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Abstract

This paper presents the development of a discrete adjoint method by means of automatic differentiation in the frameworkof the
Helicopter Multiblock CFD solver. The method is suitable for applications in flight mechanics as well as shape optimisation and
is demonstrated in this paper for cases reported in the literature. The application of automatic differentiation is first presented for a
simple flight mechanics software with indicative results for ADS-33 maneouvres. Subsequently adjoint CFD computations were
undertaken for aerofoil, wing and rotor blade cases. The obtained results were found to agree well with other published solutions
or with data obtained using finite differences for computingthe flow derivatives. The method has so far been demonstratedfor
inviscid flow cases and suggests that the current implementation is robust and efficient. The cost of the adjoint computations is
relatively low due to the employed source code differentiation and most of the times it is no more than the cost for a steady-state
flow solution.

1 INTRODUCTION

The design of new generation helicopters with increased per-
formance and improved handling qualities requires a deeper
understanding of the aerodynamics, not only in steady flight,
but also during manoeuvres. Because of the nonlinearity and
unsteadiness of the flow it is extremely challenging to deter-
mine its aerodynamic characteristics. To reduce the complex-
ity of the problem, it is commonly assumed that for small
deviations from a given steady flight condition the flight dy-
namics behaviour can be described by means of a linearised
model, defined by a set of aerodynamic derivatives. These
derivatives can be obtained via finite differences (FD) out of a
CFD computation. Nevertheless, finite differencing becomes
prohibitive in terms of computational cost, since two or more
complete flow solutions are required to compute each deriva-
tive.

A more economic way to obtain the aerodynamic deriva-
tives with CFD is via solving thesensitivity equation, casted
in either tangent or adjoint form [1, 2]. The basic idea is to
write any aerodynamic force and moment coefficientI as a
function of the flow variablesW and of the input flight dy-
namics variable of interestx (angle of attack, sideslip, Mach
number, etc.), that isI = I(W (x), x). The flow variables
are subject to satisfy the fluid dynamics governing equations,
written in compact form asR(W (x), x) = 0. Formally tak-
ing the derivative ofI with respect tox we obtain:

DI

Dx
=
∂I

∂x
+

∂I

∂W

∂W

∂x
, (1)

which represents the tangent form of the sensitivity equation.

All the partial derivatives appearing in the right-hand side can
be computed with limited effort, with exception of the term
∂W/∂x, that represents the variation of the flow variables
with respect to the variation of the independent input param-
eter. This last term may be obtained by differentiating the
governing equations to yield the following linear system for
the unknown∂W/∂x:
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∂x
= −

∂R
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Therefore, the computation of a flow sensitivity is reduced to
the solution of the nonlinear governing flow equations plus
the solution of the linear system (2). Note that one linear
system for each flight dynamics variable must be solved to
compute the sensitivities, since the right-hand side of (2)de-
pends uponx. Thus, as with finite differencing, the overall
computational cost scales with the number of inputs. How-
ever, the sensitivity equation approach requires the solution
of only one nonlinear system of equations and does not suffer
of the cancellation problem, yielding derivatives accurate up
to machine precision.

The sensitivity problem (1)-(2) can be recast in dual form
by introducing the adjoint vector variableλ as the solution of
the following linear system:

(

∂R

∂W

)T

λ = −
∂I

∂W
. (3)

Substituting this equation into the expression (1) and using
the duality between a matrix and its transpose we obtain:
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. (4)



The computational cost of the dual sensitivity problem (3)-(4)
scales with the number of outputs, since the right-hand side
of (3) depends onI, but it is independent of the input param-
eters. The choice between the use of the direct or dual sensi-
tivity problem depends consequently on the balance between
the number of outputs and the number of inputs. The two
methods, for instance, should perform equally well in com-
puting the flight mechanics derivatives, since the number of
output force and moment coefficients is similar to the number
of input flight mechanics parameters.

The calculation of the partial derivatives appearing in the
sensitivity equation can be done manually, deriving analytical
expressions and writing the needed computer code. Nonethe-
less, this approach can be tedious if the flow equations involve
complex terms, like, for instance, upwinding terms for the in-
viscid fluxes or source terms of turbulence models. Recent
advances inautomatic differentiation(AD) tools, however,
enable to produce the computer code for the differentials of
these complex terms directly from the source code of the CFD
solver [3].

To assess the use of AD in complex computer codes, such
as CFD solvers, we first applied the methodology to the Heli-
copter Flight Mechanics (HFM) code, developed at the Uni-
versity of Liverpool. HFM integrates the rigid body equa-
tions of dynamics for the helicopter and makes use of strip-
theory model to compute the aerodynamic forces. The code
has been differentiated by means of the source transforma-
tion tool TAPENADE [4, 5], so as to produce all the aerody-
namic derivatives needed for a state space representation of
the helicopter dynamics. As an application, the state space
representation is used to build a real-time trajectory tracking
autopilot based on a Linear Quadratic Regulator (LQR) and
Proportional-Integral (PI) controller. To assess the autopilot,
the ADS-33 [6] lateral reposition manoeuvre and the slalom
manoeuvre have been simulated using HFM.

The experience gained with HFM was then used for the
CFD solver Helicopter Multi Block (HMB) [7, 8] of Liver-
pool and AgustaWestland. Taking inspiration from the work
of Joneset al. [9] and of Maderet al. [2], the individual func-
tions of the CFD solver have been automatically differentiated
and assembled afterward to build the neecessary terms in the
sensitivity equation, both in tangent and adjoint form. The
linear system associated to the sensitivity problem is solved
using the fully implicit fixed-point iteration scheme of the
base flow solver. The resulting code is able to compute the
aerodynamic derivatives of fixed wing aircraft or of rotors in
hover flight, at a fraction of the cost required by finite dif-
ferencing. The method is demonstrated for the aerodynamic
sensitivities of the NACA0012 airfoil, the ONERA M6 wing
and the ONERA 7AD rotor in hover.

2 BACKGROUND

The first application of the adjoint method to fluid dynam-
ics is dated back to 1974 with the pioneering work of Piron-
neau [10], where adjoint methods and control theory were
applied to drag minimisation. Starting from the late eight-
ies the first applications to CFD problems begin to appear,
thanks to the work of Jameson and other co-authors [11,
12, 13]. They exploited the adjoint method and control the-

ory for aerodynamic shape optimisation in conjunction with
CFD techniques, whose complexity increased over the years
from the solution of the potential flow equations to that of
the Navier–Stokes equations [14, 15, 16]. The derivation of
the adjoint problem in these works is based on thecontinuous
approach(CA), where the adjoint equations are analytically
derived from the primary flow equations and discretised after-
wards.

The alternativediscrete approach(DA) to the adjoint
problem consists in deriving the adjoint equations directly
from the discretised formulation of the flow equations. This
has been pursued in the works of Elliott and Peraire [17] and
Anderson [18] in the context of aerodynamic shape optimi-
sation with unstructured grids. A fairly complete overview
of the development of continuous and discrete adjoint meth-
ods in the last two decades of the 20th century can be found in
Newmanet al. [19]. Both continuous and discrete approaches
have advantages and disadvantages, as pointed out by Giles
and Pierce [20]. They are summarised in table 1.

The implementation of the DA for flow equations involv-
ing complex terms (upwinding terms, terms depending on
spectral radii, source terms appearing in turbulence models,
etc.) is not generally straightforward. A technique to tackle
the problem of deriving the discrete adjoint in such complex
cases is automatic differentiation, in which the adjoint code
to evaluate the gradients is obtained manipulating directly the
original CFD code, as in the work of Mohammadi [21, 22].

AD may be obtained by means of source-traformation
tools or via operator overloading in programming languages
such as FORTRAN 90 and C++. Tools that use source code
transformation add new statements to the original source code
that compute the derivatives of the original statements. The
operator overloading approach consists of a new user-defined
type that is used instead of floating points. This new type
includes not only the value of the original variable, but its
derivative as well. The operator overloading approach results
in fewer changes to the original code, but is usually less ef-
ficient [23]. AD tools are available for a variety of program-
ming languages. ADIFOR [24], TAF [25] and TAMC [26] are
some of the tools available for FORTRAN. TAPENADE [4,
5] supports both FORTRAN 90 and C. A complete list of AD
tools available for each programming language may be found
at [27].

There are two different modes of operation for automatic
differentiation of a computer code: theforward (or tangent)
mode and thereverse(or adjoint) mode. The forward mode
uses the chain rule to propagate the required derivatives in
the same direction of the original computer code. The cost
of forward AD is proportional to the number of inputs of the
computed function. In reverse mode the derivatives are prop-
agated backward, from the last statement of the code to the
first. The reverse mode is analogous to the adjoint method
and the cost is proportional to the number of outputs of the
computed function. However, the memory requirements of
the reverse mode are considerably higher, since the storageof
intermediate results of the function evaluation is required for
the backward propagation of the derivatives.

It is to be noted that AD cannot be applied directly to the
whole residual evaluation chain to produce the adjoint of the
flow equations, because it would lead to an inefficient code



Discrete approach Continuous approach

Provides the exact gradients, since the discrete adjoint
operator is simply the transpose of the matrix arising
from the discretisation of the primary flow equations

Gives an approximation to the continuous gradient based
on some alternative discretization

The implementation requires less coding effort, espe-
cially if AD is employed

Requires hand coding of the discretization scheme
applied to the continuous adjoint equations

Straight application of AD to the CFD code produces
inefficient adjoint code, so that application of AD to
individual nonlinear subroutines and partial re-coding is
necessary

The continuous code is often considerably simpler than
the discrete in terms of operation count and memory
requirements, as well as easier to implement

The derivation of the adjoint equations and BCs is
purely algebraic, and gives no insight in the physics of
the problem

Gives a more clear interpretation of the physics behind
the adjoint variables and of the associated BCs

Table 1: Advantages and disadvantages of the continuous anddiscrete approaches.

in terms of memory and CPU time. A more realistic goal
for AD is in assisting the derivation of the discrete adjoint
by hand-differentiation, by automatically differentiating and
transposing individual routines. This was adopted in Mader
et al. [3] and in Joneset al. [9].

The introduction of automatic differentiation, the ad-
vances in techniques for solving the adjoint problem and the
growing power of computing hardware allowed application
of the adjoint method to more complex cases. Also, driven by
the industry need of more realistic flight mechanics models,
the related research widened its initial objective of aerody-
namic shape optimisation to make space to novel applications
such as aeromechanics. In the work of Limache and Cliff [1]
and of Mader and Martins [2, 28], for instance, the aerody-
namic derivatives of airfoil and wings are computed by solv-
ing the sensitivity problem. This concept is then extended
to compute the sensitivities of time-periodic flow solutions,
such as those generated by turbomachinery and helicopters,
by applying the adjoint method to the time-spectral formula-
tion of the flow equations, which reduces the time-dependent
problem to a steady problem in the frequency domain. This is
described in Choiet al. [29] and in Mader and Martins [28].

These past works proved the superiority of the sensitiv-
ity equation approach with respect to finite differencing for
aeromechanics applications but, at the same time, showed
the difficulties associated to the convergence of the sensitiv-
ity equation and the demanding memory requirements of ad-
joint solvers, which can represent a limiting factor for realistic
large-scale applications. The objective of the present work is
to partially overcome these drawbacks, while keeping the ef-
ficiency and accuracy of the sensitivity problem approach for
the computation of aerodynamic derivatives.

3 APPLICATION TO FLIGHT MECHANICS

3.1 Code description

The computer code HFM is capable of simulating a freely-
moving rotorcraft as well as of computing the vehicle trim

state. It is based on the classical equation of motion for
rigid bodies and on BEM and the Peters–HaQuang [30] in-
flow model to compute the rotor forces.

In HFM the vectorz, describing the rotorcraft state, is
defined as follows:

z =(u v w p q r xE yE zEΦΘ Ψ (5)

λi0 λ
i
1s λ

i
1c β̇

ij βij ζ̇ij ζij θ̇ij θij Qi ωi ψi),

i = 1, . . . , NR, j = 1, . . . , N i
B,

where

• NR is the number of rotors andN i
B is the the number

of blades of thei-th rotor;

• u, v, w are the vehicle velocity components in body
axis;

• p, q, r are the vehicle angular velocity components in
body axis;

• xE, vE, wE are the vehicle position vector components
in Earth reference frame;

• Φ, Θ, Ψ are the vehicle Euler angles in Earth reference
frame;

• λi0, λi1s, λ
i
1c are the inflow model coefficients for the

i-th rotor;

• βij , ζij , θij are the hinge angles for thej-th blade of
thei-th rotor;

• Qi andωi are the torque and rotational speed of thei-th
rotor;

• ψi is the azimuth angle of thei-th rotor.

The control vectoru contains the collective and cyclic pitch
angles of the rotors:

u =
(

θi0 θ
i
1c θ

i
1s

)

, i = 1, . . . , NR. (6)

For a typical helicopterNR = 2 (the main and the tail rotor),
and for the tail rotor only the collective pitch is controlled; the
control vector has therefore only four components.



With the above definitions, the flight mechanics equations
can be written in compact form as a first-order system of or-
dinary differential equations:

ż = D(z,u)−1r(z,u), (7)

whereD(z,u) is a matrix andr(z,u) is the nonlinear resid-
ual vector. Equations (7) are solved in HFM with either an
explicit Euler method or with a fourth order explicit Runge–
Kutta method.

3.2 Automatic differentiation

The core of the flight mechanics code is the function
HFM compute, which solves numerically equation (7).
The flowchart of the function is shown in figure 1a.
HFM compute takes as input the current state of the heli-
copter and the controls, and then integrates the equations of
motion in time for a given number of time steps. At each time
step the operations performed are the following:

(1) compute the rotors(s) equations of motion;

(2) compute the contribution of the fuselage and tail sur-
faces to the equations of motion;

(3) sum all the force and moment contributions into the
body equations of motion;

(4) compute the engine terms;

(5) assembly all the computed terms into the matrix
D(z,u) and into the vectorr(z,u) appearing in equa-
tion (7);

(6) solve the linear system (7) by LU decomposition to
compute the first derivative of the state vectorż;

(7) integrate in time with either the explicit Euler or ex-
plicit fourth order Runge–Kutta1 scheme to obtain the
new state vectorz.

It is possible to differentiate the functionHFM compute
(in tangent mode, for instance) with a single invocation of
TAPENADE as follows:

tapenade -d -root HFM_compute \
-vars "z u"
-outvars "F M"
src/HFM_compute.c \
src/HFM_vehicle.c \
src/HFM_rotors.c

The option “-d” tells the tool to operate differentiation in tan-
gent mode. Options “-vars” and “-outvars” specify the
name of the function input and output differentiable variables,
respectively. The produced differentiated subroutine is auto-
matically namedHFM compute d.

The input variables are the state vectorz and the con-
trol vector u, while the output variables are the resulting
forceF and momentM on the helicopter. A single call to
HFM compute d produces the partial derivative ofF and
M with respect to one of the inputs. Differentiating with

respect to the state we obtain thestability derivatives. Dif-
ferentiating with respect to the control we obtain thecontrol
derivatives.

The flowchart of the subroutineHFM compute d is
shown in figure 1b. All calls to the original functions are
replaced by calls to the corresponding differentiated subrou-
tines. An exception is made for the call to the linear solver,
which has been differentiated manually. Indeed, the mathe-
matical operation of solving a linear system can be differen-
tiated by hand and the resulting algebra can be directly im-
plemented. In fact, ifAx = b is the original problem, hand
differentiation givesδAx + Aδx = δb, and the sought dif-
ferential can be thus computed asδx = A−1(δb − δAx). In
our specific case, the differential ofż is computed solving the
system:

D(z,u)δż =δr(z,u, δz, δu)

− δD(z,u, δz, δu)r(z,u). (8)

3.3 LQR based autopilot

AD provides an efficient method to compute the stability and
control derivatives of a rotorcraft computer model. We now
describe how to use this information to build an autopilot for
trajectory tracking based on a LQR feedback controller [31,
32]. To this end, for a conventional helicopter with main and
tail rotors, we consider the following state space and control
vectors:

x = (u v w p q r xE yE zEΦΘΨ) , (9)

u =
(

θMR
0 θMR

1c θMR
1s θTR

0

)

, (10)

and build the linearised 6-DoF model of the rotorcraft around
the trim state(x∗,u∗) as

δẋ = Aδx+Bδu. (11)

where

A =
∂f(x,u)

∂x
, B =

∂f(x,u)

∂u

at x = x∗, u = u∗.

(12)

The nonlinear functionf (x,u) describes the evolution of the
state space vector from the trim statex∗ to the statex un-
der the action of the inputu (held fixed), and is computed
by integrating equation (7) over some revolutions of the ro-
tor in order to let the flapping motion transient be sufficiently
damped.

The aim of an autopilot is to control the position
(xE, yE, zE) of the helicopter in Earth reference frame and its
headingΨ . We recast this trajectory tracking problem into the
LQR setting as follows. At each time instance we consider the
closest trimmed condition of the helicopter and compute the
associated linearised model. Then, ifδx is the deviation of
the state vector from the desired state, the variationδu of the
controls is determined as the LQR optimal feedback due to
the deviationδx. The LQR controller will in fact driveδx to
zero by minimising the quadratic cost function

J =

∫

∞

0

(

δxTQδx+ δuTRδu
)

dt, (13)

1When using the Runge–Kutta scheme, steps 1–6 are repeated once for each of the four stages of the scheme.



(a)HFM compute
(b) HFM compute d

Figure 1: Flowcharts of the top-level functionsHFM compute andHFM compute d.

with Q andR being weighting matrices that define the “im-
portance” of the the states and of the controls in the cost func-
tion. The solution to the minimisation problem is

δuLQR = −Kδx, (14)

whereK is the optimal feedback matrix given by

K = R−1BTP, (15)

andP is the solution of the continuous algebraic Riccati equa-
tion:

ATP + PA− PBR−1BTP +Q = 0. (16)

As can be seen, the optimal LQR feedback matrixK does
not depend on the solution and may therefore be precalcu-
lated prior to the simulation for the various representative trim
states.

To achieve better tracking performance the LQR con-
troller has been augmented with a simple PI controller:

δuPI = −diag(KP
1 ,K

P
2 ,K

P
3 ,K

P
4)e (17)

− diag(K I
1,K

I
2,K

I
3,K

I
4)

∫ t

t−∆t

e dt,

wheree is the tracking error

e =

{

xE − x̂E

Ψ − Ψ̂

}

(18)

andxE andx̂E are the actual and desired trajectories in Earth
reference frame,Ψ and Ψ̂ the actual and desired headings.
The coefficientsKP

i andK I
i (i = 1, . . . , 4) are, respectively,

the proportional and integral gains.

The value of the control angles at each time instant is
therefore given by their value in the reference trimmed condi-
tion plus the feedback given by the LQR and PI controllers:

u = u∗ + δuLQR + δuPI. (19)

3.4 Numerical results

To assess the performance of the developed autopilot we con-
sidered the HFM model of a generic MR/TR helicopter and
simulated two manoeuvres from the ADS-33 aeronautical de-
sign standard [6], specifically thelateral reposition(ADS-33
3.11.8) and theslalom(ADS-33 3.11.9).

For both the manoeuvres only one trimmed condition has
been considered to set up the autopilot, corresponding to
the flight condition at the beginning of the manoeuvre. The
weighting matrices appearing in the LQR cost function and



the PI controller gains have been set as follows:

Q = diag{1 1 1 1 1 1 0.2 0.2 0.4 0.01 0.01 2}, (20)

R = diag{750 1500 1500 400}, (21)

KP = diag{0 0 0 2}, (22)

K I = diag{0 0 0 0.1}. (23)

The weighting coefficient values were obtained by trial and
error, driven by the following considerations:

• to obtain smooth changes in the pitch, roll and yaw
angles, the angular velocities should be kept low, and
therefore a relative high value should be put on the cor-
responding weights;

• a high weight is to be assigned to the velocities, because
the autopilot is required to track as close as possible the
given trajectory;

• similar considerations apply to the position variables,
but the given weights are lower than those assigned
to the velocities because the effort of the controller to
track the position is higher and high weights would re-
sult in a too strong feedback response;

• the weight on the pitch and roll angles should be low,
because the helicopter will often be in a condition
where non-zero pitch and roll angles are used and thus
they should not be forced by the autopilot;

• a null weight is given to the yaw angle, because numer-
ical experiments revealed that it is better tracked by the
PI controller;

• the values associated to the control angles should be
high in order to keep the control signal within the lim-
its of the actuators and to ensure a smooth flight;

• the PI gains for the main rotor control angles are set to
zero in order to leave the control entirely to the LQR
controller; a relatively high gain is assigned instead to
the tail rotor control angle to ensure a close tracking of
the prescribed heading.

Lateral reposition This manoeuvre starts with the helicopter
in a stabilized hover at35 ft (10.7m) wheel height with the
longitudinal axis of the rotorcraft (thex axis in the simula-
tion) oriented 90 degrees to a reference line marked on the
ground (they axis). Then the helicopter must initiate a lateral
acceleration to approximately35 knots (18m/s) groundspeed
followed by a deceleration to laterally reposition the rotorcraft
in a stabilized hover400 ft (122m) down the course within a
specified time. For a utility helicopter and in good visual con-
ditions, the time to complete the manoeuvre is18 s.

Figure 2 and 3 show, respectively, the comparison be-
tween desired and actual helicopter lateral velocity and po-
sition. The velocity profile is tracked fairly well, the greatest
deviation being a slight overshoot at the transition point be-
tween the acceleration and deceleration phases and at the end
of the deceleration phase. As a result, there is only a small
deviation in the imposed and actual lateral position of the ve-
hicle, and the manoeuvre is correctly concluded after the18 s
prescribed by the ADS-33 normative.

The control inputs generated by the autopilot to track the
trajectory is represented in figure 4. The variation is smooth
and none of the four control angles is saturated during the
manoeuvre.

Slalom This manoeuvre is initiated in level unaccelerated
flight and lined up with the centerline of the test course (the
x axis in the simulation). The rotorcraft must perform a se-
ries of smooth turns at500 ft (152m) intervals (at least twice
to each side of the course). The turns shall be at least50 ft
(15.2m) from the centerline, with a maximum lateral error of
50 ft (15.2m). The manoeuvre ends on the centerline, in co-
ordinated straight flight. The velocity during the manoeuvre
should be no less than60 knots (30.9m/s) to comply with the
“desired” performance specification, or no less than40 knots
(20.6m/s) to comply with the “adequate” performance speci-
fication.

The autopilot is able to perform the slalom manoeuvre at
the prescribed speed of60 knots (30.9m/s). The given and
computed trajectories in thexy plane are displayed in figure
5, where the ability of the autopilot to follow the slalom path
is clearly proven. Figure 6 shows a rendering of the computed
slalom manoeuvre obtained with a software based on the Pre-
sagis VEGA Prime library [34].

The commands history is given in figure 7, where we can
observe that the variation of the control angles is fairly smooth
and that no saturation of any control angle occours. The com-
puted commands history can be compared with that of figure
8, taken from [33], where the commands for the slalom ma-
noeuvre are obtained via nonlinear optimal control theory for
different helicopter models, both linear and nonlinear (named
M1 to M4 in the figure). As can be noted, the commands
generated by the LQR controller are characterized by a lesser
pilot effort in terms of main rotor collective and cyclics con-
trols, but also by a higher use of the tail rotor collective.

4 APPLICATION TO THE CFD SOLVER HMB

4.1 Overview of the HMB Flow Solver

The following contains a brief outline of the approach used in
the Helicopter Multi-Block solver version 2.0. The Navier–
Stokes (NS) equations are discretised using a cell-centredfi-
nite volume approach. The computational domain is divided
into a finite number of non-overlapping control-volumes, and
the governing equations are applied to each cell in turn. Also,
the Navier–Stokes equations are re-written in a curvilinear co-
ordinate system which simplifies the formulation of the dis-
cretised terms since body-conforming grids are adopted here.
The spatial discretisation of the NS equations leads to a setof
ordinary differential equations in time:

d

dt
(W ijkVijk) = −Rijk (W ) . (24)

whereW andR are the vectors of cell conserved variables
and residuals respectively. The convective terms are discre-
tised using Osher’s upwind scheme for its robustness, accu-
racy, and stability properties. MUSCL variable extrapolation
is used to provide second-order accuracy with the Van Albada
limiter to prevent spurious oscillations around shock waves.
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Figure 2: Lateral velocity of the helicopter during the lateral positioning manoeuvre (ADS-33 3.11.8).
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Figure 3: Lateral position of the helicopter during the lateral positioning manoeuvre (ADS-33 3.11.8).
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Figure 4: Autopilot commands history for the lateral positioning manoeuvre (ADS-33 3.11.8).
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Figure 5: Position in thexy plane of the helicopter during the slalom manoeuvre (ADS-333.11.9).

Boundary conditions are set by using ghost cells on the exte-
rior of the computational domain. In the far-field ghost cells
are set at the free-stream conditions. At solid boundaries the
no-slip condition is set for viscous flows, or ghost values are
extrapolated from the interior (ensuring the normal compo-
nent of the velocity on the solid wall is zero) for Euler flow.

The integration in time of equation 24 to a steady-state
solution is performed using a fully implicit time-marching

scheme by:

W n+1

ijk −W n
ijk

∆t
= −

1

Vijk
Rijk

(

W n+1

ijk

)

, (25)

wheren+ 1 denotes the time(n+ 1) ∗∆t. Equation 25 rep-
resents a system of non-linear algebraic equations and to sim-

plify the solution procedure, the flux residualRijk

(

W n+1

ijk

)



Figure 6: Visualisation of the helicopter during the slalommanoeuvre with a software based on the Presagis VEGA Prime library.
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Figure 7: Autopilot commands history for the slalom manoeuvre (ADS-33 3.11.9).

is linearised in time as follows:

Rijk

(

W n+1
)

≈ Rn
ijk (W

n) +
∂Rijk

∂W ijk

∆W ijk, (26)

where∆W ijk = W n+1

ijk −W n
ijk. Equation 25 now becomes

the following linear system:
[

Vijk
∆t

I+
∂Rijk

∂W ijk

]

∆W ijk = −Rn
ijk (W

n) . (27)

The left hand side of (27) is then rewritten in terms of primi-
tive variablesP :

[(

Vijk
∆t

)

∂W ijk

∂P ijk

+
∂Rijk

∂P ijk

]

∆P ijk = −Rn
ijk (W

n) ,

(28)
and the resulting linear system is solved with a GCG (Gen-
eralised Conjugate Gradient) iterative solver. Since at steady
state the left hand side of (28) must go to zero, the Jacobian
∂R/∂P can be approximated by evaluating the derivatives of
the residuals with a first-order scheme. The first-order Jaco-
bian requires less storage and, being more dissipative, ensures
a better convergence rate to the GCG iterations.

The steady state solver for the turbulent case is formulated
and solved in an identical manner to that described above for
the mean flow. The eddy-viscosity is calculated from the lat-
est values ofk andω (for example) and is used to advance
both the mean flow solution and the turbulence solution. An
approximate Jacobian is used for the source term by only tak-
ing into account the contribution of the dissipation termsD̂k

andD̂ω, i.e. no account of the production terms is taken on
the left hand side of the system.

4.2 Fully implicit tangent and adjoint solvers

To compute aerodynamic sensitivities we need to solve either
the linear system (2) for the tangent formulation or the dis-
crete adjoint equations (3), and then use the sensitivity equa-
tion (1) or (4), respectively. Despite the tangent mode for-
mulation is slightly more efficient for aeromechanics appli-
cations, due to the limited number of input parameters, also
the adjoint formulation has been implemented, in view of fu-
ture applications of the sensitivity equation approach in shape
optimisation problems.

The linear system (2) of the tangent formulation and the
linear system (3) of the adjoint formulation tend to become
very stiff as the dimension of the flow problem increases, and
therefore a suitable preconditioner is required to stabilize the
solution algorithm. Another way to tackle the stiffness prob-
lem is to reformulate the linear system as a fixed-point itera-
tion problem [35], where an approximation of the linear sys-
tem matrix, with better convergence properties, is introduced
as a preconditioner to advance the solution at each iteration.
Written in terms of primitive variables, the fixed-point itera-
tive schemes reads:

Ĵ∆P n+1
x = −

∂R

∂x
− JP n

x , (tangent form) (29)

ĴT∆λn+1 = −
∂I

∂P
− JTλn, (adjoint form) (30)

where we have set

J =
∂R

∂P
, Ĵ =

(

V

∆t

)

∂W

∂P
+

[

∂R

∂P

]1st

,

P x =
∂P

∂x
, ∆P n+1

x = P n+1
x − P n

x ,



Figure 8: Commands history for the slalom manoeuvre from Ref. [33].

∆λn+1 = λn+1 − λn.

The matrixJ represents the exact flow residual Jacobian. The
natural choice for the preconditioner̂J is the matrix used for
the base flow iterative scheme (28), sum of a stabilizing time
derivative term and of the first-order residual Jacobian, which
approximatesJ and is more diagonally dominant. The fixed
point iteration (29) is solved using the same GCG iterative
scheme used by HMB for the base flow implicit update. In
the adjoint integration (30) the system matrix is the transpose
of the preconditionerJ , and the linear system can be solved
with a slightly modified version of the GCG solver, that im-
plicitly performs the matrix transposition.

Note also that the iteration schemes (29) and (30) do not
require the full exact JacobianJ , but only the matrix-vector
productJv or JTv. As explained later in this section, the
computer code to perform the former product can be ob-
tained by automatic differentiation in tangent mode of the
flow steady residual subroutine, while the code for the lat-
ter product can be obtained with automatic differentiationof
the same subroutine in adjoint mode. This allows to avoid the
storage ofJ , and hence the computation of sensitivities adds
only a small memory overhead to the base solver.

Computation of the product Jv
To produce the matrix-vector product of the residual Jacobian
J and a generic vectorv we have isolated the CFD solver code

that computes the steady residuals. In particular, the steps in-
volved in the computation of the residuals have been grouped
in the single subroutinesteady residual, described by
the pseudo-code in figure 9 (the calls to the turbulence model
subroutines have been omitted for simplicity). The inputs for
the subroutine are the vectorẊ of mesh velocities, the vector
N of surface normals (the mesh metrics), the solution vector
P in primitive variables and the free-stream Mach number
M∞. It produces as output the steady residual vectorR.

The differentiated version ofsteady residual in tan-
gent mode, namedsteady residual d, has been hand-
coded and it simply calls the differentiated version of the in-
ner subroutines present in the original statements. These inner
subroutines have been differentiated individually by means of
the source transformation tool TAPENADE, operated in tan-
gent mode. As a convention, the subroutines differentiatedin
tangent mode are identified by the postfix “d” appended to
the base name. The pseudo-code forsteady residual d
is shown in figure 10.

The differentiated residual subroutine has the additional
argumentsδẊ, δN , δP , δM∞ andδR (Xdot d, N d, P d,
M d andR d in the pseudo-code, respectively) that represent
the differentials of the quantities involved in the residuals
computation. For any value of the input differentials, the ac-
tion of steady residual d is to compute the consequent



subroutine steady_residual(Xdot, N, P, M, R)
{

// Set the boundary and halo cells
call set_boundary(Xdot, N, P, M);

// Exchange data at block/inter-processor boundaries
call exchange_halo_cells(P);

// Calculate residual looping over the blocks
do for each mesh block
{

// Compute inviscid terms with Osher’s scheme
call inviscid_osher(Xdot, N, P, M, R);

// Compute viscous terms
call viscous(N, P, M, R);

}
}

Figure 9: Pseudo-code for the computation of the steady residual vector.

variation of the residual vector, that is,

δR =
∂R

∂Ẋ
δẊ +

∂R

∂N
δN +

∂R

∂P
δP +

∂R

∂M∞

δM∞. (31)

The third term in the right hand side is the product be-
tween the exact residuals Jacobian matrix with an arbi-
trary vector of solution variations. Thus, invocation of
steady residual d with δẊ = 0, δN = 0, δP = P n

x ,
δM∞ = 0 produces the matrix-vector product necessary to
compute the right hand side of the fixed-point iteration (29).

Note that the additional memory required to solve equa-
tion (2) via the fixed-point iterations (29) is given by the
necessity of storing the differentialsδẊ, δN , δP andδR,
which represents only 10-15% of the memory used by the
implicit solver for the base flow.

Computation of product JTv

The computation of the matrix-vector productJTv requires
the differentiation in adjoint mode of the steady residual sub-
routine. As for the tangent mode case, the adjoint code for
the main subroutinesteady residual b has been man-
ually coded, while the inner subroutines have been differ-
entiated using TAPENADE in reverse mode. The subrou-
tines differentiated in adjoint mode are labeled by the addi-
tion of the postfix “b” to the base name. The pseudo-code
for steady residual b is shown in figure 11.

Note that the adjoint code is more complex with re-
spect to the tangent mode code. There are calls to the non-
differentiated subroutines at the beginning, in what is called
theforward sweep, where all the quantities needed during the
subsequent back-propagationof the derivatives are calculated.
The back-propagation of derivatives is done in thereverse
sweep, where the differentiated version of the subroutines
called in the original statements are executed in reverse or-
der. Observe also that not every call to the non-differentiated
subroutines is present in the adjoint code forward sweep, like
the call toinviscid osher for instance, since the values
computed by this subroutines are not needed during the re-
verse sweep.

For any value of the input residuals differentialsδR
(R b in the pseudo-code), the action of the adjoint code in
steady residual b is to compute the vectorsδẊ, δN ,
δP and δM∞ (Xdot b, N b, P b andM b in the pseudo-
code, respectively) of weighted partial derivatives of the
residuals:

δẊ =

(

∂R

∂Ẋ

)T

δR, (32)

δN =

(

∂R

∂N

)T

δR, (33)

δP =

(

∂R

∂P

)T

δR, (34)

δM∞ =

(

∂R

∂M∞

)T

δR. (35)

It is interesting to observe that the role of the dual variables
δẊ, δN , δP , δM∞ and δR in steady residual d is
reversed insteady residual b: input quantities in the
former are output in the latter, andvice versa.

The vectorδP is the product between the transpose
of the exact residuals Jacobian matrix and an arbitrary
vector of residual variations. It follows that a call of
steady residual b with δR = λn produces the matrix-
vector product appearing in the right hand side of the fixed-
point iteration (30).

The needed additional memory for calling
steady residual b is given by the storage for the vari-
ablesδẊ, δN , δP andδR. To this needs to be added the
memory allocated temporarily by the inner subroutines dif-
ferentiated in reverse mode by TAPENADE. Reverse mode
differentiated code requires in fact to save some of the quan-
tities computed during the forward sweep, when they are
necessary to back-propagate derivatives at some stages of the
reverse sweep. The temporary storage allocated by the reverse
differentiated routines called bysteady residual b is
however very limited, and the associated memory overhead is
almost negligible.



subroutine steady_residual_d(Xdot, Xdot_d, N, N_d, P, P_d, M, M_d, R, R_d)
{

// Set the boundary and halo cells
call set_boundary_d(Xdot, Xdot_d, N, N_d, P, P_d, M, M_d);

// Exchange data at block/inter-processor boundaries
call exchange_halo_cells_d(P, P_d);

// Calculate residual differentials looping over the blocks
do for each mesh block
{

// Compute inviscid terms differentials
call inviscid_osher_d(Xdot, Xdot_d, N, N_d, P, P_d, M, M_d, R, R_d);

// Compute viscous terms differentials
call viscous_d(N, N_d, P, P_d, M, M_d, R, R_d);

}
}

Figure 10: Pseudo-code for the steady residual subroutine differentiated in tangent mode.

subroutine steady_residual_b(Xdot, Xdot_b, N, N_b, P, P_b, M, M_b, R, R_b)
{

// Set the boundary and halo cells
call set_boundary(Xdot, N, P, M);

// Exchange data at block/inter-processor boundaries
call exchange_halo_cells(P);

// Calculate residual differentials looping over the blocks
do for each mesh block
{

// Compute viscous terms differentials
call viscous_b(N, N_b, P, P_b, M, M_b, R, R_b);

// Compute inviscid terms differentials
call inviscid_osher_b(Xdot, Xdot_b, N, N_b, P, P_b, M, M_b, R, R_b);

}

// Exchange differentials at block/inter-processor boundaries
call exchange_halo_cells_b(P_b);

// Set the differentials at boundary and halo cells
call set_boundary_b(Xdot, Xdot_b, N, N_b, P, P_b, M, M_b);

}

Figure 11: Pseudo-code for the steady residual subroutine differentiated in adjoint mode.

4.3 Aerodynamic sensitivities for fixed wing air-
crafts

In the previous section we described how to solve the linear
system yielding the derivative∂P /∂x for the tangent method
or the adjoint variables vectorλ for the adjoint method. Here
we briefly describe how to compute the other terms of the
sensitivity equations (1) and (4), namely∂R/∂x, ∂I/∂P and
∂I/∂x. For fixed wing aircrafts, the outputsI of interest shall
be any of the force and moment coefficientsCL, CD, CY ,
Cl, Cm andCn, while the independent parametersx shall be
either the incidenceα, the sideslipβ, the free-stream Mach
numberM∞ or any of the three rotational ratesp, q andr
around the wind axes.

The terms ∂R/∂α, ∂R/∂β. These partial derivatives repre-
sent the variation of the residual vectorR due to a variation of
angle of attack or sideslip. For the computation of any of this

two terms it is convenient to express the derivative as follows:

∂R

∂x
=
∂R

∂N

∂N

∂X

∂X

∂x
, x ∈ {α, β}, (36)

where the first derivative in the right hand side is the varia-
tion of the residual due to a change in the mesh metrics, the
second is the variation of the metrics due to a change in mesh
coordinates (denoted by the vectorX), and the third is the
variation of the mesh coordinates given by a change in the
input parameter.

Recalling that the action of the steady residual subrou-
tine differentiated in tangent mode is given by (31), the
desired term∂R/∂x can be computed by a single call to
steady residual d with δẊ = 0, δN = (∂N/∂X) ·
(∂X/∂x), δP = 0, δM∞ = 0. The term∂N/∂X can
be obtained by tangent differentiation of the subroutine com-
puting the mesh metrics, while the term∂X/∂x, with x ∈
{α, β}, can be computed directly, since it represents the vari-
ation of the mesh coordinates due to a variation of angle of



attack or sideslip, respectively.

The terms ∂R/∂p, ∂R/∂q, ∂R/∂r. This partial derivatives
represent the variation of the residual vectorR due to a vari-
ation of the rotational speeds around the three wind axes. The
computation of this terms requires to express the derivative
as:

∂R

∂x
=
∂R

∂Ẋ

∂Ẋ

∂x
, x ∈ {p, q, r}, (37)

where the first derivative in the right hand side is the variation
of the residual due to a change in the mesh velocities, and the
second derivative is the variation of the mesh velocities given
by a change in the input parameter. The desired term∂R/∂x
can be computed by a single call tosteady residual d
with δẊ = ∂Ẋ/∂x, δN = 0, δP = 0, δM∞ = 0. The
term ∂Ẋ/∂x, with x ∈ {p, q, r}, is relatively easy to com-
pute, as it represents the variation of the mesh velocities due
to a change in the rotational speed around the three wind axis.

The term ∂R/∂M∞. This partial derivative represents the
dependence of the residual vector upon the free-stream Mach
number. Since the Mach number appears explicitly in the
HMB formulation, and hence in the steady residual code,
this term can be computed by callingsteady residual d
with δẊ = 0, δN = 0, δP = 0, δM∞ = 1.

The terms ∂I/∂α, ∂I/∂β. These partial derivatives repre-
sent the direct dependence of force and moment coefficients
upon the variation of angle of attack or sideslip. They can be
computed in a similar way to the residual terms above, by first
expressing the derivative as

∂I

∂x
=

∂I

∂N

∂N

∂X

∂X

∂x
, x ∈ {α, β}. (38)

The term∂I/∂N expresses the dependence of force and mo-
ments upon the mesh metrics and is obtained by differentiat-
ing the subroutine for computing the integrated loads in tan-
gent mode with respect to mesh metrics. The other terms have
been already discussed above.

The terms ∂I/∂p, ∂I/∂q, ∂I/∂r. These partial derivatives
are zero, because there is no direct dependence of force and
moment coefficients upon the rotational speeds around the
wind axes.

The term ∂I/∂M∞. This partial derivative represents the de-
pendence of the force coefficient upon the free-stream Mach
number. It is obtained by differentiating the subroutine for
computing the integrated loads in tangent mode with respect
to the Mach number.

The term ∂I/∂P . These partial derivatives represent the
variation of force and moment coefficients due to a variation
of the flow variables. They can be efficiently computed by dif-
ferentiating the subroutine for computing the integrated loads
with respect to the flow variables in adjoint mode. The use of
the adjoint mode for this computation is justified by the fact
that the input is represented by all the flow variables, which
clearly outnumber the outputs, represented by the six force
and moment coefficients.

4.4 Aerodynamic sensitivities for rotors in hover

Hover computations are performed in HMB formulating the
equations in the rotating reference frame of the rotor, so that
the solution is steady. Periodic boundary conditions are also
used to take advantage of the symmetry of the problem, al-
lowing for the discretization of a single rotor blade.

With respect to the sensitivities of rotorcraft in
hover, the outputsI of interest are the thrust coefficient
CT = T/(ρAΩ2R2) and the torque coefficientCQ =
T/(ρAΩ2R3), while the independent parametersx are the
collective pitchθ, the flap angleβ and the vertical velocity
w. Here follows a brief description of the sensitivity equa-
tion terms required to compute the aerodynamic derivatives
for rotors in hovering flight.

The terms ∂R/∂θ, ∂R/∂β. These partial derivatives repre-
sent the variation of the residual vectorR due to a change of
the pitch or flap angle. For the computation of any of this two
terms it is convenient to express the derivative as follows:

∂R

∂x
=
∂R

∂N

∂N

∂X

∂X

∂x
, x ∈ {θ, β}. (39)

The first two derivatives in the right hand side can be com-
puted as already explained above for the fixed wing aircraft
case. The third derivative,∂X/∂x, with x ∈ {θ, β}, is com-
puted by differentiation in tangent mode of a grid deformation
routine. This routine evaluate the mesh differentials due to a
rigid rotation around the pitch or flap axis of the blade sur-
face, and of the consequent volume grid deformation, which
is set up so as to keep the other mesh boundaries (periodic
planes and far-field) fixed.

The term ∂R/∂w. This partial derivatives represent the vari-
ation of the residual vectorR due to a variation of the velocity
along the rotor axis of rotation. The computation of this terms
requires to express the derivative as:

∂R

∂w
=
∂R

∂Ẋ

∂Ẋ

∂w
. (40)

The first derivative has been already discussed. The second
derivative is easy to compute, as it represents a uniform varia-
tion of the mesh velocities in the direction of the rotor rotation
axis.

The terms ∂I/∂θ, ∂I/∂β. These partial derivatives repre-
sents the direct dependence of force and moment coefficients
upon the pitch and flap angle. They can be computed in a
similar way to the∂I/∂α and∂I/∂β terms for the fixed wing
aircraft, by expressing the derivative as

∂I

∂x
=

∂I

∂N

∂N

∂X

∂X

∂x
, x ∈ {α, β}, (41)

and computing∂X/∂x as described here above for the
derivatives of the residual vector with respect to the same in-
put variables.

4.5 Numerical results

4.5.1 NACA0012 airfoil

The first considered test case is relative to the inviscid flow
around a NACA0012 airfoil. Sensitivity computations for this
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Figure 12: HMB grid convergence study for the NACA0012,α = 0◦,M∞ = 0.5.

Grid size (# cells) ∂CL/∂α ∂CM/∂α ∂CL/∂q ∂CM/∂q

256 6.3410110158 -1.6086460408 8.65716016820 -2.7304784305
2278 7.7519604640 -2.0313981213 11.2142666118 -3.7744321358
8646 8.0187471791 -2.1086825882 11.6491348404 -3.9194602271
34320 8.0346114695 -2.1129930362 11.6730662785 -3.9270310121
134160 8.0305361599 -2.1115952062 11.6669030887 -3.9250582182

Table 2: Grid convergence study for the NACA0012 airfoil.

∂CL/∂α ∂CM/∂α ∂CL/∂q ∂CM/∂q

Maderet al. [2] 7.9617567582 -2.0686236849 11.9210000000 -4.0000000000
HMB tangent 8.0305361599 -2.1115952062 11.6669030887 -3.9250582182
Difference [%] 0.86 2.07 2.13 1.87
HMB adjoint 8.0305361602 -2.1115952062 11.6669031274 -3.9250582304
Difference [%] 0.86 2.07 2.13 1.87

Table 3: Comparison of HMB sensitivity results on the fine grid with reference results for the NACA0012 airfoil.

airfoil have been performed by Limache and Cliff [1] and by
Maderet al. [2].

A grid convergence study has been first done in order to
select a reference grid for the subsequent computations. Table
2 shows the values of the flight mechanics derivatives for the
airfoil at zero incidence andM∞ = 0.5, obtained solving the
sensitivity equation in tangent mode with grids of increasing
size. The pseudo-time CFL for all the computations was set
to 40.

Figure 12 show, for instance, the convergence of the
derivative∂CL/∂α. As expect, the convergence is second
order in space, and the fine grid with 134160 cells has been
selected for the validation against reference results. Thecom-
parison between HMB in tangent mode, HMB in adjoint
mode and results taken from Maderet al. [2] is given in
table 3. As can be seen, the difference between the HMB
sensitivities computed in tangent and adjoint mode is negligi-
ble, being the results equal up to the eighth significative digit,
and thus proving the consistency of the method. The dif-
ference between the HMB and the reference results is below
2.2% which, considering the different grids and discretization
methods, may be considered a good agreement.

4.5.2 M6 wing

The second test case considers the inviscid flow around an
ONERA M6 wing in transonic flight, with free-stream Mach
numberM∞ = 0.8395 and angle of attackα = 3.06◦. Again,
the HMB results have been compared with the reference re-
sults of Maderet al. [2]. The HMB mesh is composed by
442200 cells (see figure 13), while the reference mesh has
14.7M cells. The pseudo-time CFL for both the base flow
solver and for the tangent/adjoint solver was set to 20.

Figure 14 shows the contours of the pressure sensitivity
with respect to the angle of attack, extracted from the solution
to equation (2). As one could expect, the highest values of the
pressure derivative are located in the shock region, while the
lower surface presents instead a more regular positive pres-
sure variation.

The comparison between HMB and reference flight me-
chanics derivatives is reported in table 4. The HMB results are
in good agreement with the reference results, exception made
for the derivatives involving integration in direction parallel
to the wing planform and the derivatives with respect to the
free-stream Mach number. The disagreement of the former
derivatives is not surprising, since the forces parallel towing
planform are small and the results are therefore significantly



CL CD CY Cl Cm Cn

α 5.5800E+00 4.6593E-01 2.3675E-10 2.2080E-10 -4.1428E+00-1.5021E-10
β 1.4600E-09 1.1901E-10 -7.8594E-03 -1.2684E-01 -1.1942E-09 1.7950E-02
M∞ 8.1377E-01 1.6121E-01 -7.6705E-10 -6.9969E-09 -9.3351E-01 8.7624E-10
p 6.8034E-13 1.0360E-10 2.2844E-01 -1.5445E+00 -1.1599E-10 -2.0465E-01
q 1.2976E+01 5.8162E-01 5.0051E-10 2.3937E-10 -1.0957E+01-2.4555E-10
r -4.3888E-09 -6.8873E-10 -4.7777E-02 4.5109E-01 4.8487E-09 1.8383E-02

HMB tangent mode

CL CD CY Cl Cm Cn

α 5.5772E+00 4.5422E-01 0.0000E+00 0.0000E+00 -4.0932E+000.0000E+00
β -1.5168E-05 4.0961E-06 -6.8243E-03 -1.2667E-01 1.4722E-05 1.4088E-02
M∞ 7.7872E-01 1.3225E-01 0.0000E+00 0.0000E+00 -8.3126E-010.0000E+00
p -2.2748E-06 3.3527E-07 2.3829E-01 -1.4971E+00 2.0630E-06 -2.1088E-01
q 1.3474E+01 6.0271E-01 0.0000E+00 0.0000E+00 -1.1437E+010.0000E+00
r 1.5217E-06 -4.4730E-07 -4.6747E-02 4.4085E-01 -1.4838E-06 2.3991E-02

Maderet al. [2]

CL CD CY Cl Cm Cn

α 0.05 2.58 1.21
β 15.17 0.14 27.41
M∞ 4.50 21.90 12.30
p 4.13 3.16 2.96
q 3.70 3.50 4.20
r 2.20 2.32 23.37

Difference [%]

Table 4: Comparison of HMB sensitivity results with reference results for the M6 wing.

∂CL/∂M∞ ∂CD/∂M∞ ∂CY /∂M∞ ∂Cl/∂M∞ ∂Cm/∂M∞ ∂Cn/∂M∞

HMB FD 8.1360E-01 1.6127E-01 ≈ 0 ≈ 0 -9.3344E-01 ≈ 0
HMB AD 8.1376E-01 1.6121E-01 ≈ 0 ≈ 0 -9.3351E-01 ≈ 0
Difference [%] 0.02 0.04 0.01

Table 5: Comparison of Mach sensitivity computed with AD andFD for the M6 wing.

grid dependent.

It is instead more difficult to justify the disagreement of
the free-stream Mach number derivatives, and therefore we
verified the obtained results against finite differences. The
comparison is given in table 5. As can be seen, the finite
difference result agrees with very good approximation to the
result obtained solving the sensitivity equation.

Regarding the performance of the method, the time for
computing the base flow with a relative convergence of10−9

was 23 minutes on a 4-core 3.3GHz Intel Xeon. For the tan-
gent method, the computational time for a single sensitivity
computation with a relative convergenceof10−9 was between
45 and 80% the time needed by the base flow solver, depend-
ing on the input variable. For the adjoint method, the compu-
tational time was between 50 and 90% of the base flow solver
time, depending on the output quantity. The overall time
for the aerodynamic sensitivities computation is 100 minutes
for the tangent mode solver and 118 minutes for the adjoint
solver.

Note that for computing all the aerodynamic derivatives
with finite differences, 12 CFD solutions are needed, for an

overall computational time of 270 minutes.

4.5.3 ONERA 7AD rotor

To verify the computation of aerodynamic sensitivities forro-
tors we analyze the inviscid flow of an ONERA 7AD rotor in
hover flight. The tip Mach number is set toMtip = 0.6612and
the collective pitch isθ0.7 = 7.5◦. The mesh is a multi-block
grid with 880000 cells for a single blade, where the effect
of the other blades is accounted for using periodic boundary
conditions (see figure 15). At the far-field boundaries Froude
conditions are imposed to better represent the flow induced by
the rotor and to avoid the formation of artificial recirculation
regions. The CFL for the base flow solver and for the tangent
solver was set to 8.

The derivatives of the thrust coefficientCT and of the
torque coefficientCQ computed with HMB solving the sensi-
tivity equation in tangent mode are shown in table 6, where
θ denotes the collective angle,β the flap angle andw the
vertical velocity of the rotor. Since no sensitivity resultis
available in the literature for this rotor, we compared the sen-
sitivities computed with the automatically differentiated code
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Figure 14: Pressure sensitivity with respect to the angle ofattack of the ONERA M6 wing,α = 3.06◦,M∞ = 0.8395.
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Figure 15: Computational grid for the ONERA 7AD rotor.

with those obtained via finite differencing. The comparison
relative to the collective angle sensitivity is shown in table
7, where a good agreement between the two methods can be
observed.

In figure 16 we also compared the distribution of the pres-
sure sensitivity with respect to the collective angle∂P/∂θ
computed with the AD code, solving equation (2), and with

finite differences. The isolines of∂P/∂θ are shown for a sec-
tion of the flow field at 75% of the blade span. There is a
good agreement between the AD and FD results, but the iso-
lines obtained with FD exhibit a more noisy behaviour, due to
cancellation errors.

The computational time for the base flow of the rotor case
was 6.3 hours on two 4-core 3.3GHz Intel Xeon. The time



CT CQ

θ 1.2296E-01 1.2599E-02
β 7.2029E-03 6.7284E-04
w 1.1053E-01 -9.5130E-04

Table 6: HMB sensitivity results for the ONERA 7AD rotor.

∂CT /∂θ ∂CQ/∂θ

HMB FD 1.20826221E-01 1.25691808E-02
HMB AD 1.22959168E-01 1.25986274E-02
Difference [%] 1.73 0.23

Table 7: Comparison of collective angle sensitivity computed with AD and FD for the ONERA 7AD rotor.

Figure 16: Pressure sensitivity with respect to the collective angle for the ONERA 7AD rotor. Colors and black isolines were
computed solving equation (2), red isolines were computed via finite differences.

spent for each one of the three sensitivity solutions in tangent
mode was 5 hours (80% of the base flow time).

5 CONCLUSIONS

This paper presented the implementation and assessment of
automatic differentiation and discrete adjoint methods within
the framework of implicit CFD solvers. In itself this is not a
common approach since explicit solvers are easier to differ-
entiate and modify for the adjoint method to be implemented.
After implementation, validation of the method has been at-
tempted using established cases found in the literature forair-
foils and wings. The results show that the current method
achieves results in agreement with theory and with published
solutions. At a second step, the aerodynamics derivatives for
rotors in hover flight were attempted and results are found to
agree with finite difference computations.
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