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Abstract 

The present paper describes the CGNS component 
approach we have developed and used for a fluid-
structure code-coupling application.  The CGNS 
standard provides a public data representation that 
can be used for data archival but also for data 
exchange. In the case of code-coupling, we show how 
a code can read and write CGNS compliant 
simulation data. Such a standard interface definition 
can help the interchange of software modules, for 
example the CSM module or the mesh deformation 
module can be interchanged with other modules. 

Introduction 
Among the various aeronautic configurations, the 
helicopter is certainly the one that involves the 
broadest interactions between its elements (main 
rotor, tail rotor, fuselage, wakes, jet exhaust, air 
intakes…). In order to be representative of the actual 
problems which the design engineer has to consider, 
the simulation has to capture these phenomena using 
a set of multidisciplinary solvers. Moreover, as the 
numerical techniques are improving and the 
computing platforms are getting more and more 
powerful, the scope and the complexity of the 
simulation grows. For efficiency, as well as in order 
to be consistent with the accumulated knowledge, the 
helicopter scientist wants to gain advantage of his 
past experience with simplified configurations close 
to the more complex one he is considering afterwards, 
and he also wants to reuse existing solvers, software 
translators, and any kind of software parts he had 
written. As a matter of fact, most simulations are 
done using already existing softwares, CFD solvers or 
structural dynamics solvers for example, but gluing 
them together is not straightforward. 
Indeed, the building of a numerical simulation 
requires know-how both in the field of the helicopter 
aerodynamics and in the field of the software 
techniques. Although the scientist would like to spend 
most of his time working in the simulation level and 
trying to model the physical behaviour of the 

helicopter, more and more time is actually spent at the 
software level, because of the increasing complexity 
of the simulations. This is particularly the case when 
multidisciplinary applications are considered, 
requiring to build adapted interfaces between various 
computer codes which are to be run sequentially. 
Two approaches can be found in order to reduce the 
related cost: (1) use a dedicated simulation 
workbench or (2) use standard components. The first 
approach leads to a proprietary view of the 
simulation. The CFD, the CSM solvers are integrated 
in the workbench and the end user has to learn a 
specific interface to drive the simulation. The second 
approach, which is more flexible, is the one we have 
selected. In this approach, the software bricks, or 
black-boxes, have a public and standard interface. 
Then, the end-user would perform the assembly itself 
and write the control code by himself. 
For doing so, the software engineer has to provide 

adapted means to the helicopter scientist. These 
means can be methods, support, documents, software 
components, dedicated programming languages or 
whatever else that would reduce the time the 
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helicopter scientist will loose during the simulation 
application writing phase.  
In the present work, we have adopted a software 
strategy that helps to achieve this. The focus point of 
this strategy is the software component. The 
component itself is taken into account but also the 
environment that uses this component. Obviously, 
these components should offer an interface 
understandable by the CFD engineer. It should be an 
interface thought in terms of CFD but not in terms of 
programming. In the present case, the components 
developed are based on the CGNS standard 
[1][2][3][4]. This is a public and standard data 
representation, used for the input and output 
description of the data handled by the simulation 
components. 
We describe in the next sections the context of the 
work, the methodology for building the components 
and the actual results of the simulation in the field of 
helicopter blade deformation. 

Context 

Application Level 

The complexity of the helicopter configuration 
naturally introduces a coupling between the rotor 
aerodynamics and dynamics. Indeed, compared with 
fixed wing, helicopter rotor blades have a large 
number of degrees of freedom due to the articulated 
hub (or concentrated soft elements), so that, for a 
given flight condition, the blades motion are 
unknowns which have to be determined together with 
the aerodynamic and dynamic characteristics of the 
rotor. For solving this aeroelastic problem, rotor 
comprehensive codes consider tbe blade dynamics 
problem coupled with a simplified aerodynamics 
model. This kind of methodology allows to self-
consistently computing rotor trim, loads, performance 
and vibrations. The HOST code of Eurocopter, which 
was used in the present work, is representative of this 
class of methods [5]. 
For performing a CFD computation of the helicopter 
(elsA, in our case [6], [7]) and obtain the unsteady 
aerodynamic field around the rotorcraft, it is 
necessary to know the blade motion (and eventually 
the deformation when a soft blade computation is 
performed) which is prescribed as an input to the 
CFD analysis. Such a data naturally comes from 
helicopter comprehensive analysis which trims the 
rotor towards the desired flight condition, and it can 
thus be implemented as a time-varying boundary 
condition in the aerodynamic computation. However, 
because the aerodynamic description coming from the 
comprehensive analysis is of much lower level than 
the CFD one, the distribution of aerodynamic loads 

and moments along the rotor blades significantly 
differ, and the detailed aerodynamic field coming out 
of the CFD analysis is not consistent with the rotor 
trim as well as with its motion and deformation, as 
computed in the comprehensive analysis. The only 
way to render the CFD solution consistent with the 
blade dynamics and trim is by coupling the CFD code 
and the rotor comprehensive analysis. 

Simulation level 

Two types of coupling between CFD and 
comprehensive analysis can be considered: the weak 
and the strong coupling. The weak coupling is only 
valid for steady flight conditions of the helicopter 
because it assumes 1/rev periodicity for the blade 
aerodynamics and dynamics. In that case, data can be 
exchanged between the two codes after each rotor 
revolution, the CFD computation being performed 
with prescribed rotor motion and deformation over 
one blade revolution, the input coming from the 
comprehensive analysis. The rotor trim is re-
computed afterwards by the comprehensive analysis 
using its internal simplified aerodynamic model 
corrected from the difference between the CFD and 
the simplified aerodynamic models for the force and 
moment distribution over the rotor disk coming from 
the previous coupling iteration. At convergence, the 
aerodynamic data used in the rotor trim corresponds 
to the CFD data. Although a large part of what is 
presented in this paper also works for this weak 
coupling approach, it will not be considered anymore 
in the following. 
The strong coupling approach is more general than 
weak coupling. Indeed, a simultaneous time-marching 
computation is then performed for both the CFD and 
the comprehensive analysis, and this last 
methodology no more uses its internal aerodynamic 
model. Starting from a trimmed solution with the 
simplified aerodynamic model of the comprehensive 
analysis in order to get the blade control angles, the 
blade dynamic problem is solved by the 
comprehensive analysis using the aerodynamic forces 
and moments computed by the CFD. This requires 
that both the aerodynamic (blades’ force and moment 
distribution) and the dynamic data (blades’ motion 
and deformation) are exchanged between the CFD 
and the comprehensive analysis at each time step of 
the computation. A staggered coupling scheme 
described in [8] provides second-order accuracy for 
the global fluid-structure coupling process. Up to 
now, only steady flight conditions of the helicopter 
were considered. In that case, the time marching 
process is run until a periodic solution is obtained. 
However, when this is achieved, it is very likely that 
the rotor trim conditions are not met because of the 
simplified aerodynamic model used for trimming. 
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The trim is obtained by correcting the rotor control 
angles using a sensitivity analysis obtained with the 
simplified aerodynamic model of the comprehensive 
code. A new set of strong coupling time steps has 
thus to be repeated with these corrected control 
settings until a new periodic solution is obtained, and 
the process has to be repeated until a trimmed 
periodic solution is obtained. 

Software level 

 Former work on code-coupling was completed for 
helicopters using legacy codes which have been 
modified for that purpose (see fig.2). The fluid solver  
Waves was used for weak and strong coupling [9] 
with the HOST helicopter dynamics*. The coupling 
was performed using a communication layer 
developed by the IAG (University of Stuttgart) [10]. 

This layer provides a proprietary representation of the 
coupling data as well as a remote communication 
system based on TCP/IP. The methodology was a 
direct integration of the libraries and coupling 
algorithms in the solvers. Thus, only two softwares 
were involved, the CFD and the CSM. Actually, the 
development was achieved because the working 
teams were owner of the source codes and the target 
application was a hard-coded FORTRAN source. 

 107.3 
 

This is not always the case: more and more code 
coupling software architecture involves proprietary 
and commercial solvers. As soon as the customer 
wants to build an application with at least two codes, 
a third code appears: the control software (see fig. 3). 
Most of the time, the controller even has to translate 
the data coming in and out from both sides of the 
solvers. This three-code architecture is used for a 
fluid-structure computation of the helicopter blade 

                                                           
* The HOST software, initially developed by 
Eurocopter, provides many functions for simulating 
the helicopter, including the flight dynamics of the 
complete rotorcraft. In the present work, HOST is 
used for computing the rotor structural dynamics and 
trim, so-called CSM in the remaining part of this 
paper. 

deformation. We demonstrate how the use of clearly 
defined interfaces, using a public data format, has 
helped us to achieve a better knowledge of the 
software coupling algorithms and strategies as well as 
a better maintainability of the resulting application. 
Indeed, we want to be able to change the structural 
dynamics code or the fluid solver, without breaking 
the application itself. Thus, we had to gather the 
interface information required for our application. We 
have defined two interfaces, one per solver; the first 
defines the minimal required set of data the 
application needs for a complete and consistent 
interoperability with the structural dynamics solver, 
the other one is for the CFD solver. Each solver is 
then seen as a component providing a public interface 
compliant to the CGNS standard. 

CSMCFD

CFD CSM

The third program, the control, is in charge of 
ordering calls to CFD and CSM solvers. This third 
code also translates data from the CFD format to and 
from the CSM format. For example, the CFD 
considers the four blades as a single input and a 
single output, while the CSM reads and writes data 
blade per blade. A loop on the four blades is managed 
by this third program; it splits data for CSM and 
gathers data for CFD. We also call this third code the 
“application”. Actually, we can see this application 
as the code performing the computation. The two 
other codes are a means to achieve the goal. We can 
also call this third code the “controller”. This 
controller is in charge of starting, running and 
synchronizing both solvers. 
Such an architecture allows the modification of the 
coupling algorithm and the translation of data without 
the knowledge of the solvers internals, but rather 
using the public interfaces of these. 

Data representation 

We assume, in a simulation involving a CFD solver, 
that the CFD data is the main stream of data. We have 
encapsulated the solvers interfaces in order to have a 
unified and standard data representation. The standard 
we used is CGNS, the data representation standard 
dedicated to the CFD.  The fluid data definition is 
quite simple; it contains a per-blade structure with 
surface results for forces and moments. It is quite 

Blade deformation 
Application 

solvers 

Blade deformation Application

Figure 3: The application as a third component 

Figure 2: The application as a legacy code 
modification 



easy to define such a data structure using the usual 
CGNS structures. 
Now, the data handled by the CSM is not tightly 
related to CGNS; as a matter of fact, only grid related 
information can be handled by CGNS. Such a case 
has been forethought in CGNS and the structure data 
definition is finally partially taken into account using 
specific data structures. These are user defined 
structures, CGNS compliant but actually defined by a 
proprietary application. For example, we could define 
and handle results such as frameTransformMatrix 
which describes the rotation from a rigid blade 
section of the original mesh to the deformed blade 
section at the azimuth of interest. 

CGNS Standard 
The computational fluid dynamics community has a 
data specification standard: CGNS (CFD General 
Notation System) [2][3][4]. This standard has been 
carried out by NASA in a contract with Boeing, and 
is now adopted as an AIAA standard [1]. As a matter 
of fact, it is going to be an ISO international standard 
within the STEP framework. 
More than defining a file format for binary exchange 
or archival, CGNS truly is a data specification 
standard. This means its first scope is to define CFD 
data as a self-contained structure of typed values with 
a strong semantic. The semantic is the meaning of the 
data. For example, a data with the name Density and 
CGNS compliant carries a heavy implicit meaning for 
a CFD engineer. The goal of such a self-contained 
data tree is to specify a CFD context with information 
involved in simulations, input and output, in order to 
archive or exchange these simulations. This context 
includes the mesh information with the coordinates, 
the connectivities, the boundary conditions, the 
reference state used for the target configuration and 
the results, the types of equations used and other 
computation parameters. 
A binary representation on disk of the CGNS tree can 
be created using the Mid-Level library (MLL), 
developed and maintained on behalf of the CGNS 
Steering Committee. It lays now on HDF5 public 
binary format, which allows CGNS applications to 
use HDF5 tools or libraries. Other representations of 
a CGNS tree exist, such as an XML or a Python 
representation. These representations are individual 
proposals and are not supported by the Steering 
Committee. The Python representation is an example 
of an in-memory CGNS tree, which can be exchanged 
between interoperable CGNS applications without 
disk access. Such a use is detailed in the next sections 
of this paper.  

 
Figure 4: Input data, mesh, BCs and connectivities 

The XML allows the use of text based tools for 
CGNS tree manipulation. The figure 4 and other 
figures with the same layout are a graphical view of a 
CGNS data tree. These are views of  XML files. 
These files have been generated from CGNS/HDF5 
binary files, but it must be kept in mind that CGNS is 
a data specification, and then any other data tree 
representation can be CGNS compliant on a logical 
point of view 

Usual CFD data 

The big part of data required as input by a CFD solver 
usually are the meshes with their connectivities and 
the fields’ initialisation. One can also find smaller 
data such as the boundary conditions, the physical 
reference state and the specific data used for the 
solver setup (e.g. type of equations, multigrid, 
number of iterations, time integration, etc…). A large 
part of these data can be defined within the CGNS 
standard (see fig. 4), which has been designed in 
order to cover a large range of CFD applications. 
The grids can be defined as structured or unstructured 
grids, and related definitions are made in a way that 
allows a large common part in the structured and 
unstructured types of them. It is then quite easy to use 
structured meshes as an unstructured mesh with 
hexaedric elements for example. The connectivity and 
the boundary condition patches can be defined as a 
list of points, which are valid in either structured or 
unstructured types of grids. 
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The output data one can find in a CGNS file are field 
data (see fig. 5), such as MomentumX or Density, but 
also discrete data or solver specific data (such as 
convergence history). The standard allows a user 
defined structure, which can be used for all kind of 
data, input as well as output. A user specific data is 
CGNS compliant, but obviously it can be understood 
only by the applications that know about the meaning 
of the structure. A common example, as shown in fig. 
6, is the solver specific parameters. One can find 
parameters that already exist in CGNS, gamma and 
SpecificHeatRatio for example. While not 
recommended, such a duplication of information has 
been used by our solver for migration purpose. As 
soon as a solver or an application is ready to read the 
CGNS information, it does. Otherwise the application 
specific parameters are used. 
 

 
Figure 5: Flow Solution Fields 

The output identified as FlowSolution#EndOfRun 
contains fields with reserved names (Density, 
Mach…) but the name of the solution itself is defined 
by the application. The FlowSolution#EndOfRun 
name is a private agreement set between our 
proprietary CFD applications. This private rule added 
to the CGNS standard belongs to our CGNS profile. 
Another rule you can guess on the figures is “All user 
defined node names should start with a dot”. 

CGNS compliant proprietary extensions 

The CGNS standard is an agreement between CFD 
community people over the world. This includes end 
users coming from very large aerospace companies, 
research centres, universities, software companies… 

 
Figure 6: Solver Specific Parameters 

Thus, CGNS is the largest consensus we have found 
amongst these organisations. It cannot describe all 
possible data a CFD application can use or produce, it 
describes the common set on which there is an 
agreement. It is a basis for applications that want to 
share data with other applications. For us, at ONERA, 
it is more than that: CGNS is the basis for CFD data 
specification, including code-coupling data [11]. 
Even if a CFD solver has its own internal 
representation (and they obviously have such a 
representation), this solver has to provide a CGNS 
view of its public data. This allows a better 
interoperability but also a better understanding of the 
solver IO. Any kind of information going from a CFD 
tool to another application should be defined with 
CGNS. The definition has to be understood as a 
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logical definition, with a meaning, more than a file 
binary format. 
As much information cannot be defined with 
dedicated CGNS types in the standard, at this stage 
we have at least two strategies: 
1. Use the free text nodes, store specific data in a 

private text format. 
2. Create a sub-tree with user defined nodes and 

typed data. 
We think the first one is good in solving data 
interoperability for a short term application; the 
second one is the best in the long term range. With 
the definition a typed sub-tree, we can publish a 
public view of our data. Even if this sub-tree is 
dedicated to our set of applications, it lays on a 
documented and publicly available data specification. 
Moreover, we can submit our extensions to the 
steering committee and see these become the 
standard.  
In fig. 6 we show the .Computation sub-tree, it 
contains all the fluid solver dedicated parameters. The 
nodes can contain textual or numerical values, their 
meaning is only known by the application. At the 
physical level, i.e. using such a tree on a disk, any 
CGNS application can read them, get the values using 
CGNS tools and libraries.  

Grammar restriction 

The CGNS data specification is driven by a grammar, 
this is the SIDS grammar. It defines a set of possible 
data trees, with all allowed options and extensions. 
However, a given application would not use all the 
possibilities of the grammar. Obviously a structured 
mesh solver would not take into account the 

unstructured meshes or any kind of information 
related to unstructured meshes. Thus, the actual use 
of CGNS in this structured solver is restricted to the 
structured restriction of the grammar. 
Rather than a blind methodology, trying to map data 
coming from a tool to another one, our CGNS 
component approach focuses on the real meaning of 
the required data. This leads to both a better 
understanding of the component and its related 
services, but also in a better understanding of the 
whole simulation involving all components. For 
example, if a data cannot be set as a CGNS data, we 
ask ourselves if we actually require this data for our 

simulation. Sometimes the data can be deduced from 
other data, or it appears this was not the relevant data.  
The CSM input data should be understood by the 
CSM solver (see fig. 7). As our data are CGNS 
compliant, we have to find out the required subset of 
the standard. Such a definition has to be done for the 
output data too (see fig. 8). These two restrictions can 
be melt in a single one, it is the component restriction 
to the CGNS interface. It guarantees that any CSM 
component input or output is CGNS compliant [12]. 
There are cases where the data is not defined in 
CGNS. For example the blade section force. In that 
case, the user defined structure is used, but the CSM 
component still is CGNS compliant. As the data we 
are dealing with are 90% CFD data, it is better to use 

a CFD standard and adapt it to specific non-CFD data 
than to use a completely anonymous data format. In 
that latter case, we would have to redefine 90% of our 
data, which is a larger work and would lead to 
another proprietary interface. 

CSM The complete
CSM interface

The CGNS/CSM interface 

Figure 8: CGNS output restriction

 

 

CSM 
CGNS/CSM interface 

The complete CGNS interface 

Figure 7: CGNS input restriction 

Figure 9: Boundary Condition Output 
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Once we have the CGNS grammar restrictions for a 
given component, we can connect components 
together. Some connections require a translation or 
data reorganization. This is performed by the 
application code so-called controller. 

Example tree 

We show in fig. 9 an example of a code-coupling data 
exchange. In that case which deals with icing, the 
skin friction is the data of interest. The tree contains a 
set of boundary conditions used to host the coupling-
data, in input as well as output. Each boundary 
condition contains an application patch (PointRange) 
and an array of values (SkinFriction). These BCs 
are the data interfaces between codes providing the 
data and codes using it. 

Component architecture  

Our experiences in code coupling have shown that 
some parts of the whole software system are quite 
stable while other parts have to be changed for every 
application target. A factorization of these codes leads 
to a set of solvers and remaining lines of codes that 
could not be generalized for any kind of application. 
These remaining parts are so-called the application or 
third code. The requirements of this third code are (1) 
the ability to quickly perform an assembly of solvers, 
(2) an ability to translate and operate on data and 
finally (3) a powerful way to control the functions 
calls. The python programming language suits 
perfectly with these definitions. Moreover, the 
language provides a packaging methodology that 
makes it easier to deliver, to deploy and to integrate 
components. Our components are python packages. 
The controller is a Python software. It uses both fluid 
and structure solvers as imported modules. Actually, 
the structure solver is a remote one but this feature is 
transparent to the user.  The fluid and the structure 
transient data trees are stored in memory, there is no 
file exchange. The memory representation of the 
CGNS tree is based  on the Python data structure, that 
is a tree of nodes where a node is  a list composed of 
a name (string), a value (Numeric array), a list  of 
children nodes (list) and the node type (string). 
Specific software drivers are translating the in-
memory CGNS tree to the solver dedicated data 
structure (i.e. C++ for CFD solver and C buffer for 
Structure solver). 

Fluid component 

The fluid solver is the elsA software. It provides a 
Python/CGNS interface and no modifications have 
been necessary for the component integration. The 
interface required for our application was mostly 
limited to the blade force and torque spanwise 

distribution. At each computation step of the strong 
coupling process the fluid solver sends a data tree 
containing the data for the four blades (see fig. 10). 
The expected input is the motion of every points of 
the surface of the blade. This is the CSM component 
output (see fig. 11). 
 

 
Figure 10: Fluid Component Output 

Our CFD solver is able to modify the grids, but we 
can also build an application using another external 
component. Our open architecture allows the addition 
of a mesh deformation component inserted between 
the CSM and the CFD. Then the CFD solver would 
receive as well a new mesh as input instead of 
computing it from the exchanged data. 

CSM component 

We had to make an integration effort for the CSM 
component. This one was not available as a python 
package and it has no CGNS compliant interface. An 
encapsulation of the CSM code was done. Actually, 
the encapsulation was performed on the client part of 
the IAG interface. The IAG interface allows a 
transparent remote communication. 
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Figure 11: Structural Component Output 

Control component 

The third code can also be seen as a component, 
while it is really dedicated to an application and 
hardly reusable for another simulation. 
The control is a python script, it starts the solver 
processes, it checks files and other restart conditions 
and finally enters into a loop. This loop calls the 
solvers sequencially. Each solver waits until the 
control asks it to perform the next iteration. 
When the CFD solver sends the data to the control, 
this latter splits the four blades data in four parts and 
asks the CSM to perform the computation one blade 
per one and stores the output data. Once the four 
computations are done the control merges the four 
output data in a single tree and sends it to the CFD 
solver. The CSM has the responsibility to finish the 
simulation, in other words it finishes its computation 
and the control asks CFD to stop. 

Application 

During the simulation, the Python interpreter imports 
the control script at each iteration exchange. It is 
possible to change this script in order to change the 
behaviour of this controller during the computation. 
The simplest change is the request to write the in-
memory data. Such data storage can help for debug 
purpose or in order to archive a set of input/output 
data for a simulation stub replay. 
An example of strong coupling is presented here for 
the case of the 7A rotor at high-speed forward flight 
(µ=0.4, 200CT/σ=12.5), which corresponds to a test 
condition in the ONERA S1 Modane wind-tunnel. 
More examples of applications are shown in [13]. The 
present computation is inviscid, and no re-trim was 

completed at the end of the strong coupling. In this 
computation, the first revolutions were completed by 
taking into account the three components of the blade 
sectional force and the pitching moment component 
of the sectional moments only, the other components 
being set to zero. The computation was re-run 
afterwards with all three components of moment 
taken into account in the computations. The total 
number of blade revolutions computed is then equal 
to 12. 
The convergence of the sectional lift close to the 
blade tip for the 6 last blade revolutions is plotted in 
figure 12, and the corresponding convergence for the 
pitching moment in figure 13. As can be seen, the 
convergence is satisfactory for both quantities. A 
comparison of the blade to blade lift evolution for the 
last rotor revolution (see fig. 14) also confirms that 
good periodicity conditions have been obtained. 
 

 
Figure 12: Convergence of lift at the blade tip for the 

last 6 revolutions 
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Figure 13: Convergence of pitching moment at the 
blade tip for the last 6 revolutions 

 
Figure 14: Convergence of lift at the blade tip for the 

4 blades during the last revolution 

The evolution of the non-dimensional rotor lift is 
plotted in figure 15 for a HOST alone computation, 
with its internal simplified aerodynamic model, a 
strong coupling computation taking into account the 
three force components and the pitching moment 
only, and a strong coupling computation taking into 
account the six components of the aerodynamic force 
and moment. As expected, these last two quantities 
hardly differ, because the main component in the 
aerodynamic moment is the pitching moment. All 
three computations show a 4/rev periodicity of the 
lift, which is due to the 4-bladed rotor. The mean 
value of thrust is slightly smaller for the HOST-elsA 
coupling, because the coupled solution was not re-
trimmed to the required value. This last point is also 
clear when looking at the trim condition which is 
imposed in S1 Modane: 011 =+ sc θβ . While this 
condition is clearly met by the HOST alone 
computation (see fig. 16), this is obviously no more 
the case for the coupled computation, so that a new 
trim would be necessary together with a new strong 
coupling computation in order to correctly simulate 
the test case. A phase difference is also found 
between the HOST alone and the coupled 
computation of lift, which is probably introduced by 
the unsteady three-dimensional aerodynamics. 

 
Figure 15: Comparison of rotor thrust computed by 

HOST and by HOST-elsA 

 
Figure 16:  Comparison of trim condition computed 

by HOST and by HOST-elsA 

Conclusion 
The helicopter blade fluid-structure interaction 
application is a complex simulation involving several 
computer codes. The HOST software, developed by 
Eurocopter, gathers the accumulated know how of the 
company for computing the global helicopter 
characteristics, and more particularly the blade fluid-
structure coupling. Indeed, HOST includes solvers for 
aerodynamics, flight mechanics, structural dynamics, 
and other helicopter dedicated simulation functions. 
In our application, we have changed the HOST fluid 
solver used for the blades by our own external CFD 
solver. The strong coupling between the two separate 
softwares was achieved using a new development 
methodology involving the CGNS standard for public 
interface definition. 
Such an approach has proved its efficiency and can 
actually be used for any kind of CFD related codes. In 
the future, existing CFD tools will be migrated and 
new developments will follow this CGNS-component 
strategy. 
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