
Application of CGNS software components for
helicopter blade fluid-structure strong coupling 1

M. Poinot, M. Costes, B. Cantaloube

ONERA
Châtillon, France

CSM CFD

Control and data tranfers

CAD

Fig. 1: From Application to software

Presented at the 31st European Rotorcraft Forum, Florence, Italy, September 13-15, 2005.

Abstract

The present paper describes the CGNS component
approach we have developed and used for a fluid-
structure code-coupling application. The CGNS
standard provides a public data representation that
can be used for data archival but also for data
exchange. In the case of code-coupling, we show how
a code can read and write CGNS compliant
simulation data. Such a standard interface definition
can help the interchange of software modules, for
example the CSM module or the mesh deformation
module can be interchanged with other modules.

Introduction
Among the various aeronautic configurations, the
helicopter is certainly the one that involves the
broadest interactions between its elements (main
rotor, tail rotor, fuselage, wakes, jet exhaust, air
intakes…). In order to be representative of the actual
problems which the design engineer has to consider,
the simulation has to capture these phenomena using
a set of multidisciplinary solvers. Moreover, as the
numerical techniques are improving and the
computing platforms are getting more and more
powerful, the scope and the complexity of the
simulation grows. For efficiency, as well as in order
to be consistent with the accumulated knowledge, the
helicopter scientist wants to gain advantage of his
past experience with simplified configurations close
to the more complex one he is considering afterwards,
and he also wants to reuse existing solvers, software
translators, and any kind of software parts he had
written. As a matter of fact, most simulations are
done using already existing softwares, CFD solvers or
structural dynamics solvers for example, but gluing
them together is not straightforward.
Indeed, the building of a numerical simulation
requires know-how both in the field of the helicopter
aerodynamics and in the field of the software
techniques. Although the scientist would like to spend
most of his time working in the simulation level and
trying to model the physical behaviour of the

helicopter, more and more time is actually spent at the
software level, because of the increasing complexity
of the simulations. This is particularly the case when
multidisciplinary applications are considered,
requiring to build adapted interfaces between various
computer codes which are to be run sequentially.
Two approaches can be found in order to reduce the
related cost: (1) use a dedicated simulation
workbench or (2) use standard components. The first
approach leads to a proprietary view of the
simulation. The CFD, the CSM solvers are integrated
in the workbench and the end user has to learn a
specific interface to drive the simulation. The second
approach, which is more flexible, is the one we have
selected. In this approach, the software bricks, or
black-boxes, have a public and standard interface.
Then, the end-user would perform the assembly itself
and write the control code by himself.
For doing so, the software engineer has to provide

adapted means to the helicopter scientist. These
means can be methods, support, documents, software
components, dedicated programming languages or
whatever else that would reduce the time the

 107.1

helicopter scientist will loose during the simulation
application writing phase.
In the present work, we have adopted a software
strategy that helps to achieve this. The focus point of
this strategy is the software component. The
component itself is taken into account but also the
environment that uses this component. Obviously,
these components should offer an interface
understandable by the CFD engineer. It should be an
interface thought in terms of CFD but not in terms of
programming. In the present case, the components
developed are based on the CGNS standard
[1][2][3][4]. This is a public and standard data
representation, used for the input and output
description of the data handled by the simulation
components.
We describe in the next sections the context of the
work, the methodology for building the components
and the actual results of the simulation in the field of
helicopter blade deformation.

Context

Application Level

The complexity of the helicopter configuration
naturally introduces a coupling between the rotor
aerodynamics and dynamics. Indeed, compared with
fixed wing, helicopter rotor blades have a large
number of degrees of freedom due to the articulated
hub (or concentrated soft elements), so that, for a
given flight condition, the blades motion are
unknowns which have to be determined together with
the aerodynamic and dynamic characteristics of the
rotor. For solving this aeroelastic problem, rotor
comprehensive codes consider tbe blade dynamics
problem coupled with a simplified aerodynamics
model. This kind of methodology allows to self-
consistently computing rotor trim, loads, performance
and vibrations. The HOST code of Eurocopter, which
was used in the present work, is representative of this
class of methods [5].
For performing a CFD computation of the helicopter
(elsA, in our case [6], [7]) and obtain the unsteady
aerodynamic field around the rotorcraft, it is
necessary to know the blade motion (and eventually
the deformation when a soft blade computation is
performed) which is prescribed as an input to the
CFD analysis. Such a data naturally comes from
helicopter comprehensive analysis which trims the
rotor towards the desired flight condition, and it can
thus be implemented as a time-varying boundary
condition in the aerodynamic computation. However,
because the aerodynamic description coming from the
comprehensive analysis is of much lower level than
the CFD one, the distribution of aerodynamic loads

and moments along the rotor blades significantly
differ, and the detailed aerodynamic field coming out
of the CFD analysis is not consistent with the rotor
trim as well as with its motion and deformation, as
computed in the comprehensive analysis. The only
way to render the CFD solution consistent with the
blade dynamics and trim is by coupling the CFD code
and the rotor comprehensive analysis.

Simulation level

Two types of coupling between CFD and
comprehensive analysis can be considered: the weak
and the strong coupling. The weak coupling is only
valid for steady flight conditions of the helicopter
because it assumes 1/rev periodicity for the blade
aerodynamics and dynamics. In that case, data can be
exchanged between the two codes after each rotor
revolution, the CFD computation being performed
with prescribed rotor motion and deformation over
one blade revolution, the input coming from the
comprehensive analysis. The rotor trim is re-
computed afterwards by the comprehensive analysis
using its internal simplified aerodynamic model
corrected from the difference between the CFD and
the simplified aerodynamic models for the force and
moment distribution over the rotor disk coming from
the previous coupling iteration. At convergence, the
aerodynamic data used in the rotor trim corresponds
to the CFD data. Although a large part of what is
presented in this paper also works for this weak
coupling approach, it will not be considered anymore
in the following.
The strong coupling approach is more general than
weak coupling. Indeed, a simultaneous time-marching
computation is then performed for both the CFD and
the comprehensive analysis, and this last
methodology no more uses its internal aerodynamic
model. Starting from a trimmed solution with the
simplified aerodynamic model of the comprehensive
analysis in order to get the blade control angles, the
blade dynamic problem is solved by the
comprehensive analysis using the aerodynamic forces
and moments computed by the CFD. This requires
that both the aerodynamic (blades’ force and moment
distribution) and the dynamic data (blades’ motion
and deformation) are exchanged between the CFD
and the comprehensive analysis at each time step of
the computation. A staggered coupling scheme
described in [8] provides second-order accuracy for
the global fluid-structure coupling process. Up to
now, only steady flight conditions of the helicopter
were considered. In that case, the time marching
process is run until a periodic solution is obtained.
However, when this is achieved, it is very likely that
the rotor trim conditions are not met because of the
simplified aerodynamic model used for trimming.

 107.2

The trim is obtained by correcting the rotor control
angles using a sensitivity analysis obtained with the
simplified aerodynamic model of the comprehensive
code. A new set of strong coupling time steps has
thus to be repeated with these corrected control
settings until a new periodic solution is obtained, and
the process has to be repeated until a trimmed
periodic solution is obtained.

Software level

 Former work on code-coupling was completed for
helicopters using legacy codes which have been
modified for that purpose (see fig.2). The fluid solver
Waves was used for weak and strong coupling [9]
with the HOST helicopter dynamics*. The coupling
was performed using a communication layer
developed by the IAG (University of Stuttgart) [10].

This layer provides a proprietary representation of the
coupling data as well as a remote communication
system based on TCP/IP. The methodology was a
direct integration of the libraries and coupling
algorithms in the solvers. Thus, only two softwares
were involved, the CFD and the CSM. Actually, the
development was achieved because the working
teams were owner of the source codes and the target
application was a hard-coded FORTRAN source.

 107.3

This is not always the case: more and more code
coupling software architecture involves proprietary
and commercial solvers. As soon as the customer
wants to build an application with at least two codes,
a third code appears: the control software (see fig. 3).
Most of the time, the controller even has to translate
the data coming in and out from both sides of the
solvers. This three-code architecture is used for a
fluid-structure computation of the helicopter blade

* The HOST software, initially developed by
Eurocopter, provides many functions for simulating
the helicopter, including the flight dynamics of the
complete rotorcraft. In the present work, HOST is
used for computing the rotor structural dynamics and
trim, so-called CSM in the remaining part of this
paper.

deformation. We demonstrate how the use of clearly
defined interfaces, using a public data format, has
helped us to achieve a better knowledge of the
software coupling algorithms and strategies as well as
a better maintainability of the resulting application.
Indeed, we want to be able to change the structural
dynamics code or the fluid solver, without breaking
the application itself. Thus, we had to gather the
interface information required for our application. We
have defined two interfaces, one per solver; the first
defines the minimal required set of data the
application needs for a complete and consistent
interoperability with the structural dynamics solver,
the other one is for the CFD solver. Each solver is
then seen as a component providing a public interface
compliant to the CGNS standard.

CSMCFD

CFD CSM

The third program, the control, is in charge of
ordering calls to CFD and CSM solvers. This third
code also translates data from the CFD format to and
from the CSM format. For example, the CFD
considers the four blades as a single input and a
single output, while the CSM reads and writes data
blade per blade. A loop on the four blades is managed
by this third program; it splits data for CSM and
gathers data for CFD. We also call this third code the
“application”. Actually, we can see this application
as the code performing the computation. The two
other codes are a means to achieve the goal. We can
also call this third code the “controller”. This
controller is in charge of starting, running and
synchronizing both solvers.
Such an architecture allows the modification of the
coupling algorithm and the translation of data without
the knowledge of the solvers internals, but rather
using the public interfaces of these.

Data representation

We assume, in a simulation involving a CFD solver,
that the CFD data is the main stream of data. We have
encapsulated the solvers interfaces in order to have a
unified and standard data representation. The standard
we used is CGNS, the data representation standard
dedicated to the CFD. The fluid data definition is
quite simple; it contains a per-blade structure with
surface results for forces and moments. It is quite

Blade deformation
Application

solvers

Blade deformation Application

Figure 3: The application as a third component

Figure 2: The application as a legacy code
modification

easy to define such a data structure using the usual
CGNS structures.
Now, the data handled by the CSM is not tightly
related to CGNS; as a matter of fact, only grid related
information can be handled by CGNS. Such a case
has been forethought in CGNS and the structure data
definition is finally partially taken into account using
specific data structures. These are user defined
structures, CGNS compliant but actually defined by a
proprietary application. For example, we could define
and handle results such as frameTransformMatrix
which describes the rotation from a rigid blade
section of the original mesh to the deformed blade
section at the azimuth of interest.

CGNS Standard
The computational fluid dynamics community has a
data specification standard: CGNS (CFD General
Notation System) [2][3][4]. This standard has been
carried out by NASA in a contract with Boeing, and
is now adopted as an AIAA standard [1]. As a matter
of fact, it is going to be an ISO international standard
within the STEP framework.
More than defining a file format for binary exchange
or archival, CGNS truly is a data specification
standard. This means its first scope is to define CFD
data as a self-contained structure of typed values with
a strong semantic. The semantic is the meaning of the
data. For example, a data with the name Density and
CGNS compliant carries a heavy implicit meaning for
a CFD engineer. The goal of such a self-contained
data tree is to specify a CFD context with information
involved in simulations, input and output, in order to
archive or exchange these simulations. This context
includes the mesh information with the coordinates,
the connectivities, the boundary conditions, the
reference state used for the target configuration and
the results, the types of equations used and other
computation parameters.
A binary representation on disk of the CGNS tree can
be created using the Mid-Level library (MLL),
developed and maintained on behalf of the CGNS
Steering Committee. It lays now on HDF5 public
binary format, which allows CGNS applications to
use HDF5 tools or libraries. Other representations of
a CGNS tree exist, such as an XML or a Python
representation. These representations are individual
proposals and are not supported by the Steering
Committee. The Python representation is an example
of an in-memory CGNS tree, which can be exchanged
between interoperable CGNS applications without
disk access. Such a use is detailed in the next sections
of this paper.

Figure 4: Input data, mesh, BCs and connectivities

The XML allows the use of text based tools for
CGNS tree manipulation. The figure 4 and other
figures with the same layout are a graphical view of a
CGNS data tree. These are views of XML files.
These files have been generated from CGNS/HDF5
binary files, but it must be kept in mind that CGNS is
a data specification, and then any other data tree
representation can be CGNS compliant on a logical
point of view

Usual CFD data

The big part of data required as input by a CFD solver
usually are the meshes with their connectivities and
the fields’ initialisation. One can also find smaller
data such as the boundary conditions, the physical
reference state and the specific data used for the
solver setup (e.g. type of equations, multigrid,
number of iterations, time integration, etc…). A large
part of these data can be defined within the CGNS
standard (see fig. 4), which has been designed in
order to cover a large range of CFD applications.
The grids can be defined as structured or unstructured
grids, and related definitions are made in a way that
allows a large common part in the structured and
unstructured types of them. It is then quite easy to use
structured meshes as an unstructured mesh with
hexaedric elements for example. The connectivity and
the boundary condition patches can be defined as a
list of points, which are valid in either structured or
unstructured types of grids.

 107.4

The output data one can find in a CGNS file are field
data (see fig. 5), such as MomentumX or Density, but
also discrete data or solver specific data (such as
convergence history). The standard allows a user
defined structure, which can be used for all kind of
data, input as well as output. A user specific data is
CGNS compliant, but obviously it can be understood
only by the applications that know about the meaning
of the structure. A common example, as shown in fig.
6, is the solver specific parameters. One can find
parameters that already exist in CGNS, gamma and
SpecificHeatRatio for example. While not
recommended, such a duplication of information has
been used by our solver for migration purpose. As
soon as a solver or an application is ready to read the
CGNS information, it does. Otherwise the application
specific parameters are used.

Figure 5: Flow Solution Fields

The output identified as FlowSolution#EndOfRun
contains fields with reserved names (Density,
Mach…) but the name of the solution itself is defined
by the application. The FlowSolution#EndOfRun
name is a private agreement set between our
proprietary CFD applications. This private rule added
to the CGNS standard belongs to our CGNS profile.
Another rule you can guess on the figures is “All user
defined node names should start with a dot”.

CGNS compliant proprietary extensions

The CGNS standard is an agreement between CFD
community people over the world. This includes end
users coming from very large aerospace companies,
research centres, universities, software companies…

Figure 6: Solver Specific Parameters

Thus, CGNS is the largest consensus we have found
amongst these organisations. It cannot describe all
possible data a CFD application can use or produce, it
describes the common set on which there is an
agreement. It is a basis for applications that want to
share data with other applications. For us, at ONERA,
it is more than that: CGNS is the basis for CFD data
specification, including code-coupling data [11].
Even if a CFD solver has its own internal
representation (and they obviously have such a
representation), this solver has to provide a CGNS
view of its public data. This allows a better
interoperability but also a better understanding of the
solver IO. Any kind of information going from a CFD
tool to another application should be defined with
CGNS. The definition has to be understood as a

 107.5

logical definition, with a meaning, more than a file
binary format.
As much information cannot be defined with
dedicated CGNS types in the standard, at this stage
we have at least two strategies:
1. Use the free text nodes, store specific data in a

private text format.
2. Create a sub-tree with user defined nodes and

typed data.
We think the first one is good in solving data
interoperability for a short term application; the
second one is the best in the long term range. With
the definition a typed sub-tree, we can publish a
public view of our data. Even if this sub-tree is
dedicated to our set of applications, it lays on a
documented and publicly available data specification.
Moreover, we can submit our extensions to the
steering committee and see these become the
standard.
In fig. 6 we show the .Computation sub-tree, it
contains all the fluid solver dedicated parameters. The
nodes can contain textual or numerical values, their
meaning is only known by the application. At the
physical level, i.e. using such a tree on a disk, any
CGNS application can read them, get the values using
CGNS tools and libraries.

Grammar restriction

The CGNS data specification is driven by a grammar,
this is the SIDS grammar. It defines a set of possible
data trees, with all allowed options and extensions.
However, a given application would not use all the
possibilities of the grammar. Obviously a structured
mesh solver would not take into account the

unstructured meshes or any kind of information
related to unstructured meshes. Thus, the actual use
of CGNS in this structured solver is restricted to the
structured restriction of the grammar.
Rather than a blind methodology, trying to map data
coming from a tool to another one, our CGNS
component approach focuses on the real meaning of
the required data. This leads to both a better
understanding of the component and its related
services, but also in a better understanding of the
whole simulation involving all components. For
example, if a data cannot be set as a CGNS data, we
ask ourselves if we actually require this data for our

simulation. Sometimes the data can be deduced from
other data, or it appears this was not the relevant data.
The CSM input data should be understood by the
CSM solver (see fig. 7). As our data are CGNS
compliant, we have to find out the required subset of
the standard. Such a definition has to be done for the
output data too (see fig. 8). These two restrictions can
be melt in a single one, it is the component restriction
to the CGNS interface. It guarantees that any CSM
component input or output is CGNS compliant [12].
There are cases where the data is not defined in
CGNS. For example the blade section force. In that
case, the user defined structure is used, but the CSM
component still is CGNS compliant. As the data we
are dealing with are 90% CFD data, it is better to use

a CFD standard and adapt it to specific non-CFD data
than to use a completely anonymous data format. In
that latter case, we would have to redefine 90% of our
data, which is a larger work and would lead to
another proprietary interface.

CSM The complete
CSM interface

The CGNS/CSM interface

Figure 8: CGNS output restriction

CSM
CGNS/CSM interface

The complete CGNS interface

Figure 7: CGNS input restriction

Figure 9: Boundary Condition Output

 107.6

Once we have the CGNS grammar restrictions for a
given component, we can connect components
together. Some connections require a translation or
data reorganization. This is performed by the
application code so-called controller.

Example tree

We show in fig. 9 an example of a code-coupling data
exchange. In that case which deals with icing, the
skin friction is the data of interest. The tree contains a
set of boundary conditions used to host the coupling-
data, in input as well as output. Each boundary
condition contains an application patch (PointRange)
and an array of values (SkinFriction). These BCs
are the data interfaces between codes providing the
data and codes using it.

Component architecture

Our experiences in code coupling have shown that
some parts of the whole software system are quite
stable while other parts have to be changed for every
application target. A factorization of these codes leads
to a set of solvers and remaining lines of codes that
could not be generalized for any kind of application.
These remaining parts are so-called the application or
third code. The requirements of this third code are (1)
the ability to quickly perform an assembly of solvers,
(2) an ability to translate and operate on data and
finally (3) a powerful way to control the functions
calls. The python programming language suits
perfectly with these definitions. Moreover, the
language provides a packaging methodology that
makes it easier to deliver, to deploy and to integrate
components. Our components are python packages.
The controller is a Python software. It uses both fluid
and structure solvers as imported modules. Actually,
the structure solver is a remote one but this feature is
transparent to the user. The fluid and the structure
transient data trees are stored in memory, there is no
file exchange. The memory representation of the
CGNS tree is based on the Python data structure, that
is a tree of nodes where a node is a list composed of
a name (string), a value (Numeric array), a list of
children nodes (list) and the node type (string).
Specific software drivers are translating the in-
memory CGNS tree to the solver dedicated data
structure (i.e. C++ for CFD solver and C buffer for
Structure solver).

Fluid component

The fluid solver is the elsA software. It provides a
Python/CGNS interface and no modifications have
been necessary for the component integration. The
interface required for our application was mostly
limited to the blade force and torque spanwise

distribution. At each computation step of the strong
coupling process the fluid solver sends a data tree
containing the data for the four blades (see fig. 10).
The expected input is the motion of every points of
the surface of the blade. This is the CSM component
output (see fig. 11).

Figure 10: Fluid Component Output

Our CFD solver is able to modify the grids, but we
can also build an application using another external
component. Our open architecture allows the addition
of a mesh deformation component inserted between
the CSM and the CFD. Then the CFD solver would
receive as well a new mesh as input instead of
computing it from the exchanged data.

CSM component

We had to make an integration effort for the CSM
component. This one was not available as a python
package and it has no CGNS compliant interface. An
encapsulation of the CSM code was done. Actually,
the encapsulation was performed on the client part of
the IAG interface. The IAG interface allows a
transparent remote communication.

 107.7

Figure 11: Structural Component Output

Control component

The third code can also be seen as a component,
while it is really dedicated to an application and
hardly reusable for another simulation.
The control is a python script, it starts the solver
processes, it checks files and other restart conditions
and finally enters into a loop. This loop calls the
solvers sequencially. Each solver waits until the
control asks it to perform the next iteration.
When the CFD solver sends the data to the control,
this latter splits the four blades data in four parts and
asks the CSM to perform the computation one blade
per one and stores the output data. Once the four
computations are done the control merges the four
output data in a single tree and sends it to the CFD
solver. The CSM has the responsibility to finish the
simulation, in other words it finishes its computation
and the control asks CFD to stop.

Application

During the simulation, the Python interpreter imports
the control script at each iteration exchange. It is
possible to change this script in order to change the
behaviour of this controller during the computation.
The simplest change is the request to write the in-
memory data. Such data storage can help for debug
purpose or in order to archive a set of input/output
data for a simulation stub replay.
An example of strong coupling is presented here for
the case of the 7A rotor at high-speed forward flight
(µ=0.4, 200CT/σ=12.5), which corresponds to a test
condition in the ONERA S1 Modane wind-tunnel.
More examples of applications are shown in [13]. The
present computation is inviscid, and no re-trim was

completed at the end of the strong coupling. In this
computation, the first revolutions were completed by
taking into account the three components of the blade
sectional force and the pitching moment component
of the sectional moments only, the other components
being set to zero. The computation was re-run
afterwards with all three components of moment
taken into account in the computations. The total
number of blade revolutions computed is then equal
to 12.
The convergence of the sectional lift close to the
blade tip for the 6 last blade revolutions is plotted in
figure 12, and the corresponding convergence for the
pitching moment in figure 13. As can be seen, the
convergence is satisfactory for both quantities. A
comparison of the blade to blade lift evolution for the
last rotor revolution (see fig. 14) also confirms that
good periodicity conditions have been obtained.

Figure 12: Convergence of lift at the blade tip for the

last 6 revolutions

 107.8

Figure 13: Convergence of pitching moment at the
blade tip for the last 6 revolutions

Figure 14: Convergence of lift at the blade tip for the

4 blades during the last revolution

The evolution of the non-dimensional rotor lift is
plotted in figure 15 for a HOST alone computation,
with its internal simplified aerodynamic model, a
strong coupling computation taking into account the
three force components and the pitching moment
only, and a strong coupling computation taking into
account the six components of the aerodynamic force
and moment. As expected, these last two quantities
hardly differ, because the main component in the
aerodynamic moment is the pitching moment. All
three computations show a 4/rev periodicity of the
lift, which is due to the 4-bladed rotor. The mean
value of thrust is slightly smaller for the HOST-elsA
coupling, because the coupled solution was not re-
trimmed to the required value. This last point is also
clear when looking at the trim condition which is
imposed in S1 Modane: 011 =+ sc θβ . While this
condition is clearly met by the HOST alone
computation (see fig. 16), this is obviously no more
the case for the coupled computation, so that a new
trim would be necessary together with a new strong
coupling computation in order to correctly simulate
the test case. A phase difference is also found
between the HOST alone and the coupled
computation of lift, which is probably introduced by
the unsteady three-dimensional aerodynamics.

Figure 15: Comparison of rotor thrust computed by

HOST and by HOST-elsA

Figure 16: Comparison of trim condition computed

by HOST and by HOST-elsA

Conclusion
The helicopter blade fluid-structure interaction
application is a complex simulation involving several
computer codes. The HOST software, developed by
Eurocopter, gathers the accumulated know how of the
company for computing the global helicopter
characteristics, and more particularly the blade fluid-
structure coupling. Indeed, HOST includes solvers for
aerodynamics, flight mechanics, structural dynamics,
and other helicopter dedicated simulation functions.
In our application, we have changed the HOST fluid
solver used for the blades by our own external CFD
solver. The strong coupling between the two separate
softwares was achieved using a new development
methodology involving the CGNS standard for public
interface definition.
Such an approach has proved its efficiency and can
actually be used for any kind of CFD related codes. In
the future, existing CFD tools will be migrated and
new developments will follow this CGNS-component
strategy.

 107.9

Acknowledgments
The authors are willing to acknowledge the French
Official Services (DPAC, DGA) for funding the
CHANCE project.

References

1. CGNS Team, “Standard Interface Data
Structures”, AIAA-R-101A-2005

2. Poirier D.M.A., Allmaras D.R., McCarthy D.R.,
Smith M.F., Enomoto F.Y., "The CGNS System"
, AIAA Paper 98-3007

3. Poirier D.M.A., Bush R.H., Cosner R.R.,
Rumsey C.L., McCarthy D.R. ,"Advances in the
CGNS Database Standard for Aerodynamics and
CFD", AIAA Paper 2000-0681

4. Legensky S.M., Edwards D.E., Bush R.H, Poirier
D.M.A., Rumsey C.L., Cosner R.R., Towne C.E.,
"CFD General Notation System (CGNS): Status
and Future Directions", AIAA Paper 2002-0752

5. Benoit, B., Dequin, A-M., Kampa, K.,
Grunhagen, W., Basset, P-M., Gimonet, B.:
“HOST: A General Helicopter Simulation Tool
for Germany and France”, American Helicopter
Society, 56th Annual Forum, Virginia Beach,
Virginia, May 2000.

6. Cambier, L., Gazaix, M., “elsA : An Efficient
Object-Oriented Solution to CFD Complexity”,
40th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, Nevada (January 14-17, 2002)

7. Boniface, J.-C., Cantaloube, B., Jollès, A.,
“Rotorcraft simulations using an object oriented
approach”, 26th European Rotorcraft Forum, The
Hague, The Netherlands (September 26-29,
2000)

8. Altmikus A., Wagner S., On the timewise
accuracy of staggered aeroelastic simulations of
rotary wings,AHS Aerodynamics, Acoustics and
Test and Evaluation Technical Specialists
Meeting, San Francisco, January 23-25, 2002

9. Servera G., Beaumier P.,Costes M., “A weak
coupling method between the dynamics code
HOST and the 3D unsteady Euler code WAVES”,
26th European Rotorcraft Forum, Den Hague, 26-
29 Sept. 2000

10. Altmikus A., Wagner S., Hablowetz T., Well
K.,”On the accuracy of modular aeroelastic
methods applied to fixed and rotary wings”, 18th
AIAA Applied Aerodynamics Conference,
Denver, Aug. 14-17, 2000

11. Poinot M., Rumsey C.L., Mani M., "Impact of
CGNS on CFD workflow”, AIAA-2004-2142

12. Poinot M., Montreuil E., Hénaux E., "Checking
CFD interfaces in a multi-disciplinary workflow

with an XML/CGNS compiler”, AIAA-2005-
1155

13. Beaumier P., Costes M., Rodriguez B., Poinot
M., Cantaloube B., ‘Weak and strong coupling
between the elsA CFD solver and the HOST
helicopter comprehensive analysis’, 31st ERF,
Florence 2005.

 107.10

	Abstract
	Introduction
	Context
	Application Level
	Simulation level
	Software level
	Data representation

	CGNS Standard
	Usual CFD data
	CGNS compliant proprietary extensions
	Grammar restriction
	Example tree

	Component architecture
	Fluid component
	CSM component
	Control component

	Application
	Conclusion
	Acknowledgments
	References

