problem. The top plot
shows the portion of the search direction S correspond-
ing to the lateral cyclic pitch 8, at the last iteration of
optimization. Recall [17] that the optimization is com-
posed of two basic steps, that is, the determination of a
search direction S, and a one-dimensional minimization
of the objective F(X) along S that updates the design
X according to X = X + a8, where & is the indepen-
dent variable of the 1-D minimization. Therefore, the
figure shows that the optimizer would like to decrease
&1, for the first 4 seconds, i.e., move the stick further to
the right. Figure 2 shows that instead the stick should
be moved further to the left to match the desired tra-
jectory. Therefore, the optimizer generates the wrong
maneuver. The gradient of F(X) with respect to the
81 inputs is shown at the bottom of Figure 3. To ob-
tain the gradients using finite difference approximations
each control is slightly increased, and therefore the fig-
ure shows the changes in the objective function caused
by a small perturbation of lateral stick to the left. (Note
that the search direction is close to a scaled version of
the negative of the gradient.}

The objective function, i.e., the discrepancy from the
required trajectory, increases with larger left stick inputs
at the beginning of the maneuver. This apparent incon-
sistency can be explained by considering Figure 4. The
figure shows one of the perturbations of lateral cyclic
used to calculate the gradient of F(X), namely that at
time ¢ = 3 sec, and the corresponding perturbation of the
trajectory y. Because the helicopter is unstable, the tri-
angular impulse produces relatively large perturbations
toward the end of the maneuver, and much smaller ones
in the first few seconds. Therefore, the component of the
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gradient reflects overwhelmingly the end of the maneuver
and produces the unrealistic results mentioned before. If
the helicopter dynamics had been well damped, the ef-
fect of the perturbation of lateral cyclic would have been
confined to the instants immediately following the input.

The problem can be eliminated by performing the op-
timization over overlapping segments of the trajectory
rather than over the entire trajectory. In Figure 5 each
segment lasts 3 seconds, and the last two seconds of a
given segment overlap with the first two of the next. The
trajectories of the first second of each segment are then
joined together and provide the required complete tra-
jectory. The design vector X contains only the controls
corresponding to the 3 seconds of the segment. Because
the controls are updated every 0.5 seconds the total num-
ber of design variables is 24. Therefore, the original op-
timization problem has been replaced by a sequence of
smaller problems that, as a group, provide the complete
solution. Figure 5 shows that the agreement between ac-
tual and required trajectories is excellent, except for the
first 2-3 seconds in which the required trajectory perhaps
requires too high a lateral load factor. The figure also
shows the trajectories calculated over each segment. One
of them is marked with a thicker line for illustration. The
trajectory of Figure 5 satisfies the criteria of ADS-33D
(except obviousty for the reduction to two turns rather
than four).

The length of each segment and the extent of the
overlap of consecutive segments are likely to depend on
the dynamics of each aireraft configuration, especially if
there are unstable modes. The values used in this study
were the longest length and the shortest overlap that
would reliably work in all cases, but a study of different
aircraft configurations was not performed. The config-
uration used in this study (small size aircraft, hingeless
rotor, unstable) is probably a “worst case scenario”, and
therefore the 3-second length and 2-second overlap are
likely to be a safe choice in most cases.

Effect of numerical tolerances

An important practical issue is the accuracy of the gra-
dients, which depends on the finite difference step size.
In this study, the integration of the equations of motion
of the helicopter is carried out using the variable-step,
variable-order solver DASSL [15], which attempts to sat-
isfy user-defined local error tolerances. Therefore, the
finite difference step size must be selected consistently
with these error tolerances. The inferaction between
gradient calculation and the integration of the equations
of motion is an important issue in trajectory optimiza-
tion: Ref. [19] points out that less sophisticated fixed-
step/fixed-order ODE solvers can often be more efficient
overall because they don’t introduce numerical noise in
the gradients.

However, this problem cannot be avoided in helicopter
applications, if one wants to devise inverse simulation al-
gorithms that can be used with the most sophisticated
helicopter simulation models. In these models, the math-

ematical expressions can be so lengthy that it may not be
convenient to include all the terms in traditional mass,
damping, and stiffness matrices, but it is necessary to
leave many of them in a generic form as an external non-
linear forcing function (see for example Ref. [20]) on the
right-hand-side of the governing equations. Therefore,
the ODE solver needs to perform Newton-Raphson type
iterations at each integration step, whether the siep size
is fixed [21] or variable [15, 16], and this brings back the
need to define a convergence criterion through an error
tolerance.

In the present study, the relative and absolute local er-
rors used for the ODE solution are both equal to 1075.
This value offers a good compromise between accuracy
and computational effort [16]. To explore the effect of
numerical tolerances, the optimization was performed
with several values of the step size used in the finite dif-
ference calculation of the gradients. Each design variable
was increased by a given relative amount eg. If the ab-
solute value of the perturbation was smaller than a given
value e4, the value e4 was used instead. Figure 6 shows
the results of the optimization for e = 10~1,1072, 103,
and 107%, and e4 = O.leg in all cases. Both the lat-
eral displacement y(z) and the vertical displacement
z(xz) are shown. The curves for the first three values
of ey are essentially superimposed in the secale of the fig-
ure. The corresponding values of the objective function
F(X) are 44.9, 12.8, and 40.6 respectively, and therefore
en = 1072 gives the best accuracy in this case. When
er = 107% the match between actual and required tra-
jectory is poor, the value of the objective is 950.8, and
the 18 seconds are not sufficient to complete the maneu-
ver. The ADS-33D criteria would not be satisfied. It is
clear that calculating the gradients with a finite differ-
ence step comparable to the local error tolerance for the
ODE solver leads to poor results. On the other hand,
relatively large step sizes do not degrade seriously the
accuracy of the solution, and even a size of 10% of the
independent variables (with an absolute lower bound of
0.01) gives good results. All the trajectories presented in
the rest of the paper have been obtained with eg = 1072
and ey = 1073, These values are also likely o be ade-
quate for more general cases (i.e., different maneuvers or
aircraft configurations), if the solution of the governing
equations is obtained with local error tolerances of 107>
or tighter.

Multiple acceptable trajectories

When acceptable trajectories are defined indirectly,
through a set of criteria, multiple solutions can exist.
Figure 7 shows three acceptable solutions for the simpli-
fied slalom maneuver, obtained by matching three dif-
ferent trajectories. The “baseline” trajectory is that of
Eq. {15). For the other two, the constant 75 in Eq. (15)
is replaced hy 55 and 95. This corresponds to lateral ex-
cursions from the centerline of 55 and 95 ft respectively,
and therefore almost to the limits prescribed by ADS-33.
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For each curve in the figure, the dashed line indicates the
required trajectory, the solid line the actual trajectory.
In all cases the match is very good, especially after the
first 2-3 seconds. The altitude changes are very small
in all cases. The lower plot in Figure 7 shows the time
histories of the roll angle ¢. These values are taken with
respect to the trim state. Differences of 20° or more of
roll angle among the trajectories can be easily seen. The
time histories of lateral and longitudinal cyclic are pre-
sented in Figure 8. It should be noted that all the pitch
values presented in this paper are perturbations from
their trim values. Differences in magnitude, phase, and
frequency of the inputs are evident, especially in the first
half of the maneuver. Overall, these results show that
the slalom requirements of ADS-33D can be satisfied by
quite different maneuvers.

Multiple acceptable trajectories can also be due to the
presence of local minima in the trajectory optimization
problem. To study this issue, the trajectory matching
problem was repeated three times for the trajectory of
Eq. (15), with different initial guesses for the control
time histories. The differences among the trajectorics
are minimal (the curves would be superimposed in the
scale of Figure 5), and the three altitude profiles do not
differ by more than 2 ft throughout the maneuver. How-
ever, some difference can be seen in the time histories of
the roll angle ¢, shown in Figure 9. For example, the roll
reversal to clear the first marker at 500 ft, from about
-50 to about 50 degrees, occurs smoothly in trajectory
3. Instead, in trajectory 1 the roll to the right is too
fast, and there is a short left roll maneuver that reduces
¢ by about 20 degrees hefore the roll to the right re-
sumes. A similar maneuver can be seen in trajectory 2.
The same qualitative differences among trajectories can
be seen later, when the helicopter starts rolling to the
left before clearing the marker at 1000 ft. Here, both
trajectory 1 and 2 are smooth, whereas a brief reversal
is visible in trajectory 3.

The corresponding inputs of lateral cyclic are shown
in Figure 10. The inpuis for trajectory 1 have the
largest excursions of the three in the initial seconds of
the slalom, whereas those for trajectory 3 are the largest
before the second marker. In the present study no upper
bounds were placed on magnitude and rate of the pitch
inputs, and therefore the solution does not take contiol
saturation into account. Because each design variable
is the value of one control at a given time, this could
he easily done by placing bounds on the magnitude of
the design variables, alone or in combination. Magni-
tude and rates in Figure 10 do not appear unrealistically
high, but in general it will be prudent to include satura-
tion constraints.

The harmonics of the lateral cyclic input are shown
in Figure 11. The slalom is completed in about 14 sec-
onds. If this is taken as the period of the maneuver, then
the corresponding frequency is about 0.4 rad/sec. The
largest contribution is at twice this frequency because of

the inputs required to clear the two markers. A second
peak is visible at a frequency of about 2 rad/sec, which
is near the frequency of the Dutch roll mode in steady
straight flight. The analysis of the pilet input spectrum
can provide important information on the handling qual-
ities characteristics of the aireraft in the maneuver. In
general, a higher frequency content is associated with in-
creased pilot workload and degraded handling qualities
(very interesting discussions of this issue can be found
in Padfield et al {22] and Blanken et al. [23]).

5. Trajectory determination through
constrained optimization

The sialom demonstration maneuver in ADS-33D does
not require that a specific trajectory be matched, as long
as the constraints described in Section 3 are satisfied. As
a consequence, an entire family of trajectories will gen-
erally exist, and it will be possible to single out specific
ones to address a variety of different objectives. In this
section, for example, the goal is to study ADS-33D com-
pliant slalom maneuvers that maximize flight speed, with
the idea that these are going to be the most aggressive
maneuvers. Mathematically, the objective function will
then be the average speed over each 3-second segment,
that is:

F(X)= —k/V df — min (17)
where k is simply a constant scale factor to keep the size
of F(X) reasonably small. The constraints are those
described in Section 3.

Two additional constraints keep the trajectory y(z)
within the corridor shown in Figure 12. The curve
marked 75 is that defined by Eq. (15), those marked
with yz0 and yi0o are obtained from Eq. (15) by replac-
ing the constant 75 with 50 and 100 respectively. The left
limit of the trajectory is the upper curve in Fig. 12, de-
fined for every z as the smallest among ysg, vi00, ¥75 =10
ft for = < 1000 ft, and y7s = 5 ft for £ > 1000 ft. The
largest of those values defines the right limit of the tra-
jectory. These trajectory constraints are implemented
using the bracket functions, and have a form similar to
that of Eq. (7). The corridor is necessary because other-
wise the optimization in the first 3-second segment might
not be aware of the presence of the marker at 500 ft, and
would not begin the first turn to the left. Similarly, the
1000 ft marker may not be reached within 3 seconds of
clearing the 500 ft marker, and therefore the optimizer
would delay the preparation for its clearing. With those
that define the required corridor, the total number of
constraints of the optimization preblem is 12.

The constrained optimization problem is solved us-
ing a modified method of feasible directions (MMFD),
as implemented in the optimization code DOT [18].
DOT can also solve constrained optimization problems
using sequential linear programming (SLP) or sequen-
tial quadratic programming (SQP) algorithms. Limited
numerical experimentation showed that SLP requires a
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very careful management of move limits on the design
variables, and sometimes fails. SQP proved slightly more
robust, but required about 3 times the computational
effort of MMFD. The MMFD algorithm proved very re-
liable and reasconably efficient.

The results of the optimization are presented in Fig-
ures 13 through 15. Each contains several curves, corre-
sponding to different initial velocities for the maneuver.
In fact, the first optimization, carried out for an entry
speed of 60 kts, revealed that this initial speed could not
be increased by more than 1-2 knots in each segment.
The optimization was repeated for an entry speed of 65
kts, and then for speeds raised in 2 knot increments un-
til, at 71 knots, it was no longer possible to find a feasible
sohution. Although the slalom entry speed could itself be
a design variable in the optimization, this was not done
in the present study.

The various trajectories are shown in Figure 13. As
the speed increases, the turns becomne wider until, at 71
knots, it is not possible to remain within 100 feet from
the centerline at =z = 500 ft. The time required to com-
plete the maneuver, i.e., to cross the z = 1500 ft line,
is also indicated in the figure, and ranges from 14.9 sec
to 13.4 sec as the entry speed increases from 60 to 69
knots. In all cases the optimization increases speed by
about 1-2 knots over the entry speed. Not surprisingly,
the plots of z{z) indicate that the optimum maneuvers
make the helicopter lose altitude, Lo trade potential for
kinetic energy and inecrease speed. Figure 14 shows the
time histories of the roll angle ¢. Clearly, as the ma-
neuver becomes more aggressive, the peak values of the
rotl angle increase; the increment in the initial turn is of
almost 20 degrees. In the final seconds of the maneuver
the changes in ¢ become much more pronounced as the
speed increases.

Information on constraint activity is presented in Ta-
ble 1. Each column refers to an entry speed, each row to
a 3-second optimization segment. Only four constraints
ever become active or violated, namely the lower hound
Vinin on flight speed, Eq. (6}, the upper bound on alti-
tude 1085 Zmay, Eq. (9), and those that define the corridor
of Figure 12. The z,,, constraint is active for several
segments at all entry speeds, confirming that the opti-
mizer tries to make the helicopter lose altitude to gain
energy. The V,,i, constraint becomes active only for an
entry speed of 60 kts. It does so at the beginning of the
maneuver (it is actually violated slightly in the first seg-
ment), when the helicopter has not vet been able to ac-
celerate, and after the 1000 ft marker has been cleared.
At higher speeds, the helicopter stays in the corridor
with greater difficulty, especlally around and between
the markers, as clearly shown by the constraint activity.
Finally, for an entry speed of 71 knots it becomes im-
possible for the helicopter to stay in the corridor and to
clear the 500 {t marker with a lateral displacement of less
than 100 ft; after two consecutive infeasible segments the
optimization is terminated.

The harmonic content of the lateral cyclic inputs is
shown in Figure 15, which includes the values of the fun-
damental frequency, defined as the inverse of the time
required to complete the maneuver. As in the trajec-
tory matching solutions, the largest contributions are at
twice the fundamental frequency because of the inputs
required to clear the two markers. As the maneuver be-
comes more aggressive, higher frequency contributions
develop. A peak appears at about 2 rad/sec, correspond-
ing to the Dutch roll mode in steady straight flight.
Multiple solutions

If the design space is not convex, optimization prob-
lems may have multiple solutions corresponding to local
minima. To determine whether this is the case in the
present study, the maximum speed problem with an en-
try speed of 69 knots was solved three times, each with a
different initial guess for the pilot inputs. The resulting
trajectories are shown in Figure 18. Clearly, the opti-
mum trajectory depends on the initial guess, indicating
the existence of local minima. The corresponding times
required to fly the slalom differ by almost a second, or
slightly less than 10% of the total time. The lateral cyclic
inputs for each solution are shown in Figure 17. The gen-
eral trend is the same for the three solutions, but there
is little overlap, and there are occasional differences of 4
degrees or more. Whether the nonuniqueness of the op-
timal solution is a practical problem will depend on the
reasons for performing the inverse simulation. For han-
dling qualities studies, the scatter in the solutions may
help predict the amount of scatter in pilot ratings to be
expected for a given maneuver. On the other hand, if
the inverse simulation is used for simulation validation,
then additional constraints may have to be placed on the
solution to make it unique.

6. Summary and Conclusions

This paper presented an inverse simulation methodology
based on numerical optimization. The methodology was
applied to a slalom maneuver defined through a set of cri-
teria, rather than a prescribed path, as is the case in the
ADS-33D handling qualities specification. The inverse
simulation was formulated as an optimization problem
with trajectory and dynamic constraints, pilot inputs
as design variables, and an objective function that de-
pends on the problem being solved. A maximum speed
solution was considered in the paper. A feasible ini-
tial solution can be obtained by matching a prescribed
trajectory designed to satisfy all the constraints of the
original problem. This trajectory matching problem was
formulated as an unconstrained optimization, which can
be independently used as 2 new technique for the tra-
ditional problem of inverse simulation with preassigned
trajectory.
The main conclusions of the present study are:

1. Numerical optimization is a reliable and flexible tool
for inverse simulation, both when the required tra-

H12-7



!'O

Jjectory is prescribed explicitly and when it is de-
fined indirectly through geometric and dynamic con-
straints. For unstable or lowly damped configura-
tions the optimization is best performed on overlap-
ping segments, rather than in a single pass covering
the entire maneuver.

The inverse simulation problem with preassigned
trajectory can have multiple solutions. The multiple
solutions of the slalom maneuver identified in this
study all matched very well the preassigned trajec-
tory of the aircraft center of gravity, but showed no-
ticeable differences in the helicopter dynamics and
in the required pilot inputs.

When the trajectory is defined indirectly, as is the
case in the ADS-33D specification, there is not a
single acceptable trajectory, but rather an entire
family. Selecting specific members of this family, by
speciiying an objective function to be minimized, re-
sults in a constrained optimization problem that can
itself have multiple soluticons, corresponding to local
minima in the design space. These solutions satisfy
all the constraints, but differ in the time histories of
the aircraft dynamiecs and of the pilot inputs.

Whether or not the nonuniqueness of the optimal so-
lutions is practically significant will depend on the
reasons for performing the inverse simulation. For
handling qualities studies, it may provide an indi-
cation of the amount of scatter in the pilot ratings
to be expected for a given aircraft and a given ma-
neuver. If the inverse simulation is used as part of
a simulation validation, then additional constraints
may have to be placed on the solution to make it
unique,.
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