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Abstract

This paper presents the development of a discrete adjoititatidyy means of automatic differentiation in the framewafrkhe
Helicopter Multiblock CFD solver. The method is suitable &pplications in flight mechanics as well as shape optinoisand
is demonstrated in this paper for cases reported in thatlitez. The application of automatic differentiation istfprgesented for a
simple flight mechanics software with indicative resultsA®S-33 maneouvres. Subsequently adjoint CFD computsiticere
undertaken for aerofoil, wing and rotor blade cases. Thaionét results were found to agree well with other publistodat®ns
or with data obtained using finite differences for computing flow derivatives. The method has so far been demonsti@mted
inviscid flow cases and suggests that the current implertienta robust and efficient. The cost of the adjoint compatet is
relatively low due to the employed source code differeitttabind most of the times it is no more than the cost for a stestale
flow solution.

1 INTRODUCTION All the partial derivatives appearing in the right-handssiin

be computed with limited effort, with exception of the term
The design of new generation helicopters with increased per 9W /o, that represents the variation of the flow variables
formance and improved handling qualities requires a deepefyith respect to the variation of the independent input param
understanding of the aerodynamics, not only in steady flight eter. This last term may be obtained by differentiating the
but also during manoeuvres. Because of the nonlinearity andyoverning equations to yield the following linear system fo
unsteadiness of the flow it is extremely challenging to deter the unknowrdW /du:
mine its aerodynamic characteristics. To reduce the comple OR OW OR
ity of the problem, it is commonly assumed that for small W o~ or (2)

deviations from a given steady flight condition the flight dy- ) e
namics behaviour can be described by means of a IineariseJherefor_e' the computayon of a flow _senS|t|V|ty IS re_ducm-d t
the solution of the nonlinear governing flow equations plus

model, defined by a set of aerodynamic derivatives. These ) : ,
derivatives can be obtained via finite differences (FD) dato (1€ solution of the linear system (2). Note that one linear
CFD computation. Nevertheless, finite differencing become SYStém for each flight dynamics variable must be solved to
prohibitive in terms of computational cost, since two or mor COMPUte the sensitivities, since the right-hand side oti2)

complete flow solutions are required to compute each deriva-Pends upornr. Thus, as with _f|n|te d|ﬁeren0|ng,_ the overall
tive. computational cost scales with the number of inputs. How-

A more economic way to obtain the aerodynamic deriva- ever, the sensitiyity equation approagh requires the isolut
tives with CFD is via solving theensitivity equationcasted  ©f Only one nonlinear system of equations and does not suffer
in either tangent or adjoint form [1, 2]. The basic idea is to ©f the cancellation problem, yielding derivatives acoeap
write any aerodynamic force and moment coefficiéras a to machine precision. _
function of the flow variable3¥ and of the input flight dy- The sensitivity problem (1)-(2) can be recast in dual form
namics variable of interest (angle of attack, sideslip, Mach by introducing the adjoint vector variableas the solution of

number, etc.), that i§ = I(W (z),z). The flow variables  the following linear system:

are subject to satisfy the fluid dynamics governing equation OR\ " ol
yvritten in compact form aR(W(z),z) = 0. F_ormally tak- <—8W) T T ow ®3)
ing the derivative off with respect tac we obtain: _ . o . .
Substituting this equation into the expression (1) andgisin
DI _ g + oI oW 1) the duality between a matrix and its transpose we obtain:
Dx Oz OW 0z’ pI oI

which represents the tangent form of the sensitivity eguati Dr Or o



The computational cost of the dual sensitivity problem(@)-  ory for aerodynamic shape optimisation in conjunction with
scales with the number of outputs, since the right-hand sideCFD techniques, whose complexity increased over the years
of (3) depends o, but it is independent of the input param- from the solution of the potential flow equations to that of
eters. The choice between the use of the direct or dual sensithe Navier—Stokes equations [14, 15, 16]. The derivation of
tivity problem depends consequently on the balance betweerthe adjoint problem in these works is based ondtwetinuous
the number of outputs and the number of inputs. The two approach(CA), where the adjoint equations are analytically
methods, for instance, should perform equally well in com- derived from the primary flow equations and discretised-afte
puting the flight mechanics derivatives, since the number of wards.
output force and moment coefficients is similar to the number  The alternativediscrete approachDA) to the adjoint
of input flight mechanics parameters. problem consists in deriving the adjoint equations disectl
The calculation of the partial derivatives appearing in the from the discretised formulation of the flow equations. This
sensitivity equation can be done manually, deriving amadyt  has been pursued in the works of Elliott and Peraire [17] and
expressions and writing the needed computer code. NonetheAnderson [18] in the context of aerodynamic shape optimi-
less, this approach can be tedious if the flow equationswevol  sation with unstructured grids. A fairly complete overview
complex terms, like, for instance, upwinding terms for e i of the development of continuous and discrete adjoint meth-
viscid fluxes or source terms of turbulence models. Recentods in the last two decades of the 20th century can be found in
advances irautomatic differentiatior(AD) tools, however,  Newmaret al. [19]. Both continuous and discrete approaches

enable to produce the computer code for the differentials of have advantages and disadvantages, as pointed out by Giles
these complex terms directly from the source code of the CFDand Pierce [20]. They are summarised in table 1.

solver [3]. The implementation of the DA for flow equations involv-

To assess the use of AD in complex computer codes, suchng complex terms (upwinding terms, terms depending on
as CFD solvers, we first applied the methodology to the Heli- spectral radii, source terms appearing in turbulence nsodel
copter Flight Mechanics (HFM) code, developed at the Uni- etc ) is not generally straightforward. A technique to tack
versity of Liverpool. HFM integrates the rigid body equa- the problem of deriving the discrete adjoint in such complex
tions of dynamics for the helicopter and makes use of strip- cases is automatic differentiation, in which the adjoindeo
theory model to compute the aerodynamic forces. The codeyg evaluate the gradients is obtained manipulating diyelg

has been differentiated by means of the source transformagyiginal CFD code, as in the work of Mohammadi [21, 22].
tion tool TAPENADE [4, 5], so as to produce all the aerody-

namic derivatives needed for a state space representdtion %00
the helicopter dynamics. As an application, the state space,
representation is used to build a real-time trajectorykirag
autopilot based on a Linear Quadratic Regulator (LQR) and
Proportional-Integral (PI) controller. To assess the pili,

the ADS-33 [6] lateral reposition manoeuvre and the slalom
manoeuvre have been simulated using HFM.

AD may be obtained by means of source-traformation
Is or via operator overloading in programming languages
uch as FORTRAN 90 and C++. Tools that use source code
transformation add new statements to the original sourde co
that compute the derivatives of the original statementse Th
operator overloading approach consists of a new user-define
type that is used instead of floating points. This new type
includes not only the value of the original variable, but its

The experience gained with HFM was then used for the ey ative as well. The operator overloading approachitesu
CFD solver Helicopter Multi Block (HMB) [7, 8] of Liver- ta\yer changes to the original code, but is usually less ef-

pool and AgustaWestland. Taking inspiration from the Work giient [23]. AD tools are available for a variety of program-

of Jone=t al. [9] and of Madetet al. [2], the individual func- ming languages. ADIFOR [24], TAF [25] and TAMC [26] are
tions of the CFD solver have been automatically differeatia some of the tools available for FORTRAN. TAPENADE [4
and assembled afterward to build the neecessary terms in thg] supports both FORTRAN 90 and C. A complete list ofA[,)

sensitivity equation, both in tangent and adjoint form. The 4455y ailable for each programming language may be found
linear system associated to the sensitivity problem isesblv at [27]

using the fully implicit fixed-point iteration scheme of the
base flow solver. The resulting code is able to compute the . o
g b differentiation of a computer code: ttierward (or tangen}

aerodynamic derivatives of fixed wing aircraft or of rotams i .
y g mode and theeverse(or adjoint) mode. The forward mode

hover flight, at a fraction of the cost required by finite dif- ; . A :
ferencing. The method is demonstrated for the aerodynamicuses the chain rule to propagate the required derivatives in

sensitivities of the NACA0012 airfoil, the ONERA M6 wing tr}ef samed(’j;\rDegtlon of trt1_e Orﬁmﬁi complkj)ter (;o_de. tThftﬁOSt
and the ONERA 7AD rotor in hover. of forwar is proportional to the number of inputs of the

computed function. In reverse mode the derivatives are-prop
agated backward, from the last statement of the code to the
2 BACKGROUND first. The reverse mode is analogous to the adjoint method

and the cost is proportional to the number of outputs of the
The first application of the adjoint method to fluid dynam- computed function. However, the memory requirements of
ics is dated back to 1974 with the pioneering work of Piron- the reverse mode are considerably higher, since the stofage
neau [10], where adjoint methods and control theory were intermediate results of the function evaluation is req]hfmf
applied to drag minimisation. Starting from the late eight- the backward propagation of the derivatives.
ies the first applications to CFD problems begin to appear, Itis to be noted that AD cannot be applied directly to the
thanks to the work of Jameson and other co-authors [11,whole residual evaluation chain to produce the adjoint ef th
12, 13]. They exploited the adjoint method and control the- flow equations, because it would lead to an inefficient code

There are two different modes of operation for automatic



Discrete approach

Continuous approach

Provides the exact gradients, since the discrete adjOEI
operator is simply the transpose of the matrix arising
from the discretisation of the primary flow equations

|Ives an approximation to the continuous gradient based
n some alternative discretization

The implementation requires less coding effort, esp®equires hand coding of the discretization scheme

cially if AD is employed

Straight application of AD to the CFD code produce
inefficient adjoint code, so that application of AD to
individual nonlinear subroutines and partial re-coding is
necessary

The derivation of the adjoint equations and BCs i
purely algebraic, and gives no insight in the physics Q
the problem

applied to the continuous adjoint equations

The continuous code is often considerably simpler than
the discrete in terms of operation count and memory
requirements, as well as easier to implement

ives a more clear interpretation of the physics behind
e adjoint variables and of the associated BCs

Table 1: Advantages and disadvantages of the continuoudiscrete approaches.

in terms of memory and CPU time. A more realistic goal state.

It is based on the classical equation of motion for

for AD is in assisting the derivation of the discrete adjoint rigid bodies and on BEM and the Peters—HaQuang [30] in-

by hand-differentiation, by automatically differentragi and
transposing individual routines. This was adopted in Mader
et al. [3] and in Jonegt al. [9].

The introduction of automatic differentiation, the ad-
vances in techniques for solving the adjoint problem and the
growing power of computing hardware allowed application
of the adjoint method to more complex cases. Also, driven by
the industry need of more realistic flight mechanics models,

flow model to compute the rotor forces.
In HFM the vectorz, describing the rotorcraft state, is
defined as follows:

z=(uvwpqrreye ze POV (5)

i=1,...,Nr, j=1,..., N},

the related research widened its initial objective of agrod Where

namic shape optimisation to make space to novel application
such as aeromechanics. In the work of Limache and Cliff [1]
and of Mader and Martins [2, 28], for instance, the aerody-
namic derivatives of airfoil and wings are computed by solv-
ing the sensitivity problem. This concept is then extended
to compute the sensitivities of time-periodic flow soluspn
such as those generated by turbomachinery and helicopters,
by applying the adjoint method to the time-spectral formula
tion of the flow equations, which reduces the time-dependent
problem to a steady problem in the frequency domain. This is
described in Choét al. [29] and in Mader and Martins [28].
These past works proved the superiority of the sensitiv-
ity equation approach with respect to finite differencing fo
aeromechanics applications but, at the same time, showed
the difficulties associated to the convergence of the densit
ity equation and the demanding memory requirements of ad-
joint solvers, which can represent a limiting factor forligtac
large-scale applications. The objective of the presenkvgr
to partially overcome these drawbacks, while keeping the ef
ficiency and accuracy of the sensitivity problem approach fo
the computation of aerodynamic derivatives.

* Np is the number of rotors an¥}, is the the number
of blades of the-th rotor;

* u, v, w are the vehicle velocity components in body
axis;

* p, q, r are the vehicle angular velocity components in
body axis;

* xg, vg, wg are the vehicle position vector components
in Earth reference frame;

* ¢, 0,V are the vehicle Euler angles in Earth reference
frame;

« A\, Mi,, Mt are the inflow model coefficients for the
i-th rotor;

e 3%, (Y, 0% are the hinge angles for theth blade of
thei-th rotor;

* (Q; andw; are the torque and rotational speed ofittle
rotor;

* 1); is the azimuth angle of theth rotor.

The control vector contains the collective and cyclic pitch

3 APPLICATION TO FLIGHT MECHANICS

3.1 Code description

angles of the rotors:

u=(0007.0},), i=1,...,Ng. (6)

For a typical helicoptelNy = 2 (the main and the tail rotor),
The computer code HFM is capable of simulating a freely- and for the tail rotor only the collective pitch is contrallghe
moving rotorcraft as well as of computing the vehicle trim control vector has therefore only four components.



With the above definitions, the flight mechanics equations respect to the state we obtain thibility derivatives Dif-
can be written in compact form as a first-order system of or- ferentiating with respect to the control we obtain tuatrol

dinary differential equations:
()

whereD(z,u) is a matrix and-(z, u) is the nonlinear resid-
ual vector. Equations (7) are solved in HFM with either an
explicit Euler method or with a fourth order explicit Runge—
Kutta method.

2= D(z,u) 'r(z,u),

3.2 Automatic differentiation

The core of the flight mechanics code is the function
HFMconput e, which solves numerically equation (7).
The flowchart of the function is shown in figure 1la.
HFMconput e takes as input the current state of the heli-

copter and the controls, and then integrates the equatfons o

motion in time for a given number of time steps. At each time
step the operations performed are the following:

(1) compute the rotors(s) equations of motion;

(2) compute the contribution of the fuselage and tail sur-
faces to the equations of motion;

(3) sum all the force and moment contributions into the
body equations of motion;

(4) compute the engine terms;

(5) assembly all the computed terms into the matrix
D(z,w) and into the vector(z, w) appearing in equa-
tion (7);

(6) solve the linear system (7) by LU decomposition to
compute the first derivative of the state vector

(7) integrate in time with either the explicit Euler or ex-
plicit fourth order Runge—Kuttascheme to obtain the
new state vectoz.

It is possible to differentiate the functid#-M.conput e
(in tangent mode, for instance) with a single invocation of
TAPENADE as follows:

-d -root HFM conpute \
-vars "z u"

-outvars "F M

src/ HFM conpute. c \

src/ HFM vehicle.c \
src/HFM rotors.c

t apenade

The option “ d” tells the tool to operate differentiation in tan-
gent mode. Options-‘var s” and “- out var s” specify the
name of the function input and output differentiable valeab
respectively. The produced differentiated subroutinai®-a
matically namedHFM.conput e_d.

The input variables are the state vectoand the con-
trol vector u, while the output variables are the resulting
force F and moment\V on the helicopter. A single call to
HFMconput e_d produces the partial derivative & and
M with respect to one of the inputs. Differentiating with

derivatives

The flowchart of the subroutinélFMcomput e d is
shown in figure 1b. All calls to the original functions are
replaced by calls to the corresponding differentiated curbr
tines. An exception is made for the call to the linear solver,
which has been differentiated manually. Indeed, the mathe-
matical operation of solving a linear system can be differen
tiated by hand and the resulting algebra can be directly im-
plemented. In fact, ifAz = b is the original problem, hand
differentiation givesiAxz + Adx = 0b, and the sought dif-
ferential can be thus computed@s = A~1(6b — §Ax). In
our specific case, the differential #fis computed solving the
system:

D(z,u)0z =6r(z,u,dz,0u)

—0D(z,u,dz,0u)r(z,u). (8)

3.3 LQR based autopilot

AD provides an efficient method to compute the stability and
control derivatives of a rotorcraft computer model. We now
describe how to use this information to build an autopilet fo
trajectory tracking based on a LQR feedback controller [31,
32]. To this end, for a conventional helicopter with main and
tail rotors, we consider the following state space and abntr
vectors:

9)
(10)

= (uvwpqrreyezePOW),
u= (65" 00 01 05%)

and build the linearised 6-DoF model of the rotorcraft abun
the trim statgxz*, u*) as

ox = Adx + Bou. (11)
where 5
4 fww) o Of(ww)
ox ou (12)

at r=x* u=u".

The nonlinear functiorf (x, u) describes the evolution of the
state space vector from the trim staté to the stater un-
der the action of the input (held fixed), and is computed
by integrating equation (7) over some revolutions of the ro-
tor in order to let the flapping motion transient be suffidignt
damped.

The aim of an autopilot is to control the position
(xg, ye, ze) Of the helicopter in Earth reference frame and its
heading?. We recast this trajectory tracking problem into the
LQR setting as follows. At each time instance we consider the
closest trimmed condition of the helicopter and compute the
associated linearised model. Thengif is the deviation of
the state vector from the desired state, the variatioiof the
controls is determined as the LQR optimal feedback due to
the deviationfz. The LQR controller will in fact driveyx to
zero by minimising the quadratic cost function

J = / (6T Qdx + du' Rou) dt, (13)
0

1When using the Runge—Kutta scheme, steps 1-6 are repeatedooreach of the four stages of the scheme.
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Figure 1: Flowcharts of the top-level functioHEM.conput e andHFM.conput e_d.

with @ and R being weighting matrices that define the “im- andxe andze are the actual and desired trajectories in Earth
portance” of the the states and of the controls in the cost-fun reference framey and¥ the actual and desired headings.
tion. The solution to the minimisation problem is The coefficientsk? and K} (i = 1,...,4) are, respectively,
he proportional and integral gains.
Suron = —Koa, (14) the proportional and integral gains

The value of the control angles at each time instant is

where is the optimal feedback matrix given by therefore given by their value in the reference trimmed ¢ond

K =R 'B™P, (15) tion plus the feedback given by the LQR and PI controllers:
andP is the solution of the continuous algebraic Riccati equa-
tion: u=u"+ 5U|_QR + dupy. (29)
AP+ PA—-PBR'B'"P+Q=0. (16)

As can be seen, the optimal LQR feedback maftixdoes

not depend on the solution and may therefore be precalcu-

lated prior to the simulation for the various represenétiim 3.4 Numerical results
states.

To achieve better tracking performance the LQR con- .
gp Q To assess the performance of the developed autopilot we con-

troller has been augmented with a simple PI controller: sidered the HFM model of a generic MR/TR helicopter and
Sup = —diag K¥, K}, KY, K7)e a7) simulated two manoeuvres from the ADS-33 aeronautical de-
t sign standard [6], specifically tHateral reposition(ADS-33
—diag K1, Kb, K3, KY) / edt, 3.11.8) and thelalom(ADS-33 3.11.9).

o For both the manoeuvres only one trimmed condition has
been considered to set up the autopilot, corresponding to
the flight condition at the beginning of the manoeuvre. The
weighting matrices appearing in the LQR cost function and

wheree is the tracking error

e:{ ””;;5} (18)



the PI controller gains have been set as follows: The control inputs generated by the autopilot to track the
. trajectory is represented in figure 4. The variation is sinoot
Q =diag{111 111 0.20.20.4 0.010.012},  (20)  and none of the four control angles is saturated during the

R = diag{750 1500 1500 400}, (21) manoeuvre.
KF = diag{0002}, (22)  galom This manoeuvre is initiated in level unaccelerated
K' =diag{0000.1}. (23) flight and lined up with the centerline of the test course (the

x axis in the simulation). The rotorcraft must perform a se-
The weighting coefficient values were obtained by trial and ries of smooth turns &t00 ft (152 m) intervals (at least twice
error, driven by the following considerations: to each side of the course). The turns shall be at lgafit
(15.2 m) from the centerline, with a maximum lateral error of
50ft (15.2m). The manoeuvre ends on the centerline, in co-
ordinated straight flight. The velocity during the manoeuvr
should be no less thait knots §0.9 m/s) to comply with the
“desired” performance specification, or no less thaknots
« ahigh weight s to be assigned to the velocities, because(20.6 m/s) to comply with the “adequate” performance speci-
the autopilot is required to track as close as possible thefication.
given trajectory; The autopilot is able to perform the slalom manoeuvre at
o ) . . ) the prescribed speed 6f knots 0.9 m/s). The given and
e similar co_nS|derat.|ons apply to the position varlaples, computed trajectories in they plane are displayed in figure
but the given weights are lower than those assigneds \yhere the ability of the autopilot to follow the slalom pat
to the velocities because the effort of the controller to g clearly proven. Figure 6 shows a rendering of the computed

track the position is higher and high weights would re- gja10m manoeuvre obtained with a software based on the Pre-
sult in a too strong feedback response; sagis VEGA Prime library [34].

« the weight on the pitch and roll angles should be low, The commands history is given in figure 7, where we can
because the helicopter will often be in a condition Observethatthe variation of the control angles is fairlpsth

where non-zero pitch and roll angles are used and thusand that no saturati(_)n of any control angle occours. The com-
they should not be forced by the autopilot; puted commands history can be compared with that of figure
8, taken from [33], where the commands for the slalom ma-
* anullweightis given to the yaw angle, because numer- noeuvre are obtained via nonlinear optimal control theory f
ical experiments revealed that it is better tracked by the different helicopter models, both linear and nonlineangad
Pl controller; M1 to M4 in the figure). As can be noted, the commands

. the values associated to the control angles should begenerated by the LQR controller are characterized by aresse

o . o ; pilot effort in terms of main rotor collective and cyclicsreo
high in order to keep the control signal within the lim- : : .
. R trols, but also by a higher use of the tail rotor collective.
its of the actuators and to ensure a smooth flight;

 to obtain smooth changes in the pitch, roll and yaw
angles, the angular velocities should be kept low, and
therefore a relative high value should be put on the cor-
responding weights;

« the PI gains for the main rotor control angles are set to
zero in order to leave the control entirely to the LQR 4 APPLICATION TO THE CFD SOLVER HMB

controller; a relatively high gain is assigned instead to .
the tail rotor control angle to ensure a close tracking of 4.1~ Overview of the HMB Flow Solver

the prescribed heading. The following contains a brief outline of the approach used i

Lateral ition Thi tarts with the helicopt the Helicopter Multi-Block solver version 2.0. The Navier—
- ert k;'efos:j 'r?n |23r;;n(i%u7vre S ahr S \INrI1 . h? (.Jj[rl]c?hp €' Stokes (NS) equations are discretised using a cell-cefitred
N a stablllized Nover (10.7m) wheel height wi € nite volume approach. The computational domain is divided

lt?onng'tgg'ennilegxé% ?;hZégt?écz;angrfni)gﬁi%netzqearsllren dUI(?r_1 theinto a finite number of non-overlapping control-volumeg] an

roand they axis T%en the helicopter must initiate a lateral the governing equations are applied to each cell in turmAls
g ( ey )- . P the Navier—Stokes equations are re-written in a curvilicea
acceleration to approximatedy knots (L8 m/s) groundspeed

followed by a deceleration to laterally reposition the rotaft ordinate system which simplifies the formulation of the dis-
. . o cretised terms since body-conforming grids are adoptegl her
in a stabilized hovet00 ft (122 m) down the course within a y 99 P

e 1 . . . . The spatial discretisation of the NS equations leads to afset
specified time. For a utility helicopter and in good visuat€o P 9

ditions, the time to complete the manoeuvré§s. ordinary differential equations in time:

Figure 2 and 3 show, respectively, the comparison be- d
tween desired and actual helicopter lateral velocity and po T (WijkVijk) = —Riji (W) . (24)
sition. The velocity profile is tracked fairly well, the gteat
deviation being a slight overshoot at the transition poet b whereW and R are the vectors of cell conserved variables
tween the acceleration and deceleration phases and atdhe erand residuals respectively. The convective terms areediscr
of the deceleration phase. As a result, there is only a smalltised using Osher’s upwind scheme for its robustness, accu-
deviation in the imposed and actual lateral position of te v racy, and stability properties. MUSCL variable extrapiolat
hicle, and the manoeuvre is correctly concluded afted g is used to provide second-order accuracy with the Van Albada
prescribed by the ADS-33 normative. limiter to prevent spurious oscillations around shock vgave
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Figure 3: Lateral position of the helicopter during the tat@ositioning manoeuvre (ADS-33 3.11.8).
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Figure 4: Autopilot commands history for the lateral pasithg manoeuvre (ADS-33 3.11.8).
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Figure 5: Position in they plane of the helicopter during the slalom manoeuvre (AD$-.33.9).

Boundary conditions are set by using ghost cells on the exte-scheme by:

rior of the computational domain. In the far-field ghost sell

are set at the free-stream conditions. At solid boundalies t ij,gl Wi 1 il 25
no-slip condition is set for viscous flows, or ghost values ar A —mRiﬂc (Wijk ) ) (25)
extrapolated from the interior (ensuring the normal compo-

nent of the velocity on the solid wall is zero) for Euler flow.  wheren + 1 denotes the timén + 1) x At. Equation 25 rep-
The integration in time of equation 24 to a steady-state resents a system of non-linear algebraic equations anthto si
solution is performed using a fully implicit time-marching Pplify the solution procedure, the flux residul;y. (WZJ,Ql)
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Figure 7: Autopilot commands history for the slalom manage(ADS-33 3.11.9).

is linearised in time as follows: 4.2 Fully implicit tangent and adjoint solvers
GRijk
OW i,

To compute aerodynamic sensitivities we need to solverithe
the linear system (2) for the tangent formulation or the dis-
crete adjoint equations (3), and then use the sensitivilyaeq
whereAW ;;;, = ijﬁl — Wi Equation 25 now becomes  tion (1) or (4), respectively. Despite the tangent mode for-
the following linear system: mulation is slightly more efficient for aeromechanics appli
cations, due to the limited number of input parameters, also
[Vijk I+ IR jk ] AW, = —R, (W™) (27) the adjoint formulation has been implemented, in view of fu-
At OW ik ar i3k ' ture applications of the sensitivity equation approactnape
optimisation problems.
The linear system (2) of the tangent formulation and the
linear system (3) of the adjoint formulation tend to become
g - - very stiff as the dimension of the flow problem increases, and
[(%) %‘;‘g/—f: + gﬁ—”ﬂ APy, = —R (W"), therefore a suitable preconditioner is required to stabilhe
/ * 28 solution algorithm. Another way to tackle the stiffnesstpro
and the resulting linear system is solved with a GCG (Gen- I(_em is to reformulate the linear syst_em asa fixed-pointitera
eralised Conjugate Gradient) iterative solver. Sinceestdyy 10N problem [35], where an approximation of the linear sys-
state the left hand side of (28) must go to zero, the Jacobiarf®M matrix, with better convergence properties, is intoedl
OR/OP can be approximated by evaluating the derivatives of @ & preconditioner to advance the solution at each iteratio
the residuals with a first-order scheme. The first-order-Jaco Writtén in terms of primitive variables, the fixed-pointriée
bian requires less storage and, being more dissipativerens Ve schemes reads:
a better convergence rate to the GCG iterations. s opntl . OR "
The steady state solver for the turbulent case is formulated JAP; ™ = “or TP (tangentform)  (29)
and solved in an identical manner to that described above for ST ntl ol Tn -
the mean flow. The eddy-viscosity is calculated from the lat- JTANT = P JIA, - (adjointform) - (30)
est values of andw (for example) and is used to advance \ypere we have set
both the mean flow solution and the turbulence solution. An

R (WHH) ~ R (W") +

AW i, (26)

The left hand side of (27) is then rewritten in terms of primi-
tive variablesP:

1st
approximate Jacobian is used for the source term by iny tak- J= G_R j= (L) ow + [3_}3}
ing into account the contribution of the dissipation tetis OP’ At) OP opP| ’
andD,, i.e. no account of the production terms is taken on oP

the left hand side of the system. Py =5, AP = prtt _ pr
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Figure 8: Commands history for the slalom manoeuvre from [3&f.

AXNTTE = ATz that computes the steady residuals. In particular, thessitep

. _ volved in the computation of the residuals have been grouped
The matrixJ represents the exact flow residual Jacobian. Thejn the single subroutinet eady_r esi dual , described by

natural choice for the preconditiongris the matrix used for  the pseudo-code in figure 9 (the calls to the turbulence model
the base flow iterative scheme (28), sum of a stabilizing time sybroutines have been omitted for simplicity). The inpots
derivative term and of the first-order residual Jacobiaricvh  the subroutine are the vectaf of mesh velocities, the vector
approximates/ and is more diagonally dominant. The fixed v of surface normals (the mesh metrics), the solution vector
point iteration (29) is solved using the same GCG iterative p in primitive variables and the free-stream Mach number
scheme used by HMB for the base flow implicit update. In p7_ It produces as output the steady residual vefor
the adjoint integration (30) the system matrix is the trasgp
of the preconditioney, and the linear system can be solved The differentiated version aft eady_r esi dual intan-
with a Sl|ght|y modified version of the GCG SOIVer, that im- gent mode, namesdt eady_r esi dual _d' has been hand-
plicitly performs the matrix transposition. coded and it simply calls the differentiated version of the i
Note also that the iteration schemes (29) and (30) do notner subroutines present in the original statements. These i
require the full exact Jacobiah but only the matrix-vector  subroutines have been differentiated individually by nsaazin
productJv or JTv. As explained later in this section, the the source transformation tool TAPENADE, operated in tan-
computer code to perform the former product can be ob- gent mode. As a convention, the subroutines differentimted
tained by automatic differentiation in tangent mode of the tangent mode are identified by the postfixi® appended to

flow steady residual subroutine, while the code for the lat- the base name. The pseudo-codesfbeady _r esi dual _d
ter product can be obtained with automatic differentiabbn  is shown in figure 10.
the same subroutine in adjoint mode. This allows to avoid the

storage of/, and hence the computation of sensitivities adds  The differentiated residual subroutine has the additional

only a small memory overhead to the base solver. argumenth, 0N, 6P, oM, anddR (Xdot _d, N.d, P_d,
Md andR.d in the pseudo-code, respectively) that represent
Computation of the product Jv the differentials of the quantities involved in the resildua

To produce the matrix-vector product of the residual Jeenobi computation. For any value of the input differentials, tiee a
J and a generic vectarwe have isolated the CFD solver code tion of st eady r esi dual _d is to compute the consequent



subroutine steady_residual (Xdot, NN, P, M R

{
/1 Set the boundary and halo cells
call set_boundary(Xdot, N, P, M;

/| Exchange data at bl ock/inter-processor boundaries
call exchange_hal o_cel | s(P);

/'l Cal cul ate residual |ooping over the bl ocks

do for each nesh bl ock

{
/1 Conpute inviscid terns with Gsher’s schene
call inviscid_osher(Xdot, N, P, M R);

/| Conpute viscous terns
call viscous(N, P, M R);

Figure 9: Pseudo-code for the computation of the steadgiuakvector.

variation of the residual vector, that is, For any value of the input residuals differential®
(R.b in the pseudo-code), the action of the adjoint code in
SR a_RgX + 8_R5N + st eady resi dual b is to compute the vectosX, 6N,
0X ON 0P and oM, (Xdot _b, N.b, P_.b andMb in the pseudo-
OR OR code, respectively) of weighted partial derivatives of the
apif+ M(SMOO- (31)  residuals:
The third term in the right hand side is the product be- ) OR\ "
tween the exact residuals Jacobian matrix with an arbi- 0X = <8_X> OR, (32)
trary vector of solution variations. Thus, invocation of
st eady resi dual .dwith 6X = 0,6N = 0,5P = P, OR\T
0M~, = 0 produces the matrix-vector product necessary to ON = <(’)—N> R, (33)
compute the right hand side of the fixed-point iteration (29)
Note that the additional memory required to solve equa- OR\ "
tion (2) via the fixed-point iterations (29) is given by the oP = <8_P> OR, (34)
necessity of storing the differentiadsX, 6N, 6P and/R,
which represents only 10-15% of the memory used by the OR \T
implicit solver for the base flow. OMoo <m) OR. (35)

Computation of product J™v
The computation of the matrix-vector produttv requires
the differentiation in adjoint mode of the steady residwed-s
routine. As for the tangent mode case, the adjoint code for
the main subroutinet eady r esi dual _b has been man-
ually coded, while the inner subroutines have been differ- ~ The vectordP is the product between the transpose
entiated using TAPENADE in reverse mode. The subrou- of the exact residuals Jacobian matrix and an arbitrary
tines differentiated in adjoint mode are labeled by the addi Vector of residual variations. It follows that a call of
tion of the postfix “b” to the base name. The pseudo-code St eady.resi dual b with §R = A" produces the matrix-
for st eady_r esi dual _b is shown in figure 11. vector pr0<_juct appearing in the right hand side of the fixed-
Note that the adjoint code is more complex with re- Pointiteration (30).
spect to the tangent mode code. There are calls to the non- The needed additional memory for calling
differentiated subroutines at the beginning, in what idechl st eady.r esi dual _b is given by the storage for the vari-
theforward sweepwhere all the quantities needed during the ablesé X, IV, P anddR. To this needs to be added the
subsequent back-propagation of the derivatives are el memory allocated temporarily by the inner subroutines dif-
The back-propagation of derivatives is done in theerse ferentiated in reverse mode by TAPENADE. Reverse mode
sweep where the differentiated version of the subroutines differentiated code requires in fact to save some of the gquan
called in the original statements are executed in reverse ortities computed during the forward sweep, when they are
der. Observe also that not every call to the non-differéedtia necessary to back-propagate derivatives at some stages of t
subroutines is present in the adjoint code forward swekp, li reverse sweep. The temporary storage allocated by theseever
the call toi nvi sci d_osher for instance, since the values differentiated routines called byt eady _r esi dual b is
computed by this subroutines are not needed during the rehowever very limited, and the associated memory overhead is
verse sweep. almost negligible.

It is interesting to observe that the role of the dual vagabl
85X, 0N, 6P, M., andSR in st eady_resi dual dis
reversed inst eady_r esi dual _b: input quantities in the
former are output in the latter, awite versa



subroutine steady_residual _d(Xdot, Xdot_d, N, Nd, P, P.d, M Md, R R.Jd)
{
/1 Set the boundary and halo cells
call set_boundary_d(Xdot, Xdot_d, N, N.d, P, P.d, M MJd)
/| Exchange data at bl ock/inter-processor boundaries
call exchange_hal o_cells_d(P, P_d);
/'l Calculate residual differentials |ooping over the bl ocks
do for each nesh bl ock
{
/'l Conpute inviscid terns differentials
call inviscid_osher_d(Xdot, Xdot_d, N, N.d, P, P.d, M Md, R R.Jd)
/| Conpute viscous terns differentials
call viscous_d(N, N.d, P, P.d, M Md, R R.Jd);
}
}

Figure 10: Pseudo-code for the steady residual subrouifieeehtiated in tangent mode.

subroutine steady_residual _b(Xdot, Xdot_b, N, Nb, P, Pb, M Mb, R R.b)
{
/1 Set the boundary and halo cells
call set_boundary(Xdot, N, P, M;
/| Exchange data at bl ock/inter-processor boundaries
call exchange_hal o_cel I s(P)
/'l Calculate residual differentials |ooping over the bl ocks
do for each nesh bl ock
{
/| Conpute viscous terns differentials
call viscous_b(N, Nb, P, Pb, M Mb, R R.b);
/'l Conpute inviscid terns differentials
call inviscid_osher_b(Xdot, Xdot_b, N, Nb, P, P.b, M Mb, R RD)
}
/'l Exchange differentials at block/inter-processor boundaries
call exchange_hal o_cel | s_b(P_b);
/1 Set the differentials at boundary and halo cells
call set_boundary_b(Xdot, Xdot_b, N, N.b, P, P_.b, M MDb)
}

Figure 11: Pseudo-code for the steady residual subrouifiieeehtiated in adjoint mode.

4.3 Aerodynamic sensitivities for fixed wing air- two terms it is convenient to express the derivative asvto

crafts OR ORON 0X

9~ oNox o “Elwsh

(36)

In the previous section we described how to solve the linear
system yielding the derivativeP /0x for the tangent method
or the adjoint variables vectox for the adjoint method. Here
we briefly describe how to compute the other terms of the
sensitivity equations (1) and (4), namélR/0x, 91 /0P and

0I /0. For fixed wing aircrafts, the outpufsf interest shalll

be any of the force and moment coefficiedts, Cp, Cy,

C;, C,, andC,,, while the independent parametershall be
either the incidence, the sideslips, the free-stream Mach
numberM ., or any of the three rotational rates ¢ andr
around the wind axes.

where the first derivative in the right hand side is the varia-
tion of the residual due to a change in the mesh metrics, the
second is the variation of the metrics due to a change in mesh
coordinates (denoted by the vect&r), and the third is the
variation of the mesh coordinates given by a change in the
input parameter.

Recalling that the action of the steady residual subrou-
tine differentiated in tangent mode is given by (31), the
desired termdR/0x can be computed by a single call to
st eady resi dual .d with 6X = 0, N = (AN /0X) -

(0X /0x), 6P = 0, 0Ms = 0. The termdN /0X can
be obtained by tangent differentiation of the subroutin@-co

ThetermsOR/da, OR/J5. These partial derivatives repre-
sent the variation of the residual vec®rdue to a variation of
angle of attack or sideslip. For the computation of any of thi

puting the mesh metrics, while the te@X /0x, with « €
{«, 8}, can be computed directly, since it represents the vari-
ation of the mesh coordinates due to a variation of angle of



attack or sideslip, respectively. 4.4 Aerodynamic sensitivities for rotors in hover

Hover computations are performed in HMB formulating the
equations in the rotating reference frame of the rotor, ab th
the solution is steady. Periodic boundary conditions ese al
used to take advantage of the symmetry of the problem, al-
lowing for the discretization of a single rotor blade.
OR OR X With respect to the sensitivities of rotorcra_ft_ in
e X Oz x € {p,q,r}, (37) hover, the outputd of interest are the thrgs_t coefficient
Cr = T/(pAf2%R?) and the torque coefficient, =
where the first derivative in the right hand side is the variat T/(pAN22R?), while the independent parametersare the
of the residual due to a change in the mesh velocities, and theg|jective pitchd, the flap angle3 and the vertical velocity
second derivative is the variation of the mesh velocitiesmi  ,,. Here follows a brief description of the sensitivity equa-

by a change in the input parameter. The desired @Ry0x tion terms required to compute the aerodynamic derivatives
can be computed by a single callsb eady _r esi dual _d for rotors in hovering flight.

with 6X = 90X /0z, 6N = 0, 6P = 0, My = 0. The
term0X /0x, with z € {p, ¢, r}, is relatively easy to com-  ThetermsdR/d9, 0R/dp. These partial derivatives repre-
pute, as it represents the variation of the mesh velocities d  sent the variation of the residual vectBrdue to a change of
to a change in the rotational speed around the three wind axisthe pitch or flap angle. For the computation of any of this two
terms it is convenient to express the derivative as follows:
N 0X
N (N

ThetermsOR/Jp, OR/0q, DR /Or. This partial derivatives
represent the variation of the residual vedi®ddue to a vari-
ation of the rotational speeds around the three wind axes. Th
computation of this terms requires to express the derigativ
as:

Theterm OR/0M,. This partial derivative represents the
dependence of the residual vector upon the free-stream Mach

number. Since the Mach number appears explicitly in the ) e i ) )
HMB formulation, and hence in the steady residual code, The first two denvauve; in the right hand s_lde can be com-
this term can be computed by callisgeady r esi dual _d puted as alrgady expla_uned above _for the fixed wing aircraft
With 6X = 0, 6N = 0, 6P = 0, 6 M, = 1. case. The third derivative X /0z, with x € {0, 5}, is com-
puted by differentiation in tangent mode of a grid deforimati
The terms 81/, 91/953. These partial derivatives repre- routine. This routine evaluate the mesh differentials dua t
digid rotation around the pitch or flap axis of the blade sur-

sent the direct dependence of force and moment coefficient ' ' 8
upon the variation of angle of attack or sideslip. They can be face, and of the consequent volume grid deformation, which

computed in a similar way to the residual terms above, by first IS S€t Up so as to keep the other mesh boundaries (periodic
expressing the derivative as planes and far-field) fixed.

ol 0l ON 0X 38 Theterm OR/0Ow. This partial derivatives represent the vari-
9% ONOX or °© € {a, B}. (38) ation of the residual vectdR due to a variation of the velocity

along the rotor axis of rotation. The computation of thisrter
The termdI /0N expresses the dependence of force and mo-requires to express the derivative as:

ments upon the mesh metrics and is obtained by differentiat-

ing the subroutine for computing the integrated loads in tan OR _ a_Ra_X (40)
gent mode with respect to mesh metrics. The other terms have ow  9X Ow
been already discussed above. The first derivative has been already discussed. The second

derivative is easy to compute, as it represents a uniforra-var
Theterms 0I/0p, 0I/0q, I /0r. These partial derivatives  tion of the mesh velocities in the direction of the rotor tiwta
are zero, because there is no direct dependence of force andxis.
moment coefficients upon the rotational speeds around the
wind axes. The terms 0I/00, 0I/08. These partial derivatives repre-
sents the direct dependence of force and moment coefficients
Theterm 01/0M .. This partial derivative represents the de- upon the pitch and flap angle. They can be computed in a
pendence of the force coefficient upon the free-stream Machsimilar way to the)I /0« anddI /9 terms for the fixed wing
number. It is obtained by differentiating the subroutine fo aircraft, by expressing the derivative as
computing the integrated loads in tangent mode with respect oI oI ON 6X
to the Mach number. - BNOX 5. &€ lxbh (41)
and computingd X /0x as described here above for the

The term 0I/0P. These partial derivatives represent the o ; . )
/ P P derivatives of the residual vector with respect to the same i

variation of force and moment coefficients due to a variation .
of the flow variables. They can be efficiently computed by dif- put variables.

ferentiating the subroutine for computing the integratetls

with respect to the flow variables in adjoint mode. The use of 4.5 Numerical results

the adjoi_nt que for this computation is justifiegl by the cht 451 NACA0012 airfoil

that the input is represented by all the flow variables, which

clearly outnumber the outputs, represented by the six forceThe first considered test case is relative to the inviscid flow
and moment coefficients. around a NACA0012 airfoil. Sensitivity computations foisth
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Figure 12: HMB grid convergence study for the NACA0O0&2s= 0°, M., = 0.5.

Grid size (# cells) oC1, /0« OCw [0 0C'1/0q 0C/0q
256 6.3410110158 -1.6086460408 8.65716016820 -2.7330K4
2278 7.7519604640 -2.0313981213 11.2142666118 -3.77185%
8646 8.0187471791 -2.1086825882 11.6491348404 -3.922480
34320 8.0346114695 -2.1129930362 11.6730662785 -3.9P123
134160 8.0305361599 -2.1115952062 11.6669030887 -35829B2
Table 2: Grid convergence study for the NACAQ0012 airfoil.
(9CL/8OL 80M/8a 8CL/(9(] 801\4/8(]
Maderetal.[2] 7.9617567582 -2.0686236849 11.9210000000 -4.00000@0
HMB tangent 8.0305361599 -2.1115952062 11.66690308879258582182
Difference [%] 0.86 2.07 2.13 1.87
HMB adjoint 8.0305361602 -2.1115952062 11.6669031274 9250582304

Difference [%]

0.86

2.07

2.13

1.87

Table 3: Comparison of HMB sensitivity results on the finelgrith reference results for the NACA0012 airfoil.

airfoil have been performed by Limache and Cliff [1] and by 4.5.2 M6 wing
Maderet al. [2]. ) o
The second test case considers the inviscid flow around an
A grid convergence study has been first done in order to ONERA M6 wing in transonic flight, with free-stream Mach
select a reference grid for the subsequent computatiobte Ta NumberM., = 0.8395 and angle of attack = 3.06°. Again,
2 shows the values of the flight mechanics derivatives for thethe HMB results have been compared with the reference re-
airfoil at zero incidence andi/,, = 0.5, obtained solving the ~ Sults of Maderet al. [2]. The HMB mesh is composed by
sensitivity equation in tangent mode with grids of incregsi 442200 cells (see figure 13), while the reference mesh has
size. The pseudo-time CFL for all the computations was set14.7M cells. The pseudo-time CFL for both the base flow
to 40. solver and for the tangent/adjoint solver was set to 20.
Figure 14 shows the contours of the pressure sensitivity
Figure 12 show, for instance, the convergence of the with respect to the angle of attack, extracted from the smiut
derivativedC1, /da. As expect, the convergence is second to equation (2). As one could expect, the highest valueseof th
order in space, and the fine grid with 134160 cells has beenpressure derivative are located in the shock region, whée t
selected for the validation against reference results.cohe lower surface presents instead a more regular positive pres
parison between HMB in tangent mode, HMB in adjoint sure variation.
mode and results taken from Mader al. [2] is given in The comparison between HMB and reference flight me-
table 3. As can be seen, the difference between the HMBchanics derivatives is reported in table 4. The HMB resuts a
sensitivities computed in tangent and adjoint mode is gegli  in good agreement with the reference results, exceptioremad
ble, being the results equal up to the eighth significatigiédi  for the derivatives involving integration in direction p#el
and thus proving the consistency of the method. The dif- to the wing planform and the derivatives with respect to the
ference between the HMB and the reference results is belowfree-stream Mach number. The disagreement of the former
2.2% which, considering the different grids and discreiira derivatives is not surprising, since the forces parallebitg
methods, may be considered a good agreement. planform are small and the results are therefore signifigant



CrL Cp Cy Ci Cm Cn
a 5.5800E+00 4.6593E-01 2.3675E-10  2.2080E-10 -4.1428E+005021E-10
B 1.4600E-09 1.1901E-10 -7.8594E-03 -1.2684E-01 -1.1942E- 1.7950E-02
M, ~ 8.1377E-01 1.6121E-01 -7.6705E-10 -6.9969E-09 -9.33B1E- 8.7624E-10
P 6.8034E-13  1.0360E-10  2.2844E-01 -1.5445E+00 -1.1599E-2.0465E-01
q 1.2976E+01 5.8162E-01 5.0051E-10  2.3937E-10 -1.0957E+®14555E-10
r -4.3888E-09 -6.8873E-10 -4.7777E-02  4.5109E-01  4.8489E- 1.8383E-02
HMB tangent mode
CL CD Cy Cl Cm Cn
a 5.5772E+00 4.5422E-01 0.0000E+00  0.0000E+00 -4.0932E-+O®O00E+00
5 -1.5168E-05 4.0961E-06 -6.8243E-03 -1.2667E-01  1.47Q2E- 1.4088E-02
M.  7.7872E-01 1.3225E-01 0.0000E+00 0.0000E+00 -8.3126E-0DOOOE+00
P -2.2748E-06  3.3527E-07 2.3829E-01 -1.4971E+00 2.063®E-2.1088E-01
q 1.3474E+01  6.0271E-01 0.0000E+00  0.0000E+00 -1.1437E+0DO00E+00
T 1.5217E-06 -4.4730E-07 -4.6747E-02  4.4085E-01 -1.483BE- 2.3991E-02
Maderet al. [2]
CL CD Cy Cl Cm Cn

a 0.05 2.58 1.21

B 15.17 0.14 27.41

M, 450 21.90 12.30

P 413 3.16 2.96

q 3.70 3.50 4.20

r 220 2.32 23.37

Difference [%]

Table 4: Comparison of HMB sensitivity results with refecemesults for the M6 wing.

0CL/OMys OCp/OMs  OCy/OMs  0C;/OMs  0Cy/OMs  0C, /OMy
HMB FD 8.1360E-01 1.6127E-01 ~ 0 ~0 -9.3344E-01 ~0
HMB AD 8.1376E-01 1.6121E-01 ~ 0 ~0 -9.3351E-01 ~0
Difference [%] 0.02 0.04 0.01

Table 5: Comparison of Mach sensitivity computed with AD &mifor the M6 wing.

grid dependent.

It is instead more difficult to justify the disagreement of
the free-stream Mach number derivatives, and therefore we4.5.3 ONERA 7AD rotor
verified the obtained results against finite differencese Th
comparison is given in table 5. As can be seen, the finite
difference result agrees with very good approximation & th
result obtained solving the sensitivity equation.

overall computational time of 270 minutes.

To verify the computation of aerodynamic sensitivitiesror

tors we analyze the inviscid flow of an ONERA 7AD rotor in

hover flight. The tip Mach number is setid;, = 0.6612 and

, ) the collective pitch iy 7 = 7.5°. The mesh is a multi-block
Regarding the performance of the method, the time for g \ith 880000 cells for a single blade, where the effect

computing the base flow with a relative convergence(of® of the other blades is accounted for using periodic boundary

was 23 minutes on a 4-core 3.3GHz Intel Xeon. For the tan- congitions (see figure 15). At the far-field boundaries Feoud

gent method, the computational time for a single sensitivit ¢ongitions are imposed to better represent the flow induged b

computation with a relative convergence 0f * was between  the rotor and to avoid the formation of artificial recircitat

45 and 80% the time needed by the base flow solver, dependregions. The CFL for the base flow solver and for the tangent
ing on the input variable. For the adjoint method, the compu- gqyver was set to 8.

tational time was between 50 and 90% of the base flow solver The derivatives of the thrust coefficiefit, and of the

time, depending on the output quantity. The overall ime 4qye coefficient, computed with HMB solving the sensi-
for the aerodynamic sensitivities computation is 100 mesut tivity equation in tangent mode are shown in table 6, where
for the tangent mode solver and 118 minutes for the adjointy qenotes the collective angls, the flap angle ands the
solver. vertical velocity of the rotor. Since no sensitivity resist
Note that for computing all the aerodynamic derivatives available in the literature for this rotor, we compared tée-s
with finite differences, 12 CFD solutions are needed, for an sitivities computed with the automatically differentidteode
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Figure 13: Computational grid for the ONERA M6 wing.

‘ Sensitivity of pressure with respect to angle of att ack ‘
EL ]

dW,/do:
1

0.76 i .
0.32 0.6

|
0.12 A
056 S ﬁ %H r : 02
: e |

Pressure coefficient

Periodic planes

Figure 15: Computational grid for the ONERA 7AD rotor.

with those obtained via finite differencing. The comparison finite differences. The isolines &fP/96 are shown for a sec-
relative to the collective angle sensitivity is shown inleab tion of the flow field at 75% of the blade span. There is a
7, where a good agreement between the two methods can bgood agreement between the AD and FD results, but the iso-
lines obtained with FD exhibit a more noisy behaviour, due to

observed.
cancellation errors.

In figure 16 we also compared the distribution of the pres-
sure sensitivity with respect to the collective anglg/06 The computational time for the base flow of the rotor case

computed with the AD code, solving equation (2), and with was 6.3 hours on two 4-core 3.3GHz Intel Xeon. The time



Cr Co
0 1.2296E-01 1.2599E-02

B 7.2029E-03 6.7284E-04
w 1.1053E-01 -9.5130E-04

Table 6: HMB sensitivity results for the ONERA 7AD rotor.

oCT /00 0Cq /00
HMB FD 1.20826221E-01 1.25691808E-02
HMB AD 1.22959168E-01 1.25986274E-02
Difference [%] 1.73 0.23

Table 7: Comparison of collective angle sensitivity congalavith AD and FD for the ONERA 7AD rotor.
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Figure 16: Pressure sensitivity with respect to the cdlleangle for the ONERA 7AD rotor. Colors and black isolinesres
computed solving equation (2), red isolines were compuifinite differences.
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