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Abstract 

There are special problems with the theoretical analysis of the flow 
around helicopter rotor blade tips that are based on the fact that the 
flow is three-dimensional, unsteady, rotational, and on the advancing 
blade in fast forward flight also transonic. 

Some theories for this problem based upon potential flow theory are 
presented even though the underlying assumptions of this theory are not 
strictly fulfilled on the rotating blade. Nevertheless, calculations 
show that this approach can lead to a sufficient discription of the actual flow. 

Additionally, computer programmes for the steadythree-dimensional 
and the unsteady two-dimensional flow past fixed wings have been modified 
for rotating rotor blades. A few results are shown. 

List of Symbols 

a sonic velocity u velocity in x-direction 

AR aspect ratio v velocity in y-direction 

b span of the wing w velocity in z-direction 

c chord length x, y, z coordinates 

CD drag coefficient Cl. angle of attack 

c pressure coefficient 
p E twist angle 

K reduced frequency ljJ blade azimuth angle 

M 
~ 

free stream Mach number ~ advance ratio 

~ rotor blade tip Mach number K specific heat ratio 

p pressure p density 

r local radius t thickness ratio 

R radius of the rotor blade r vortex strength 

s half span of the wing A aspect ratio 

t time $ Potential 

u free stream velocity Q angular velocity 
~ 
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Subscripts 

t p~rtial derivative with respect to time 

x, y, z partial derivatives with respect to the indicated coordinate 

¢ partial derivative with respect to the potential 

1. Introduction 

Already in steady forward flight there exist fundamental significant 
differences in the flow around the wing for fixed-wing and rotary wing 
aircraft. These differences concern Mach number, angle of attack, and yaw 
angle distributions that depend upon the radial position along the blade 
as well as upon azimuth angle in the case of the rotor and are therefore 
unsteady. 

The important parameters are the aerodynamic coefficients which 
change appreciably when going from the subsonic to the transonic regime. 
This change means also an influence on the helicopter power, vibration, 
and noise emission. 

2. Basic considerations 

M0st existing theories are developed for fixed-wing aircraft and are 
based on the potential equation 

~xx + ~yy + ~zz = 0 incompressible 

(1 - Moo2) ~XX + ~yy + ~zz = 0 subsonic, compressible, linearized 

[(1-M 2 ) ~ -
2
1 

(K+1) M 2 ~ 2] + ~ + ~ = 0 transonic, linearized 
oo X oo X X yy ZZ 

The conditions are 

a) isentropic change of state, i.e. heat exchange and friction are 
negligible (6s = 0) 

b) irrotational flow, i.e. rot v 0: 

1 aw ~) w 2 (ay X az 

1 (~ awl w 
2 y az ax 

1 (av ~) w 
2 z ax ay 

The advantage of using irrotational flow is based on the fact that only 
one unknown ¢ needs to be determined instead of the three unknown 
u, v, w. This simplifies the numerical treatment. 
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For treating rotating wings it is necessary to develop a model as is 
done for fixed wings. 

Consider a plane moving through the air with a given velocity. This 
motion is unsteady with respect to an earth-fixed observer. For calcu­
lation purposes it is possible to make the motion steady by fixing the 
coordinate System of the observer on the plane. Now the air is seen to 
move past the plane. That transformation applies for measurements in wind 
tunnels. 

Now consider a rotor blade rotating with the angular velocity n. The 
motion again is an unsteady one. When fixing the coordinate system of the 
observer at the rotor blade the motion is again a steady one (fig. 1) and 
the flow is rotating around the rotor axis. 

fig. 1 Motion transformation for a fixed wing and a rotor blade 

But there is a small physical difference concerning the mass forces 
not existing for the fixed-wing case. In the unsteady case there are 
centrifugal forces acting on the blade itself and the adjacent boundary 
layer. The undisturbed air is at rest and irrotational and therefore 
there does not exist any gradient in the air. 

When considering the steady case the centrifugal forces act on the 
undisturbed air in the free stream and because of the rotation of the air 
there exists a pressure gradient as well as a velocity gradient. The 
boundary layer on the blade itself is not subjected to any centrifugal 
forces. This motion is called a solid body rotation which is known to be 
rotational, therefore showing that the motion of a rotor blade is 
rotational. 
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The difference of an irrotational and a rotational motion is shown 
in fig. 2. 

p(r) 

--r r 

a b 

fig. 2 Velocity and pressure gradient of flows on concentric circles [1] 
a) w = a/r, irrotational; b) w = a•r, rotational 

The problem now is that the theories to be used are irrotational. 
But there are not any theories known to the author which can treat 
rotational flow in acceptable computing times. 

In the literature most authors use the potential equation for des­
cribing the flow around the rotor blade tip. Nevertheless, calculations 
show that this approach can lead to an acceptable description of the 
actual flow in the region of the blade tip (fig. 3). 
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fig. 3 Pressure distribution over a half revolution l2] 
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3. A Review over some theories for calculating the blade tip effects 

3.1 Steady flow calculation for blade tips 

This method was developed by Caradonna [3] for calculating the blade 
tip flow of helicopter rotors in hover. Within the frame of small per­
turbations the differential equation 

- ( 1-K) M 2 y ~ ] ~ + ~ + 
-~ X XX ZZ 

1 
2 2/3 ~yy 

ART 
0 

is approximated by means of the finite difference technique. 

In fig. 4 this procedure is applied to a rotor blade tip at two 
different Mach numbers. The shock moves downstream and extends radially 
with increasing Mach number. 
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fig. 4 Pressure distributions and isobars on a rotor blade tip 
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In fig. 5 the drag increase at the blade tip is shown for different Mach 
numbers . 
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fig. 5 The spanwise drag variation for a non-lifting rotor 

The enormous increase of the drag coefficient is seen in the immediate 
vicinity of the blade tip that is related to the existence of shock 
waves. 

3.2 Unsteady flow calculation for blade tips 

In this method the unsteady effects due to forward flight are taken 
into account. The procedure for unsteady, three-dimensional, non-lifting, 
non-linear flows for advance ratios J..1 > 0 has been developed by Caradonna 
and Isom [4]. 
The equation 

a 2 [.!. 2 1 ~tt +at (V~) + V~·V 2 (V~ ) 

defined in the coordinate system at rest is transformed to the blade-fixed 
coordinate system and solved by the finite difference method. 

Fig. 6 shows the influence on the temporal pressure distributions of 
a blade tip when the calculation is done two-dimensional and three-dimen­
sional. 
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fig. 6 Comparison between two- and three-dimensional calculated pressure 
distributions 

As can be seen the shock waves of the three-dimensional calculation 
are weaker and decay much faster than in the two-dimensional case. 

4. Modifications of computer programmes developed for fixed wings 

As already mentioned the choice of a flow model for the rotor creates 
sane difficulties, and also a large computational time. For our problem 
the prograrrnne of Caradonna and Isom would be most suitable. However, 
because of the computational time programmes of MBB will be used which 
are developed for fixed-wing aircraft and they are to be modified for 
rotors. 

First of all, the problem will be split up into the steady three­
dimensional case and the unsteady two-dimensional case of a fixed wing 
in§ 4.11 4.2 and then the modifications will be discussed again 
separately. 
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4.1 Steady three-dimensional flow 2ast a wing 

A programme was developed by Eberle (MBB) [5] for three-dimensional 
steady flows Past fixed-wing aircraft in the transonic flight regime. 
The Euler equations are transformed to the differential Bernoulli equation 
by means of the irrotationality condition. By suitable transformations 
the implicit differential potential equation is obtained which supplies 
the basis tO the variational principle of the aerodynamic potential theory. 
Introducing the boundary conditions one arrives at the equation 

Ill p (uu~ + vv~ + ww~) dx dy dz 0 

Shocks are generated by means of an artificial viscosity. Because of 
the condition of small perturbations only weak shocks are admitted. The 
numerical computation is performed using the finite element method. 

In fig. 7 a few chordwise pressure distributions are shown for 
several spanwise stations near the wing tip at M

00 
= 0,8 and a= o0 . When 

decreasing the distance to the tip the shocks become weaker. In this 
area two-dimensional calculations would provide too high a lift and too 
strong shocks. 
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4.2 Unsteady two-dimensional procedure 

A further programme was developed by Eberle (MBB) [6] for an unsteady 
flow around a profile with an oscillating flap at the trailing edge. When 
calculating a steady flow the start of the motion is taken into account. 

The transonic potential equation for small perturbations takes the 
form 

-M 2K2• - 2M 2K $ t + [1-M 2-M 2 (3 + M 2 (K-2)) $ J ¢ + 4 0 
co 't'tt co X co co co X XX ·zz 

The conservation of mass at sonic lines and shocks is assured by the 
numerical viscosity. The numerical procedure is the alternating direction 
implicit method. Again the accuracy can be influenced by the mesh size 
and also by the number of time steps. 

As an example in fig. 8 the starting flow of a steady state case is 
shown. In three time steps the supersonic pocket builds up and the shock 
moves into its steady state position. 
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4.3 The steady flow problem of the rotor 

The first step is the investigation of the steady three-dimensional 
flow problem by a modified programme for the transonic flow past a fixed­
wing aircraft. 

The following parameters are used as input: the coordinates of the 
profile of each radial section, the angle of incidence, twist angle, chord 
length, taper, and Mach number. The data have to be defined for a half 
wing. The programme generates the whole wing by a reflexion around the 
x-axis because the geometry and the aerodynamics is symmetrical around 
this axis. 

However, the lift distribution of a rotor is not symmetrical (fig. 9) 
and so the axis at 75% radius is chosen where the overall lift coefficient 
CL of the rotor is assumed to act. As will be seen later the difference 
between the potential velocity distribution and the actual linear dis­
tribution is only acceptably small for a small region of the rotor blade 
tip. So 0,75 R is chosen as the limit for the application of this programme 
for the rotor case. 

I 
I Reftexion Axis 
r 
I 

y 
• 

z + Reflexion Axis 
CL. 

Ci~ 
y 

'')...__~~~ ~Y. 
1.75 R 
I 

fig. 9 Reflexion of the lift coefficient for a fixed wing and a rotating 
wing 
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One possibility is the introduction of a linear velocity gradient 
into the programme. The resulting pressure distributions are shown in 
fig. 10. The influence of the finite span can be seen at the blade tip. 
Farther inboard the influence of the triangular velocity distribution 
can be observed because of the decreasing shock strength. 

However, it must be noted that the condition of irrotationality is 
not fulfilled in this calculation_although it is required of the theory. 
Consider the component w z of rot v 

1 (~ au
1 w 2 z ax ay 

the condition had to be 

au n 
ay 

and it was taken 

av 
0 ax 

that means 

w + 0 z 

Fulfilling the condition of irrotationality the velocity distribution 
of the rotor was generated by a superposition of a potential vortex (~ ) 
and a fictitious parallel free stream (~ ) so that r 

00 

~rotor 

As shown in fig. 11 the actual linear velocity distribution is approximated 
relatively well. The computational result is shown in fig. 12. Here the 
same tendencies can be observed as in fig. 10. 

The foregoing manner of calculation is necessary because the basic 
theory of the programmes does not take into account the special conditions 
of a rotor. 

However, all standard methods of determination of aerodynamical 
coefficients assume irrotational flow. In helicopter aerodynamics the rotor 
forces and moments are calculated elementwise assuming irrotational flow 
(two-dimensional blade element theory) and this leads to good results 
except in the vicinity of the tip. If the two-dimensional calculation is 
extended to a three-dimensional one the lifting line theory is a possible 
method to account for the three-dimensional effects of a rotor. Because 
of simplicity reasons an elliptical wing [7] shall be used. 
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The lift is obtained by spanwise integrating the vortices r (y) 

f(y) r
0 

11 - (2y/b)2' 

where r is ~he vortex strength in the middle of the wing. For the first 
0 

approximation r could be determined by the two-dimensional airfoil 
0 

theory. 

The basic idea for calculating the f(r) distribution of a rotor is that 
for each position r the r is determined from the local velocity and from 
there f(r) = f(f (r)). So

0
one arrives at a f(r) distribution as shown in 

fig. 13 ° 

fig. 13 Construction of the vortex distribution on an elliptical 
rotating wing, ~ = o, zero-thickness 

However, it must be remarked that compressibility and thickness 
effects are not included but the idea is applicable to arbitrary planform 
shapes and blade twist. 
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In order to be a true alternative method it would have to be extended to 
the transonic flow regime. 

4.4 The unsteady flow problem of a rotor 

The second step is to consider the two-dimensional unsteady flow. Most 
known programmes are developed for two-dimensional unsteady flow and 
rarely for three-dimensional unsteady flow because of computation time. 

The used programme of interest is written for a profile with an 
oscillating flap at the trailing edge. In the case of the rotor there is 
not any flap but the free stream and the angle of incidence are oscillating 
approximately with the angular velocity n for advance ratios ~ > 0. 

For simplifying the numerical problem the oscillation of the angle 
of attack is set to zero, firstly. In the potential equation, the Mach 
number is introduced as a function of time. 

steady 
.2 ._...__.....~...~...--=, M 

.6 

. 1 
M 

.4 

.2 

0+----.----.-----.----.----.----+0 
0 60 120 180 240 300 360 

fig. 14 Lift coefficient over one period, M
0 

NACA 0012 

0,5, a 

\j1 (OJ 

.36, 

For comparison results for steady flow are shown, too. As can be seen 
the influence on the lift coefficient of the Mach number variation during 
one period is rather small, and the difference between steady and unsteady 
flow is almost negligible. 

In a second step the Mach number is assumed to be constant and the 
angle of attack will oscillate. In fig. 15 the result is shown for a 
medium angle of attack of ~11° and an amplitude of 3,78° at a Mach 
number of .6 over one period. As can be seen the lift minimum position 
is shifted from ~ = 90° to 100° because of the unsteadiness not corres­
ponding to the minimum setting of the geometric angle of incidence. 
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The next step is the combination of the two motions. In fig. 6 a 
combination of the two effectsis shown over one period. As it is seen the 
influence of the oscillation of the angle of attack is dominating the 
Mach number oscillation . 

fig. !6 
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5. Conclusion 

The application of three-dimensional computation methods in rotor 
aerodynamics has become necessary because the requirements for extending 
the helicopter flight envelope have increased in recent years, thus 
necessitating a more deep understanding of the flow around the rotor 
blades. By aerodynamically optimizing the blade tip an improvement is 
possible. Ho~ever, the two-dimensional computation methods are no longer 
sufficient especially near the tip and thus three-dimensional computer 
programmes are required. From the foregoing discussion the following 
conclusions can be drawn: 

The inversion from the rotation of the rotor to the rotation of the 
fluid for achieving a steady state flow results in a physically 
unrealistic flow because of creation of actually non-existing pressure 
gradients in the undisturbed flow. When using potential flow theory 
these pressure gradients are much smaller. 

The problem of the flow in the vicinity of the tip of a rotor blade 
has already been investigated in the literature using the potential 
theory. The agreement between theory and experiment is acceptable. 
However, the procedures are limited either to hover or to non­
lifting flow. Also, the computation time is inacceptably high for 
industrial purposes. 

A programme for steady three-dimensional flow over a fixed wing 
has been modified for a rotating blade by taking into account the 
irrotationality condition of the applied theory. Calculations with 
this programme provided results as expected on a rotor blade tip. 

The suggestion of modifying the two-dimensional blade element theory 
into a three-dimensional theory has been made. However, in the present 
state compressibility effects and thickness effects are not included. 
Further development had to be done to extend this method to transonic 
flow problems. 

A programme for unsteady two-dimensional flow has been modified for 
an oscillating free stream Mach number and angle of attack. The 
variation of the angle of incidence dominates clearly the influence 
of the Mach number variation. 

In order to couple three-dimensional effects with the unsteady two­
dimensional ones further investigations have to be undertaken. 
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