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Abstract

Linearized time-periodic models are extracted from a high fidelity comprehensive nonlinear helicopter model
at a low-speed descending flight condition and a cruise flight condition. A Fourier expansion based model
reduction method is used to obtain linearized time-invariant models from the time-periodic models. These
linearized models are intended for studies examining the interaction between on-blade control and the primary
flight control system. On-blade control is usually implemented in closed-loop mode, therefore, the LTI
models are verified for closed-loop performance fidelity. The higher harmonic controller is used with the
2/rev-5/rev harmonic components of the flap deflection as the control input and vibratory hub loads as
the output. Closed-loop performance of the LTI model is compared to that of the nonlinear model at both
low-speed descending flight and cruise flight conditions. The flap deflection histories and the vibratory loads
predicted using the LTI model and nonlinear model agree very well at both the flight conditions when the flap
deflection is limited to be less than 2◦. The errors between the two models increase with an increase in the
flap deflection amplitude. Overall, the results show that the linearized time-invariant models are suitable for
studying closed-loop on-blade vibration control and the interactions with the primary flight control system.

Nomenclature

A(ψ),B(ψ),

C(ψ),E(ψ) Matrices in the linear time-periodic model

A21,A22,

A23,A31,

A32,A33,

B2,B3,C2,

C3,E1 Matrices in the linear time-invariant model

CW Helicopter weight coefficient

Da = −∂ha

∂ẋs

Ds = − ∂h
∂ẋa

f Output function relating the hub loads
to the blade structural and aerodynamic
degrees of freedom

f Equivalent flat plate area of the fuse-

lage

h Function representing blade structural
equations of motion in terms of rotat-
ing coordinates

ha Function representing blade aerodynamic
equations of motion in terms of rotat-
ing coordinates

Ga = ∂ha

∂u

Gs = ∂h
∂u

g Function representing blade structural
equations of motion in terms of multi-
blade coordinates

ga Function representing blade aerodynamic
equations of motion in terms of multi-
blade coordinates

Kaa = −∂ha

∂xa

Kas = −∂ha

∂xs



Ksa = − ∂h
∂xa

Kss = − ∂h
∂xs

Mb Blade mass

Nb Number of rotor blades

Pa = ∂f
∂xa

Ps = ∂f
∂xs

Q = ∂f
∂ẋs

R = ∂f
∂u̇

R Rotor blade radius

u = {u1,u2,u3,u4}′ Individual blade coordinates rep-
resenting flap deflection/control inputs

uaug Augmented input vector used in the LTI
model

xaug Augmented state vector used in the LTI
model

um = {um0,um1c,um1s,um2}′ Multi-blade coordi-
nates representing flap deflection/control
inputs

XFA, ZFA Longitudinal and vertical offsets between
rotor hub and helicopter aerodynamic
center

XFC , ZFC Longitudinal and vertical offsets between
rotor hub and helicopter center of grav-
ity

xs = {x1,x2,x3,x4}′ Rotating blade coordinates rep-
resenting blade deflections in the rotat-
ing coordinate system

xa = {xa1,xa2,xa3,xa4}′ Rotating blade coordinates
representing the aerodynamic states in
the rotating coordinate system

xms = {xm0,xm1c,xm1s,xm2}′ Multi-blade coordi-
nates representing blade deflections in
the non-rotating coordinate system

xma = {xam0,x
a
m1c,x

a
m1s,x

a
m2}′ Multi-blade coordi-

nates representing aerodynamic states
in the non-rotating coordinate system

x0
m0,x

0
m1c,x

0
m1s,x

0
m2 Multi-blade coordinates cor-

responding to the periodic equilibrium

y Output vector

yaug Augmented output vector used in the
LTI model

αD Descent angle

αR Rotor shaft angle

βp Blade precone angle

γ Lock number

δ Flap or microflap deflection

∆ Symbol indicating a perturbation

φR Lateral roll angle

µ Advance ratio

θ0 Collective pitch

θ0t Tail rotor pitch angle

θ1c, θ1s cyclic pitch components

θtw Blade pretwist distribution

σ Rotor solidity

ωF , ωL, ωT Blade flap, lag and torsional natural
frequencies

Ω Rotor angular speed

ψ Azimuth angle

ζ Output vector in the LTP model

ξ State variable vector in the LTP model

υ Input vector in the LTP model

()0 Superscript indicating the average Fourier
coefficient

()ic Superscript indicating the ith cosine Fourier
coefficient

()is Superscript indicating the ith sine Fourier
coefficient

ACF Actively-Controlled Flaps

AVINOR Active Vibration and Noise Reduction

FEMR Fourier-Expansion based Model Reduc-
tion

HFC Helicopter Flight Control

HHC Higher Harmonic Control

LTI Linear Time-Invariant

LTP Linear Time-Periodic

OBC On-Blade Control

RFA Rational Function Approximation

RMS Root Mean Square

1 Introduction

Vibration and noise reduction in rotorcraft us-
ing active control has been a major area of research
during the last three decades. In addition to caus-
ing crew and passenger discomfort, vibrations re-
duce the airframe and component fatigue life and
limit rotorcraft performance resulting in high main-
tenance costs. High noise levels limit community
acceptance of rotorcraft for civilian applications and



also affect military helicopter detection. On-blade
active control (OBC) approaches, such as the ac-
tively controlled plain trailing-edge flaps (ACF) [1–
3] and the microflaps [4] have been explored for ro-
torcraft vibration and noise reduction as well as per-
formance enhancement. However, the influence of
these OBC systems on the helicopter flight control
systems (HFC) and its handling qualities has re-
ceived attention only recently [5]. Understanding
the interaction between high-bandwidth control us-
ing OBC systems and the closed-loop flight control
systems is an essential pre-requisite to OBC imple-
mentation on a production helicopter.

The handling qualities specifications for small
amplitude maneuvers prescribed in Aeronautical De-
sign Standard (ADS-33, [6]) are based on linear time-
invariant (LTI) model specifications. Furthermore,
LTI models provide a convenient framework for con-
trol system design. Thus, extraction of a LTI ap-
proximation of the helicopter dynamics is an essen-
tial step towards carrying out an OBC and HFC in-
teraction study. The first step in extraction of LTI
models is to obtain a linearized time-periodic (LTP)
model by linearizing the nonlinear model about a
periodic equilibrium. Subsequently, LTI models are
extracted from the LTP model. Various methods,
such as the Lyapunov-Floquet transformation method,
Hill’s method, time-lifting and frequency-lifting meth-
ods [7] have been explored in the literature for refor-
mulation of LTP models into LTI form. The Hill’s
method in which the LTI models are extracted us-
ing a Fourier expansion of the LTP model matrices
has been found to provide a convenient framework
for higher-harmonic control and flight control inter-
action studies in helicopters [5,8,9]. In Ref. 8, Hill’s
method was used to extract LTI helicopter model
approximations that can capture the N/rev vibra-
tory hub load dynamics, where N is the number
of rotor blades. The LTI models can only predict
the perturbations in vibratory loads about a peri-
odic equilibrium. Interactions between a conven-
tional higher harmonic control (HHC) system and
the HFC system were studied using the LTI heli-
copter models. The LTI models were extracted from
an existing coupled nonlinear rotor-fuselage model
of the Sikorsky UH-60 Black Hawk helicopter based
on rigid flap-lag and first torsional degrees of free-
dom. Quasi-steady compressible aerodynamics and
a three-state dynamic inflow model, which yields
a linear inflow distribution over the rotor-disk were
used in the nonlinear model. The conventional HHC
controller was used to minimize the N/rev vibra-
tory hub loads. Implementing the HHC controller

in closed-loop had a negligible effect on the AFCS
performance and overall handling qualities, indicat-
ing the lack of dynamic coupling of HHC into flight
control. However, a significant vibration response to
pilot inputs was noticed. The open-loop vibratory
shears were increased by more than 100% during
a rolling maneuver. Performance of the HHC sys-
tem in suppressing transient vibration response dur-
ing the rolling maneuver was examined. The root-
mean-square vibration shears were reduced by 30%
using an enhanced HHC system. It should be noted
that this study only provides a framework for esti-
mating mutual interactions between the vibratory
hub loads and the flight mechanics. However, due
to the primitive nature of the rotor structural and
aerodynamic models used, only qualitative conclu-
sions can be drawn.

Another method for the extraction of LTI he-
licopter models from a nonlinear model was devel-
oped in Ref. 9. The method involves a two-step ap-
proach where a LTP model is extracted from a non-
linear model using a numerical perturbation scheme.
Subsequently, a Fourier expansion based harmonic
decomposition of the LTP model matrices is used
to arrive at a LTI model of selected order. This
method is refered to as the Fourier expansion based
model reduction (FEMR) approach in this paper.
Fidelity of the LTI models to the LTP models was
assessed in Ref. 9. Methodologies to reduce the LTI
model order while retaining the fidelity of the full-
order LTI model were developed in Ref. 10. The
nonlinear helicopter model used in these studies was
the generic helicopter model embedded in FLIGHT-
LAB and includes one rigid plus one elastic mode
for flap as well as lead-lag motions of each blade
and a 15-state dynamic inflow model. The blade
feathering is assumed to be rigid. These LTI models
were used in Ref. 11 to develop an advanced control
system based on dynamic crossfeeds that can mit-
igate the vibration response during a maneuvering
flight. The classical higher harmonic controller was
used in this study. The nonlinear helicopter simu-
lation models used in the studies mentioned earlier
are adequate for capturing only the 1st order dy-
namic effects. However, these are not sufficient for
accurate predictions of vibratory hub loads. Fur-
thermore, the codes used did not account for the
presence of on-blade control systems. Recently, in
Ref. [5], the FEMR approach was used to extract
LTP and LTI models from a high fidelity nonlinear
helicopter model embedded in the AVINOR (Ac-
tive Vibration and Noise Reduction) code [12]. The
nonlinear model accounts for higher-order structural



dynamic effects, dynamic stall effects, non-uniform
inflow and unsteady aerodynamic effects due to on-
blade control surfaces, providing an accurate predic-
tion of the vibratory hub loads and the effects of on-
blade control devices. The LTP and LTI model hub
load responses were validated against the nonlinear
model response. Very good agreements were ob-
served with the inclusion of the aerodynamic model
states in the linearized models for prescribed open-
loop flap inputs. However, on-blade control devices
are expected to be implemented in the closed-loop
mode. Therefore, to study on-blade control and
flight control interactions, it is imperative to develop
LTI models that retain the closed-loop character-
istics of the nonlinear model. Thus, primary goal
of this study is to construct high-fidelity LTP and
LTI models that can accurately capture the closed-
loop on-blade vibration control characteristics of the
nonlinear model. The specific goals of this paper
are:

1. Construct high-fidelity LTP and LTI models
that can accurately capture the closed-loop on-
blade control characteristics of a nonlinear he-
licopter model.

2. Evaluate the LTI model by comparing its closed-
loop vibration reduction performance and the
optimal flap deflection prediction against the
nonlinear model when using a plain trailing-
edge flap.

3. Construct and evaluate the LTI models at both
a low-speed descending flight and a cruise flight
condition.

2 Rotorcraft Aeroelastic Anal-
ysis Code

The AVINOR comprehensive rotorcraft aeroe-
lastic response code, which has been extensively used
to study vibration and noise reduction using flaps
and microflaps [1, 4, 12], is employed in this study
to extract linearized models. The principal ingredi-
ents of the AVINOR code are concisely summarized
next.

2.1 Structural dynamic model

The geometrically nonlinear structural dynamic
model in AVINOR accounts for moderate blade de-
flections and fully coupled flap-lag-torsional dynam-

ics for each blade. The structural equations of mo-
tion are discretized using the global Galerkin method,
based upon the free vibration modes of the rotating
blade. The dynamics of the blade are represented
by three flap, two lead-lag, and two torsional modes.
The code also has the option of modeling the blades
using a finite-element method. The effects of con-
trol surfaces such as the trailing-edge plain flaps on
the structural properties of the blade are neglected.
Thus, the control surfaces only influence the blade
behavior through their effect on the aerodynamic
and inertial loads.

2.2 Aerodynamic model

The blade/flap sectional time-domain aerody-
namic loads for attached flow are calculated using
a rational function approximation (RFA) based re-
duced order model constructed from frequency-domain
doublet-lattice based aerodynamic data [13]. This
model provides unsteady lift, moment, and hinge
moment for the plain flap configurations. A more
sophisticated CFD based RFA model that can pre-
dict drag in addition to lift, moment, and hinge mo-
ment due to flaps and microflaps is also available in
the code. However, it is not used in this study be-
cause it is computationally more expensive. The
RFA model is linked to a free wake model [1], which
produces a spanwise and azimuthally varying inflow
distribution. In the separated flow regime aerody-
namic loads are calculated using the ONERA dy-
namic stall model [12].

2.3 Coupled aeroelastic response/trim
solution

The combined structural and aerodynamic equa-
tions are represented by a system of coupled ordi-
nary differential equations with periodic coefficients
in state-variable form. Propulsive trim, where three
force equations (longitudinal, lateral, and vertical)
and three moment equations (roll, pitch, and yaw)
corresponding to a helicopter in free flight are en-
forced, is implemented. A simplified tail rotor model,
based on uniform inflow and blade element theory, is
used. The six trim variables are the rotor shaft angle
αR, the collective pitch θ0, the cyclic pitch θ1s and
θ1c, the tail rotor constant pitch θ0t, and lateral roll
angle φR. The coupled trim/aeroelastic equations
are solved in time using a predictor-corrector ODE
solver DDEABM, based on the Adams-Bashforth
direct numerical integration procedure.



2.4 The Higher Harmonic Control Al-
gorithm

Active control of vibration and noise is imple-
mented using the HHC algorithm, which has been
used extensively in rotorcraft applications [1, 14].
The algorithm is based on the assumption that the
helicopter can be represented by a linear model re-
lating the output of interest z to the control input
u. The measurement of the plant output and up-
date of the control input are performed at specific
times tk = kτ , where τ is the time interval between
updates during which the plant output reaches a
steady state. In actual implementation of the algo-
rithm, this time interval may be one or more revo-
lutions. A schematic of the HHC architecture im-
plemented on a helicopter is shown in Fig. 1. The

Figure 1: Higher harmonic control architecture

disturbance w represents the helicopter operating
condition. The output vector at the kth time step
is given by

(1) zk = Tuk + Ww

where the sensitivity matrix T represents a linear
approximation of the helicopter response to the con-
trol and is given by

(2) T =
∂z

∂u
.

At the initial condition, k = 0,

(3) z0 = Tu0 + Ww.

Subtracting Eq. (3) from Eq. (1) to eliminate the
unknown w yields

(4) zk = z0 + T(uk − u0).

The controller is based on the minimization of a
quadratic cost function

(5) J(zk,uk) = zTkQzk + uT
kRuk.

The optimal control input is determined from the
requirement

(6)
∂J(zk,uk)

∂uk
= 0,

which yields the optimal control law uk,opt, given
by

(7) uk,opt = −(TTQT + R)−1(TTQ)(z0 −Tu0).

This is a classical version of the HHC algorithm
that yields an explicit relation for the optimal con-
trol input. Another version of the HHC algorithm
where the sensitivity matrix T is updated using
least-squares methods after every control update is
known as the adaptive or recursive HHC and is dis-
cussed in Ref. 14.

In a 4-bladed rotor, the control input uk is a
combination of 2/rev, 3/rev, 4/rev, and 5/rev har-
monic amplitudes of the control surface deflection:

(8) uk = [δ2c, δ2s, ..., δ5c, δ5s]
T .

The total control surface deflection is given by

(9) δ(ψ,uk) =

5∑
N=2

[δNc cos(Nψ) + δNs sin(Nψ)] .

where the quantities δNc and δNs correspond to the
cosine and sine components of the N/rev control in-
put harmonic. For vibration reduction (VR) stud-
ies, the output vector zk consists of 4/rev vibratory
hub shears and moments:

(10) zvr =


FHX4

FHY 4

FHZ4

MHX4

MHY 4

MHZ4

 .

The weighting matrix Q in the cost function in Eq. 5
is a diagonal matrix. For vibration control, it is
described by six weights corresponding to the three
vibratory hub shears and the three vibratory hub
moments.



 

 

 

              

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

Helicopter Dynamics Expressed as a 
Nonlinear System of Equations

Linearize at a Steady Flight Condition 
Using Taylor Series Expansion

Calculate the Partial Derivatives 
Using Numerical Perturbation 

Yields a LTP System with Periodic 
Coe�cients

Use Fourier Expansions to Convert 
the LTP System into a LTI System

LTP Extraction 
from AVINOR

Embedded in 
AVINOR

Figure 2: A schematic of the steps involved in extracting linearized models from AVINOR.



3 LTP and LTI model extrac-
tion from AVINOR

The procedure for extracting linearized time-periodic
and time-invariant models from the nonlinear AVI-
NOR code is briefly described in this section. De-
tails of the extraction procedure can be found in
Ref. 5. First, a LTP model is extracted by lineariz-
ing the nonlinear model about a trim state. Steps
involved are outlined in Fig. 2. The structural equa-
tions of motion in the AVINOR code are formulated
as

ẍs = h(xs, ẋs,xa,u)(11)

where xs is the state variable vector containing the
structural degrees of freedom, xa is the state vari-
able vector containing the augmented aerodynamic
states associated with the RFA aerodynamic model
[13], u is the control input vector, and h is a general
nonlinear function. Linearizing Equation 11 about
a periodic equilibrium yields a linear time-periodic
system given by

∆ẍs =
∂h

∂xs
(ψ)∆xs +

∂h

∂ẋs
(ψ)∆ẋs +

∂h

∂xa
(ψ)∆xa

+
∂h

∂u
(ψ)∆u

(12)

or

∆ẍs = −Kss(ψ)∆xs −Ksa(ψ)∆xa −Ds(ψ)∆ẋs

+ Gs(ψ)∆u

(13)

where ∆xs,∆ẋs,∆xa,∆u represent perturbations
in xs, ẋs,xa,u, respectively. The derivatives Kss(ψ) =
− ∂h
∂xs

(ψ), Ds(ψ) = − ∂h
∂ẋs

(ψ), Ksa(ψ) = − ∂h
∂xa

(ψ),

and Gs(ψ) = ∂h
∂u (ψ) are matrix functions depen-

dent on the azimuthal angle ψ and are calculated at
a finite number of azimuthal steps (in the current
study, 320 equally spaced steps are used in a rev-
olution) using a central differencing scheme given

as

∂h

∂xs
≈ h(x̄s + ∆xs, ˙̄xs, x̄a, ū)− h(x̄s −∆xs, ˙̄xs, x̄a, ū)

2∆xs

(14)

∂h

∂ẋs
≈ h(x̄s, ˙̄xs + ∆ẋs, x̄a, ū)− h(x̄s, ˙̄xs −∆ẋs, x̄a, ū)

2∆ẋs

(15)

∂h

∂xa
≈ h(x̄s, ˙̄xs, x̄a + ∆xa, ū)− h(x̄s, ˙̄xs, x̄a −∆xa, ū)

2∆xa

(16)

∂h

∂u
≈ h(x̄s, ˙̄xs, x̄a, ū + ∆u)− h(x̄s, ˙̄xs, x̄a, ū−∆u)

2∆u

(17)

where (x̄s, ˙̄xs, x̄a, ū) represents a periodic eqilibrium
condition.

The differential equations corresponding to the
RFA aerodynamic model in the AVINOR code can
be represented as

ẋa = ha(xs, ẋs,xa,u).(18)

Linearization about a periodic equilibrium yields

∆ẋa =
∂ha
∂xs

(ψ)∆xs +
∂ha
∂ẋs

(ψ)∆ẋs +
∂ha
∂xa

(ψ)∆xa

+
∂ha
∂u

(ψ)∆u,

(19)

or

∆ẋa = −Kas(ψ)∆xs −Kaa(ψ)∆xa −Da(ψ)∆ẋs

+ Ga(ψ)∆u,

(20)

where the derivatives Kas(ψ) = −∂ha

∂xs
(ψ), Da(ψ) =

−∂ha

∂ẋs
(ψ), Kaa(ψ) = −∂ha

∂xa
(ψ), and Ga(ψ) = ∂ha

∂u (ψ)
represent the effect of perturbations in the various
state variables and control inputs on the aerody-
namic state derivatives. A similar linearization pro-
cedure is adopted for the output equation. In this
study the vibratory hub loads are chosen as the
output quantities. The vibratory hub shears and
moments are obtained from the integration of the
distributed inertial and aerodynamic loads over the
entire blade span. This relation can be represented
by a nonlinear function as

y = f(xs, ẋs,xa,u),(21)

and is linearized about a periodic equilibrium. The



linearized equation is expressed as

∆y =
∂f

∂xs
(ψ)∆xs +

∂f

∂ẋs
(ψ)∆ẋs +

∂f

∂xa
(ψ)∆xa

+
∂f

∂u
(ψ)∆u,

(22)

or

∆y =Ps(ψ)∆xs + Q(ψ)∆ẋs + Pa(ψ)∆xa

+ R(ψ)∆u.
(23)

The partial derivatives Ps(ψ) = ∂f
∂xs

(ψ), Pa(ψ) =
∂f
∂xa

(ψ), Q(ψ) = ∂f
∂ẋs

(ψ), and R(ψ) = ∂f
∂u (ψ) repre-

sent the change in the vibratory loads due to a unit
perturbation in the state variables, their derivatives,
and the control inputs, respectively. The central dif-
ferencing scheme is used to evaluate all the partial
derivatives in this study. The final LTP representa-
tion of the helicopter model can be expressed in a
state space form as follows:

ξ̇ = A(ψ)ξ + B(ψ)υ(24)

ζ = C(ψ)ξ + E(ψ)υ(25)

where

ξ = [∆xs ∆xa ∆ẋs]
T ,

υ = [∆u]T ,

ζ = [∆y]T ,

A(ψ) =

 0 0 I
−Kas(ψ) −Kaa(ψ) −Da(ψ)
−Kss(ψ) −Ksa(ψ) −D(ψ)

 ,
B(ψ) =

 0
Ga(ψ)
Gs(ψ)

 ,
C(ψ) = [Ps(ψ) Pa(ψ) Q(ψ)] ,

E(ψ) = [R(ψ)].

Linearized models extracted in this study will be
used to examine interactions between on-blade con-
trol and the flight control systems. In order to study
coupled rotor-fuselage dynamics of a helicopter, it is
convenient to describe the rotating blade motion in
a non-rotating coordinate system. Multiblade coor-
dinates (MBC) are widely used in the literature to
express the blade motion in the non-rotating coor-
dinate system [15]. The blade equations of motion
in AVINOR are solved in the rotating frame using
rotating blade coordinates (RBC). Therefore, when
extracting the linearized models from AVINOR, a

coordinate transformation is used to transform the
blade degrees of freedom from RBC to MBC. For a
4-bladed rotor, the MBC can be expressed in terms
of the rotating blade coordinates as follows:

xm0 =
1

4

4∑
n=1

xn(26)

xm1c =
1

2

4∑
n=1

xn cosψn(27)

xm1s =
1

2

4∑
n=1

xn sinψn(28)

xm2 =
1

4

4∑
n=1

(−1)nxn(29)

where xm0, xm1c, xm1s, xm2 are the collective, co-
sine, sine, and differential multi-blade coordinates,
xn and ψn are the individual blade coordinate and
azimuth angle corresponding to the nth blade, re-
spectively. For a 4-bladed rotor, the individual blade
coordinate of the nth blade is given in terms of MBC
as:

xn = xm0 + xm1c cosψn + xm1s sinψn + (−1)nxm2.
(30)

Similar transformations are defined for the control
inputs. The use of these transformations to derive
a linearized helicopter system of equations in terms
of MBC is provided in Ref. 5.

The FEMR approach [9] is used to extract LTI
models from the LTP models (Eqs. (24), (25)). This
approach is based on a Fourier approximation to the
state, output and input variables ∆xs, ∆xa, ∆u,
and ∆y, given as:

∆xs = ∆x0
s +

N∑
n=1

[∆xncs cos(nψ) + ∆xnss sin(nψ)],

(31)

∆xa = ∆x0
a +

N∑
n=1

[∆xnca cos(nψ) + ∆xnsa sin(nψ)],

(32)

∆u = ∆u0 +

M∑
m=1

[∆umc cos(mψ) + ∆ums sin(mψ)],

(33)

∆y = ∆y0 +

L∑
l=1

[∆ylc cos(nψ) + ∆yls sin(lψ)].

(34)



where ∆x0
s,∆x0

a,∆u0,∆y0 are the average compo-
nents, ∆xncs ,∆xnca ,∆umc,∆ylc are the cosine har-
monic components, and ∆xnss ,∆xnsa ,∆ums,∆yls are
the sine harmonic components. Differentiating the
expansion for ∆xs and ∆xa with respect to ψ,

∆ẋs = ∆ẋ0
s +

N∑
n=1

[(∆ẋncs + n∆xnss ) cos(nψ)

+ (∆ẋnss − n∆xncs ) sin(nψ)],

(35)

∆ẋa = ∆ẋ0
a +

N∑
n=1

[(∆ẋnca + n∆xnsa ) cos(nψ)

+ (∆ẋnsa − n∆xnca ) sin(nψ)].

(36)

Differentiating the structural equation again yields

∆ẍs = ∆ẍ0
s +

N∑
n=1

[(∆ẍncs + 2n∆ẋnss − n2∆xncs ) cos(nψ)

+ (∆ẍnss − 2n∆ẋncs − n2∆xnss ) sin(nψ)].

(37)

Fourier expansions are also defined for the system
matrices, for example,

Kss(ψ) = K0
ss +

N∑
n=1

[Knc
ss cos(nψ) + Kns

ss sin(nψ)],

(38)

where

K0
ss =

1

2π

∫ 2π

0

Kss(ψ)dψ,

Kic
ss =

1

π

∫ 2π

0

Kss(ψ) cos(iψ)dψ,

Kis
ss =

1

π

∫ 2π

0

Kss(ψ) sin(iψ)dψ.

i = 1, 2, . . . , N

Substituting Eqs. (31)-(33), (35), and (37) into
the blade structural equation of motion, Eq. (13)

yields,

∆ẍ0
s +

N∑
i=1

[(∆ẍic
s + 2i∆ẋis

s − i2∆xic
s ) cos(iψ)

+ (∆ẍis
s − 2i∆ẋic

s − i2∆xis
s ) sin(iψ)]

= −Kss(ψ)

{
∆x0

s +

N∑
n=1

[∆xnc
s cos(nψ) + ∆xns

s sin(nψ)]

}

−Ksa(ψ)

{
∆x0

a +

N∑
n=1

[∆xnc
a cos(nψ) + ∆xns

a sin(nψ)]

}

−Ds(ψ)

{
∆ẋ0

s +

N∑
n=1

[(∆ẋnc
s + n∆xns

s ) cos(nψ)

+ (∆ẋns
s − n∆xnc

s ) sin(nψ)]

}

+ Gs(ψ)

{
∆u0 +

M∑
m=1

[∆umc cos(mψ) + ∆ums sin(mψ)]

}

(39)

Equation for the average component x0
s is obtained

by applying 1
2π

∫ 2π

0
averaging procedure on both

sides of Eq. (39). Equation for the ith harmonic
cosine component ∆xics can be obtained by multi-
plying both sides of Eq. (39) by 1

π cos(iψ) and inte-
grating it over one revolution. In a similar manner,
the equation for the ith harmonic sine component
∆xiss can be obtained by multiplying both sides of
Eq. (39) by 1

π sin(iψ) and integrating it over one rev-
olution. Performing similar operations on the aero-
dynamic state equation and the output equation,
and defining augmented state, input, and output
vectors as

xaug = [x0
s . . .x

nc
s xnss . . . ẋ0

s . . . ẋ
nc
s ẋnss . . .

. . .x0
a . . .x

nc
a xnsa . . .]T ,

uaug = [u0 . . .umc ums . . .]T ,

yaug = [y0 . . .ylc yls . . .]T ,

the linear equations can be consolidated and ex-
pressed as a state-space LTI model given by

ẋaug =

 0 0 I
A21 A22 A23

A31 A32 A33

xaug +

 0
B2

B3

uaug,

(40)

yaug = [C1 C2 C3]xaug + E1uaug,
(41)

where the matrices A21, A22, A23, A31, A32, A33,
B2, B3, C1, C2, C3, and E1 are defined in Ref. 5.



4 Closed-loop Control Using LTI
Models

On-blade control devices are implemented in closed-
loop mode for rotorcraft vibration and noise reduc-
tion. A schematic of closed-loop control using the
HHC controller is shown in Fig. 1. Therefore, to
accurately study on-blade control and flight control
interactions, it is imperative that the LTI models re-
tain the closed-loop characteristics of the nonlinear
model. In order to evaluate the closed-loop fidelity
of the LTI models, extracted using the procedure
described in the previous section, closed-loop per-
formance of the on-blade control devices predicted
using the LTI models is compared to that predicted
using the nonlinear model. Specifically, the optimal
flap deflection predictions and the reduction in vi-
bratory hub loads are compared. An illustration of
on-blade vibration control with the LTI helicopter
model and the HHC controller implemented in a
feedback loop is shown in Fig. 3. The LTI mod-
els predict only perturbations in the vibratory hub
loads due to flap deflection. Therefore, the steady
state hub loads are added to the LTI model predic-
tions to obtain the complete vibratory loads. Then,
a Fourier transform is used to extract the 4/rev com-
ponents of the vibratory loads, which in turn are
fed into the higher harmonic controller. The classi-
cal HHC controller is used to determine the optimal
control input for vibratory load reduction. An adap-
tive version of the algorithm is not necessary when
working with LTI helicopter models. The control
input is a combination of the 2/rev, 3/rev, 4/rev,
and 5/rev harmonic components of the flap deflec-
tion. The sensitivity matrix T, used in the HHC
algorithm, is also obtained using the LTI model. A
comparison of the T matrices obtained from the
nonlinear and the LTI models revealed negligible
differences. This can be attributed to the fact that
small flap deflection perturbation values were used
to obtain the T matrices.

5 Implementation, Verification,
and Discussion

The rotor configuration considered is a four-bladed
hingeless rotor, resembling the BO-105 type rotor;
the rotor parameters are listed in Table 1. All the
values in the table (except CW , γ, and σ) have been
nondimensionalized using Mb, Lb, and 1/Ω for mass,
length and time, respectively. The mass and stiff-

Table 1: Rotor configuration parameters used.

Dimensional Rotor Data
R = 4.91 m
Mb = 27.35 kg
Ω = 425 rpm
Nondimensional Rotor Data
Nb = 4 Lb = 1.0
c/R = 0.05498 θtw = -8◦

e = 0
XA = 0 XIb = 0
ωF = 1.124, 3.40, 7.60 ωL = 0.732, 4.458
ωT = 3.17, 9.08
γ = 5.5 σ = 0.07
βp = 2.5◦

Helicopter Data
CW = 0.005 fCdf = 0.031
XFA = 0.0 ZFA = 0.3
XFC = 0.0 ZFC = 0.3

δf
α

20%c

Figure 4: A 20%c conventional plain flap configura-
tion.

ness distributions are assumed to be constant along
the span of the blade. The rotor is trimmed us-
ing a propulsive trim procedure. All the blades are
assumed to be identical.

Linearized time-periodic and time-invariant mod-
els were extracted from the AVINOR code at two
different flight conditions, namely, a steady descend-
ing flight condition with advance ratio µ = 0.15 and
descent angle αD = 6.5◦, which represents heavy
BVI conditions and a cruise flight condition with
advance ratio µ = 0.30. A single plain flap with a
20% chord length, shown in Fig. 4, is used as the
active control device. The flap is centered at 75%
span location and its spanwise length is 12% of the
blade radius as shown in Fig. 5. The LTP model is
based on 7 states corresponding to the blade struc-
tural degrees of freedom (3 flap, 2 lead-lag, and 2
torsional), 7 states corresponding to their deriva-
tives, and 100 states corresponding to the RFA aero-
dynamic model states. This is equivalent to 456
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Steady State Loads
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Figure 3: An illustration of closed-loop on-blade vibration control using a LTI helicopter model and the
HHC controller.

0.69R

0.12R

Figure 5: Spanwise configuration of the 20%c plain
flap on the rotor blade.

(114*4) states when expressed using the multi-blade
coordinates. The AVINOR code does not account
for the body degrees of freedom. In order to study
the effect of active vibration control devices on the
flight handling qualities, the body degrees of free-
dom have to be embedded into linear models, how-
ever, this issue will be addressed in future studies.
A rotor revolution is divided into 320 azimuthal
steps in order to calculate the LTP model matri-
ces A(ψ), B(ψ), C(ψ), and E(ψ). A trial and error
procedure was used to determine the optimum per-
turbation values. A 10% perturbation is used for
the structural and aerodynamic states and a 0.25◦

perturbation is used for the flap deflection in LTP
model extraction. The flap deflection control input
in the AVINOR code is specified in the frequency do-
main through the harmonic component amplitudes.
In order to specify a constant perturbation in flap
deflection, during LTP model extraction, the cosine
0/rev component is set to 0.25◦ and all the other
components are set to 0. Thus, the effects of flap
deflection rate (u̇) are neglected. The LTI model

is based on the first 4 harmonic components in the
Fourier expansion. The linearized models were ver-
ified in Ref. 5 by comparing their output response
with the nonlinear model response corresponding to
a open-loop higher harmonic flap deflection. The
current study verifies the closed-loop fidelity of the
LTI models when used for vibratory hub load reduc-
tion.

In order to assess its closed-loop fidelity, the LTI
model extracted at the low-speed descending flight
condition is implemented in the control loop shown
in Fig. 3. Initially, the control sensitivity matrix
used by the HHC controller is computed. Subse-
quently, the controller is engaged in closed-loop with
the LTI model. The optimal flap deflections for vi-
bration reduction predicted by the HHC controller
when used in conjunction with the LTI and the non-
linear models are compared in Fig. 6(a). The flap
deflection is comprised of the 2/rev, 3/rev, 4/rev,
and 5/rev harmonic components and the amplitude
is limited to 1◦. The flap deflection is limited to
account for actuator saturation using the algorithm
described in Ref.16. This limit on the flap deflec-
tion is refered to as the saturation limit. The LTI
and nonlinear model based predictions agree rea-
sonably well, especially in the magnitude and the
azimuthal locations of the peaks and troughs. The
differences in the two predictions can be quantified
by a root mean square (RMS) error term defined as
E =

√
(∆δ22c + ∆δ22s + ...+ ∆δ25c + ∆δ25s)/8. The

RMS error for the flap deflections in Fig. 6(a) is
0.0022. The corresponding vibratory hub loads are



compared to the baseline loads in Fig. 6(b). Perfor-
mance of the controller is evaluated based on the
reduction achieved in the vibratory cost function
J = F 2

HX4+F 2
HY 4+F 2

HZ4+M2
HX4+M2

HY 4+M2
HZ4.

The nonlinear model yields a 24% reduction in the
cost function compared to 34% obtained by the LTI
model.

Similar comparisons are performed with the max-
imum flap deflection set to 2◦. The optimal flap
deflections predicted by the LTI and the nonlinear
models are compared in Fig. 7(a). The LTI and
nonlinear model based predictions agree reasonably
well. There is good agreement in the magnitude of
the peaks and troughs. However, their azimuthal lo-
cations show slightly bigger errors. The RMS error
for the flap deflections in Fig. 7(a) is 0.0063. The
corresponding vibratory hub loads are compared to
the baseline loads in Fig. 7(b). The nonlinear model
yields a 40% reduction in the cost function com-
pared to 65% obtained by the LTI model. Results
were also generated for a maximum flap deflection
of 4◦. The optimal flap deflections are compared in
Fig. 8(a). The trends are similar to those observed
for a 2◦ limit. However, the RMS error is much
higher at 0.0134. Thus, the error in flap deflection
predictions is increasing steadily with an increasing
saturation limit. This is because as the flap de-
flection limit is increased, the dynamics are swayed
further away from the operating condition and the
small perturbation assumption is violated. The cor-
responding vibratory hub loads are compared to the
baseline loads in Fig. 8(b). The nonlinear model
yields a 85% reduction in the cost function com-
pared to 92% obtained by the LTI model.

Linearized models were also extracted at a cruise
flight condition with µ = 0.30. A closed-loop fidelity
assessment was carried out by comparing the LTI
and nonlinear model closed-loop vibration reduction
performance. The optimal flap deflections predicted
by the HHC controller in conjunction with the lin-
ear and nonlinear models are compared in Fig. 9(a).
The flap deflection amplitude is restricted to 2◦.
The trends are similar to those observed in the case
of low advance ratio flight showing good agreement
in the magnitudes of the peaks and troughs. The
RMS error between the flap deflections shown in
Fig. 9(a) is 0.0075. The corresponding vibratory
hub loads are compared in Fig. 9(b). The nonlinear
model yields a 90% reduction in the vibratory cost
function J whereas the LTI model yields 82% re-
duction. Therefore, closed-loop performance of the
nonlinear and the LTI models compare reasonably
well even at a high-speed flight condition.

The LTI models extracted at the cruise condition
were also compared to the nonlinear model with flap
deflection restricted to less than 4◦. The flap deflec-
tions from the linear and nonlinear models are com-
pared in Fig. 10(a). The RMS error between the two
deflection histories is 0.0158, which is twice as large
compared to the 2◦ limit case. The corresponding
vibratory hub loads are compared in Fig. 10(b). The
reduction achieved by the linear and nonlinear mod-
els is similar in all but the longitudinal hub shear.
The LTI model yields 86% reduction in the overall
vibratory cost function whereas the nonlinear model
shows 95% reduction.

6 Conclusions

Linearized time-periodic models that can pre-
dict the effects of on-blade trailing-edge flaps were
extracted from a high-fidelity nonlinear helicopter
model. The time-periodic models were in turn used
to extract linearized time-invariant models using a
Fourier expansion based model reduction method.
These linearized models are intended for studies ex-
amining the interaction between on-blade control
and the primary flight control system. On-blade
control is usually implemented in closed-loop mode,
therefore, the LTI models were verified for closed-
loop performance fidelity. The higher harmonic con-
troller was used with the 2/rev-5/rev harmonic com-
ponents of the flap deflection as the control input
and vibratory hub loads as the output. Closed-loop
performance of the LTI model is compared to that
of the nonlinear model at a low-speed descending
flight and a cruise flight condition. The principal
conclusions are:

1. For a low-speed descending flight, the flap de-
flection predictions based on the LTI and non-
linear models agree well, in both magnitude
and azimuthal locations of the peaks and troughs.
For a 1◦ saturation limit on the flap deflection,
the RMS error between the flap deflections is
0.0022. A comparison of the corresponding vi-
bratory hub loads indicates that the nonlinear
model yields a 24% reduction in the vibratory
cost function compared to 34% obtained with
the LTI model.

2. Increasing the flap deflection saturation limit
to 2◦ increases the RMS error between the
linear and nonlinear model flap deflections to
0.0063. The agreement between the flap de-
flections is reasonably good. The nonlinear
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Figure 6: Verification of the closed-loop flap deflection and vibratory loads obtained from the LTI and
nonlinear models with saturation limit 1◦. µ = 0.15, αD = 6.5◦.
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Figure 7: Verification of the closed-loop flap deflection and vibratory loads obtained from the LTI and
nonlinear models with saturation limit 2◦. µ = 0.15, αD = 6.5◦.
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Figure 8: Verification of the closed-loop flap deflection and vibratory loads obtained from the LTI and
nonlinear models with saturation limit 4◦. µ = 0.15, αD = 6.5◦.
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Figure 9: Verification of the closed-loop flap deflection and vibratory loads obtained from the LTI and
nonlinear models with saturation limit 2◦. µ = 0.30.
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Figure 10: Verification of the closed-loop flap deflection and vibratory loads obtained from the LTI and
nonlinear models with saturation limit 4◦. µ = 0.30.

model yields a 40% reduction in the cost func-
tion compared to 65% obtained with the LTI
model. Thus, the linear model overpredicts
the vibration reduction performance.

3. Increasing the flap deflection limit, at low-
speed, to 4◦ increases the RMS error in flap
deflections to 0.0134. Thus, the error in flap
deflection predictions increases steadily with
increasing saturation limits. This is because,
as the flap deflection limit is increased, the dy-
namics are forced further away from the op-
erating condition and the small perturbation
assumption is violated. The nonlinear and lin-
earized models yield 85% and 92% reduction
in the vibratory cost function, respectively.

4. Similar comparisons were performed at a cruise
condition, µ = 0.3, with the flap deflection
saturation limit set to 2◦. The linear and non-
linear model predictions agree reasonably well.
The RMS error between the flap deflections is
0.0075. The nonlinear model yields a 90% re-
duction in the vibratory cost function whereas
the LTI model yields 82% reduction.

5. At cruise condition, with the flap deflection
limit set to 4◦, the RMS error between the
flap deflections is 0.0158. This represents ap-
proximately a 100% increase with a 2◦ increase
in the saturation limit. This is similar to the
trends noted in the low-speed case. In this
case, the LTI model yields a 86% reduction in
the vibratory cost function whereas the non-
linear model yields 95% reduction.
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