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Abstract

This work deals with an IBC based on inclu-
sion of adaptive material at the root of hinge-
less helicopter rotor blades. Usually, IBC strate-
gies involving the use of adaptive materials ei-
ther consider adaptive material embedded in the
blade structure for inducing strain deformations,
or apply adaptive actuators for controlling seg-
ments of the blade (e.g., for moving trailing-edge
flaps). Here, the adaptive material is used to pro-
vide modal damping augmentation, and it may be
tuned dependently of the actual rotor configura-
tion to be stabilized. The presentation of a pro-
cedure for tailoring this ‘smart spring’ is the aim
of the paper. The aeroelastic blade model con-
sidered consists of a cantilever slender beam un-
dergoing flap, lead-lag and torsional motion, cou-
pled with a strip-theory approach for the predic-
tion of the aerodynamic loads, based on the very-
low frequency approximation of the pulsating-
free-stream Greenberg’s theory. Starting from
this model and applying the Galërkin method,
generalized mass, damping and stiffness matri-
ces of the basic blade, as well as the incremental
generalized mass, damping and stiffness matrices
due to the ‘smart spring’ have been determined,
the latter depending on the ‘smart spring’ iner-
tial and elastic characteristics. It will be shown
that, the application of an optimal control crite-
rion, followed by a low-frequency-approximation
observer, yields the identification of the most suit-
able ‘smart spring’ characteristics for augmenta-
tion of rotor blade aeroelastic stability. The va-
lidity of this procedure will be demonstrated by
numerical results concerning the stability analy-
sis of two different hovering blade configurations,
with and without ‘smart spring’ inclusion.

1. Introduction

The helicopter industry is very much interested
in the development of active control techniques
to reduce noise and vibration of helicopters us-
ing smart structures. It is widely accepted that
‘smart’ structures have some of the most desired
properties for aeroelastic control, but it is also
recognized that they currently lack the capability
to deliver sufficient power - defined as the maxi-
mum stroke multiplied by the delivered force di-
vided by the actuation time - to provide the nec-
essary control authority in most situations.

A worldwide research effort to develop ‘smart’
aeroservoelastic systems is underway. Unfor-
tunately, materials such as shape memory al-
loys (SMA) that have the capability to over-
come the work done by typical aerodynamic loads
encountered in flight provide poor bandwidth.
Conversely, materials that have good dynamic
response lack sufficient displacement capability
(such as the piezoelectric crystal PZT, the piezo-
electric film PVDF, and the electrostrictive or
magnetostrictive materials). Nevertheless, due to
their dynamic response characteristics, PZT, elec-
trostrictive and magnetostrictive materials are
the best candidates to fulfill the active control
requirements of aeroelastic systems. These ma-
terials have high stiffness and can deliver rela-
tively large forces but only over a very limited
stroke (approximately 300 m-strain for PZT and
electrostrictive materials, and 1,000 m-strain for
magnetostrictive materials). Although the stroke
may be amplified by mechanical means, a cor-
responding reduction in the actuation force be-
comes an unavoidable trade-off. The most inves-
tigated approach to overcome the material lim-
itations and to achieve aeroelastic control using
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‘smart’ structures is based on the deflection of
aerodynamic surfaces actuated by beams con-
structed with stacked PZT or bimorphs [1]. An-
other approach that is receiving attention from
the research community uses piezoelectric fibers
to direct alter the blade camber [2]. However, all
these different solutions cannot demonstrate very
significant changes in the local angle of attack
and, in general, low control authority is achieved
[3]. The ‘smart spring’ that is investigated in the
present work is an alternate approach to achiev-
ing aeroelastic control, which exploits the large
stiffness, force and bandwidth of the aforemen-
tioned materials, and circumvents their lack of
power.

The primary advantage in the ‘smart spring’ sys-
tem, compared to other active control systems
that are available, is that the device does not
rely on achieving high stroke and force simultane-
ously. Hence, the resultant mechanical work re-
quired for control is kept relatively small. Rather,
the device only requires the actuators to produce
micro displacements to generate friction forces
between two structural members and engage a
structural reinforcement in the load path. This
scheme avoids the fundamental problems of other
control schemes that require high displacement
and force to act simultaneously, increasing the
mechanical work necessary to achieve full control
authority.

The ‘smart spring’ concept

The ‘smart spring’ uses the high stiffness and
good time response characteristics of the PZT,
electrostrictive or magnetostrictive materials to
dynamically control the cross-section stiffness of
typical aeronautical structures [4]. The stiffness
of the original structure is altered in time by en-
gaging the reinforcement in the load path as seen
in the conceptual sketch shown in Figure 1. As
the reinforcement is engaged, the stiffness of the
structure increases to a maximum value in one
half of the control cycle. In the subsequent half-
cycle, the stiffness decreases to the original base-
line value by removing the reinforcement from the
load path. The waveform that characterizes the
change in stiffness between these two levels dur-
ing one complete cycle resembles a step function
smothered by the dissipation effects that are pro-
duced by the contact friction between the surfaces
of the reinforcement and the stopper located in
the main structure.

The main parameters that appear in the design of
a ‘smart spring’ are: (1) the baseline stiffness that
determines the elastic deformation of the original

structure without the ‘smart spring,’ (2) the am-
plitude of stiffness variation required by the active
control relative to the baseline value, and (3) the
force required to generate friction, engage the re-
inforcement and guarantee continuity in the load
path. Since the engagement is done by friction
between the reinforcement and the stopper, the
stiffness variation is in an actual ‘smart spring’ a
complex-valued function. It presents a hysteretic
loop during the load/unloading cycle of the ac-
tuator as the whole structure vibrates and rel-
ative motion between the stopper and the rein-
forcement is present.

It is worthwhile to point out that the mechan-
ical work necessary to engage the reinforcement
in the device is orthogonal to the work delivered
by the external loads. Therefore, control over the
external loads is achieved indirectly, inserting and
removing the reinforcement from the load path.
Although the active material needs to deliver a
relatively large force in this configuration, the re-
quired stroke to guarantee the load path continu-
ity is minimum, within the fabrication tolerances,
and well below the limits of the typical ‘smart’
material displacement capabilities. The ‘smart
spring’ is a useful concept particularly when dy-
namic loads are present since relatively large vari-
ations in the mechanical impedance of the system
can be achieved over time [5].

One important application for the ‘smart spring’
is in helicopter rotor individual blade control
(IBC). In any active control technique applied to
helicopters, a judicious redistribution of the aero-
dynamic spectrum, as seen by the rotating blade,
is the key issue to be addressed. IBC, according
to its original and broad definition of a rotating
frame actuation scheme, can be implemented in
different ways [6]. Using the options available at
the moment, one may command a pitch to the
blade root by hydraulic actuators, use a ‘smart’
flap located near the blade tip, or still provide
torsion deformations on the blade via embedded
piezoelectric fibers. However, in order to gener-
ate significant changes in the aerodynamic spec-
trum and provide enough control authority, rela-
tively large pitch deflections are necessary. This
is one the main technical reasons that prevented
the use of ‘smart’ structures solutions in full-size
helicopter rotors. Under this scope, another valid
implementation of IBC is to actively adapt the
stiffness of the blade structure by changing its sec-
tional moment of area in time. In this case, the
aeroelastic response characteristics of the blade
will change in time like in the gust alleviation
problem associated with fixed wings.
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Figure 1: Concept of active stiffness control (the ‘smart spring’) applied to a simple beam cross section, denoted
by A-A. The gap (exaggerated) between the stopper and the reinforcement made from a stack of piezoelectric
wafers is closed when the electric field is applied. The moment reaction at the boundary of the original structure,
due to the external force, is indirectly controlled by the cyclic control of the cross-sectional stiffness.

The ‘smart spring’ described in the present work
can alter the mechanical impedance of the dy-
namic system introducing a form of active control
similar to the one provided by tunable vibration
absorbers (TVA) whose stiffness or gain charac-
teristics can be scheduled. Therefore, tailoring
the aeroelastic response of each blade to perform
IBC using active control is feasible by the proper
choice of a control law. In fact, the hardware of
‘smart spring’ can be used to control phenomena
associated with different bands of the vibration
spectrum, such as low frequency vibration trans-

missibility throughout the rotor hub, blade vor-
tex interaction and dynamic stall effects. In the
present work the ‘smart spring,’ as an example of
control objective, is used to provide modal damp-
ing augmentation.

A prototype of the ‘smart spring’ is undergo-
ing preliminary tests in still air at the National
Research Council of Canada (NRCC) [7]. This
proof-of-concept model was designed to actuate
mainly in the torsional degree of freedom of the
blade for simplicity.

Figure 2: Schematic of ‘smart spring’ at the blade root.
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The design of the ‘smart spring’ that is undergo-
ing tests at NRCC uses stacked PZT actuators to
activate three additional load paths or reinforce-
ments near the blade root (Figure 2). The fric-
tional forces generated by actuation of the stacked
PZT enables the engagement of the additional
load carrying members to alter the blade over-
all torsional stiffness. The operation of the ac-
tuators provides real-time alteration of the cross-
sectional stiffness at the blade root. It is rec-
ognized that any small change in the boundary
conditions affects very much the overall aeroe-
lastic response of the blade. This prototype of
‘smart spring’ consists of an array of sensors, such
as accelerometers, a signal analyzer, a computer,
and piezoelectric stacked actuators assembled in
the three cans - the reinforcements (Figure 3).
The baseline blade stiffness is maintained through
the ‘smart spring’ device using a central torsion
member. This torsional member closely matches
the original blade torsional stiffness and sustains
primary load path throughout the system. Sen-
sors such as accelerometers are embedded along
the blade to provide the vibration information to
the control computer, which analyzes these sig-
nals, performs system identification and generate
the control signal to the piezoelectric actuators to
achieve vibration attenuation.

Tailoring of the ‘smart spring’

In this work, the adaptive material placed at the
blade root is applied for blade stability augmen-
tation by tuning its stiffness dependently of the

actual rotor configuration. We present a formu-
lation that, for a given hovering rotor configu-
ration (e.g., for fixed collective-pitch and pre-
cone angles) yields the optimal tailoring of the
‘smart spring’ (i.e., it gives the ‘smart spring’
parameters to be tuned at each configuration).
It is inspired to the approach introduced in [8],
where the authors investigated about stabiliz-
ing effects induced by the root ‘smart spring’,
when used as a harmonic parametric excitation
device. Specifically, following Ref. [9], the
aeroelastic model is obtained considering an un-
twisted cantilever slender beam, undergoing flap
bending, chordwise bending and torsion, with
mass, tensile and aerodynamic axes coinciding
with the elastic axis, coupled with the aerody-
namic loads predicted by a strip-theory model
based on the very-low frequency approximation
of the pulsating-free-stream Greenberg’s exten-
sion of the Theodorsen theory [10]. Starting from
this model and applying the Galërkin approach,
generalized mass, damping and stiffness matri-
ces of the basic blade, as well as the incremental
generalized mass, damping and stiffness matrices
due to the ‘smart spring’ have been determined,
the latter depending on the ‘smart spring’ inertial
and elastic characteristics (see Section 2). Then,
the ‘smart spring’ elastic characteristics that are
most suitable for the augmentation of rotor blade
aeroelastic stability, have been evaluated by ap-
plying an optimal control criterion, followed by
a low-frequency-approximation observer (see Sec-
tion 3).

Figure 3: ‘Smart spring’ tunable vibration absorber (TVA) being tested at the NRC facilities in Ottawa, Canada.
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As a validation of the methodology presented,
we will present numerical results concerning the
stability-augmentation effect of the ‘smart spring’
on two different hovering blade configurations.

2. Smart-blade aeroelastic model
and solution procedure

Following the approach presented by Hodges
and Ormiston [9], the basic-blade aeroelastic
model (i.e., that with no ‘smart spring’ inclu-
sion) has been derived by applying the structural
blade model introduced by Hodges and Dow-
ell [11] to a uniform blade, and combining it
with the unsteady aerodynamic model obtained
from the very-low frequency approximation of the
pulsating-free-stream Greenberg extension of the
Theodorsen theory for airfoils in incompressible
flow [10].

In this model, the blade is assumed to be a slen-
der, straight beam with the elastic axis undergo-
ing axial deformation, u(x, t), lateral in-plane dis-
placement (lead-lag bending), v(x, t), and lateral
out-of-plane displacement (flap bending), w(x, t),
whereas cross-sections are subject to torsion de-
formation, φ(x, t), about it. In Ref. [11], the
structural equations are derived after applica-
tion of an ordering scheme procedure based on
the restriction that the squares of the bend-
ing slopes, torsion deformation, chord/radius and
thickness/radius ratios were small with respect to
unity. A further simplification of the model is
obtained by solving for u(x, t) in terms of local
tension and assuming that radial displacements
are simply geometric consequences of the trans-
verse bending deflections. The final form of the
structural model is a set of nonlinear, coupled,
integro-partial differential equations that can be
applied to rotor blades undergoing moderate dis-
placements (see Refs. [11] and [9] for details).

Here, this model has been modified in order to
include the effects of the ‘smart spring’ on the
blade structural dynamics. In particular, geomet-
ric, mass and elastic characteristics of the blade
have been expressed as discontinuous (general-
ized) functions of the blade spanwise direction,
through a hat function accounting for the ‘smart
spring’ presence. Indeed, if x denotes the abscissa
along the blade span, and α is a generic blade
parameter that is altered by the ‘smart spring’
located between x1 and x2 (x1 < x2), we have

α(x) = α0(x) + ∆H(x, x1, x2)αs

where, for H denoting the Heaviside function,
∆H(x1, x2) = H(x − x1) −H(x − x2) is the hat
function, αs is the incremental value due to the

‘smart spring’ and α0 is the basic-blade param-
eter. Then, following this criterion, equations
given in Ref. [11] have been manipulated so as
to get three novel nonlinear, integro-partial dif-
ferential equations of smart blade dynamics, that
may be synthesized in the following form (see Ap-
pendix A and Ref. [12] for details):

mv̈ +Ov[v, w, φ,E0, Es] = Lv
mẅ +Ow[v, w, φ,E0, Es] = Lw
J φ̈+Oφ[v, w, φ,E0, Es, G0, Gs] =Mφ,

where m denotes the blade mass per unit length,
J denotes the cross-section torsional mass mo-
ment of inertia, E denotes the Young modulus,
G denotes the shear modulus, Ov and Ow de-
note fourth-order in space, nonlinear, integro-
partial differential operators, whereas Oφ denotes
a second-order in space, nonlinear, partial differ-
ential operator. Note that, the nonlinear oper-
ators Ov, Ow, and Oφ include both the inertial
effects due to the blade rotational speed, and the
influence of the ‘smart spring’ presence through
the generalized hat function, ∆H. Furthermore,
Lv and Lw are, respectively, the in-plane and out-
of-plane aerodynamic forces per unit length act-
ing on the blade, whereasMφ is the aerodynamic
pitching moment per unit length. As already
mentioned, these loads have been predicted by
the quasi-steady Greenberg theory, with the ef-
fects of the wake-induced velocity (important in
hovering rotor configurations) taken into account
by modifying the direction of the aerodynamic
forces. The final aeroelastic model is achieved by
expressing in terms of v(x, t), w(x, t) and φ(x, t),
the airfoil velocity components appearing in the
quasi-steady expression of Lv,Lw and Mφ given
by the Greenberg theory.

Modal-approach solution

The rotor blade aeroelastic solution has been ob-
tained by following the approach presented in Ref.
[9]. It consists of a three step procedure: first,
the Galërkin method is applied for the spatial
integration of the coupled, integro-partial differ-
ential aeroelastic equations, then, the trim blade
configuration is determined by solving the nonlin-
ear algebraic problem resulting from steady-state
assumption, and finally, the aeroelastic behavior
is determined through analysis of the linearized
equations of the dynamics of small perturbations
about trim.

Specifically, in the first step, the elastic blade de-
flections are expressed as

v(x, t) =
N∑
n=1

qvn(t) Ψv
n(x),
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w(x, t) =
N∑
n=1

qwn (t) Ψw
n (x),

φ(x, t) =
N∑
n=1

qφn(t) Ψφ
n(x),

where Ψv
n,Ψ

w
n ,Ψ

φ
n are sets of linearly-independent

shape functions (eigenfunctions of a cantilever
nonrotating beam, in our case), whereas qvn, q

w
n , q

φ
n

denote the generalized coordinates of the prob-
lem (modal amplitudes). Substituting these ex-
pressions in the aeroelastic integro-partial dif-
ferential equations, and applying the Galërkin
method yields a set of 3N nonlinear, ordinary
differential equations in terms of the generalized
coordinates of the problem. Then, the dynam-
ics of the generalized coordinates is expressed
as combination of a steady-state condition with
a small-perturbation term, i.e., qvn(t) = qv0n +
∆qvn(t), qwn (t) = qw0n + ∆qwn (t), and qφn(t) =
qφ0n + ∆qφn(t). Substituting the steady-state val-
ues into the nonlinear differential equations, one
obtains a set of 3N nonlinear algebraic equa-
tions, that can be solved in order to determine
the trim modal amplitudes qv0n, q

w
0n, q

φ
0n. Finally,

subtracting the steady-state equations from the
complete nonlinear differential equations, drop-
ping all terms that are nonlinear in the pertur-
bation quantities, one obtains a set of 3N linear
ordinary differential equations governing pertur-
bations about trim, of the followig type

[M(q0) + ∆M(q0 ,ms, Js)] q̈ +
[C(q0) + ∆C(q0 ,ms)] q̇ + (1)
[K(q0) + ∆K(q0 ,ms, Js, λ

y
s , λ

z
s , κs)] q = 0,

where q denotes the vector of the 3N pertur-
bation generalized coordinates. Note that, in
equation (1) the global aeroelastic mass, damp-
ing and stiffness matrices have been decomposed
in the portion that describe the basic-blade dy-
namics (M,C,K), and in the additional matri-
ces due to the presence of the ‘smart spring’
(∆M,∆C,∆K). Due to the nonlinear nature of
the problem, both basic-blade and ‘smart spring’
matrices depend on the trim solution, q0 . Fur-
thermore, all ‘smart spring’ matrices depend on
the ‘smart spring’ mass parameters, ms and Js,
whereas the stiffness matrix, ∆K, depends also
on the nondimensional additional lead-lag bend-
ing stiffness, λzs , flap bending stiffness, λys , and
torsional stiffness, κs, due to the ‘smart spring’
(see Ref. [12] for details).

3. Optimal ‘smart-spring’ stiffness

Observing that, once a given piezoelectric element
is located on the blade its inertial effects on the

blade dynamics are fixed, the objective of this
section is the presentation of an algorithm for
the identification of the incremental blade stiff-
ness parameters due to the presence of the ‘smart
spring’, namely λys , λ

z
s , κs, that are capable to en-

hance the stability behavior of the ‘smart’ blade,
with respect to that of the basic one.

To this aim, for fixed ms and Js, we recast equa-
tion (1) in the following form

M̂ q̈ + Ĉ q̇ + K q = −∆K(λys , λ
z
s , κs) q, (2)

where matrices M̂, Ĉ and K depend on trim blade
deformation and ‘smart spring’ mass parameters.
In equation (2), it is apparent that the contribu-
tion of the ‘smart spring’ stiffness yields a sort
of structural feedback, that we wish to use as
an aeroelastic stabilizer. Hence, starting from
this observation, in order to identify a convenient
matrix ∆K, first, we replace the ‘smart spring’
stiffness terms with a set of fictitious generalized
forces, f , that assume the role of control vari-
ables. Then, using optimal control criteria, we de-
termine the stabilizing feedback gain matrix that
relates f to the blade generalized coordinates, and
finally identify λys , λ

z
s , κs such that ∆K yields a

feedback that is as close as possible to that pro-
vided by the optimal gain matrix assuring stabi-
lization.

Specifically, replacing ‘smart spring’ stiffness
terms with the fictitious control variables, f , and
recasting in state-space form, equation (2) be-
comes

ẋ = A x + Bf , (3)

where xT =
{
qT q̇T

}
,

A =
[

0 I
−M̂−1K −M̂−1Ĉ

]
and B =

[
0

M̂−1

]
.

Then, according to the optimal control approach,
the criterion for aeroelastic stabilization relies, for
arbitrary weight matrices Q and R, on the iden-
tification of the relationship between f and x that
minimizes the cost function

J =
1
2

∫ tf

0

(
xTQx + fTRf

)
dt,

under constraint of satisfaction of equation (3).
This procedure yields the following optimal con-
trol law

f = −R−1 BTS x = −G x, (4)

where the 3N × 6N feedback gain matrix, G, is
known once the solution of the algebraic Riccati
equation, matrix S, has been evaluated.

Now, it is possible to identify the ‘smart spring’
stiffness parameters. Indeed, the effect of the
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‘smart spring’ stiffness is equivalent to the sta-
bilizing optimal feedback gain matrix if

∆K(λys , λ
z
s , κs) q = G x = G1q + G2q̇, (5)

where G1 and G2 are two 3N × 3N matrices,
respectively composed of the first 3N columns
and the last 3N columns of G. Therefore, in
order to determine matrix ∆K it is necessary
to express q̇ in terms of q (i.e., it is necessary
to define a sort of observer for the q̇ variables).
Here, assuming the low-frequency approximation
for an observer dynamics obtained by combining
equation (4) and equation (2) with f as forcing
term, and neglecting mass-matrix contributions,
we have the following reconstruction for q̇

q̇ = −[(G2 + Ĉ)−1(G1 + K)] q = −H q,

that in turns yields (see equation (5))

∆K(λys , λ
z
s , κs) = G1 −G2 H. (6)

Finally, once the optimal ‘smart spring’ feed-
back matrix, ∆K, is determined, through a least
square approach, it is possible to evaluate the
‘smart spring’ stiffness parameters, namely λys , λ

z
s

and κs, as those that better satisfy the 3N × 3N
algebraic equations arising from the matricial
equivalence in equation (6).

4. Numerical results

For the numerical validation of the algorithm for
identification of stabilizing ‘smart spring’ prop-
erties, we have considered a four-bladed rotor,
having radius R = 2m and blade chord c =
0.121m (that correspond to a solidity ratio σ =
0.077), and rotating with angular velocity Ω =
110rad/sec. Furthermore, the Lock number con-
sidered is γ = 5.0, and the basic-blade elastic
properties are λy = EIy/mΩ2R4 = 0.0017, λz =
EIz/mΩ2R4 = 0.0222, and κ = GI/mΩ2R4 =
0.001 (see Appendix A for definition of blade
structural parameters), whereas the piezoelectric
material is located between x1/R = 0.05 and
x2/R = 0.2.

First, we have analyzed the case with no flap-lag
structural coupling (i.e., following the notation
in Ref. [9], R = 0), for which the basic blade,
in the precone/collective-pitch plane of Figure 4,
shows a lead-lag flutter instability in the regions
bounded by the crosses, and a divergence instabil-
ity in the cross-filled area corresponding to high
collective-pitch/small precone angles. Applying
the ‘smart spring’ with the elastic properties pre-
dicted by the optimal procedure presented above,
both flutter and divergence instabilities are con-
siderably reduced, as depicted in Figure 5, where

the ‘smart’ blade instability regions are repre-
sented by circles. The effect of the ‘smart spring’
on the blade dynamics has also been analyzed
in terms of root-loci modifications. Specifically,
Figure 6 depicts, for precone angle βpc = 0.2rad,
the locus of the unstable (lead-lag) root for the
collective-pitch angle θ = −0.1÷ 0.5rad, and it is
apparent as the ‘smart spring’ effect is to restrict
considerably both the pitch-angle range for which
flutter occurs and the maximum flutter excitation
reachable.

The same blade, but for R = 1, has also been
examined. In this case, the basic-blade instabil-
ity pattern on the precone/collective-pitch plane
is more complicated, as illustrated in Figure 7
where, in addition to lead-lag flutter, torsion-
flutter regions are also present (divergence insta-
bility would occur for configurations already ex-
periencing torsional flutter). For this blade, the
introduction of the optimal ‘smart spring’ con-
siderably reduces both lead-lag and torsion flut-
ter, as shown in Figure 8, where for the portion
of the precone/collective-pitch plane considered,
two of the four flutter instability regions have
disappeared (circles bound ‘smart blade’ flutter
regions). Finally, in Figure 9 we depict, for
βpc = 0.2rad and for θ = −0.1÷ 0.5rad, the lead-
lag root locus with and without ‘smart spring’ ef-
fects. Also in this case, the smart spring restricts
considerably both the pitch-angle range for which
flutter occurs and the maximum negative damp-
ing.

Concluding remarks

The effects of the inclusion of a root ‘smart spring’
in a hingeless helicopter rotor blade have been
investigated. First, an aeroelastic ‘smart’ blade
model has been developed and then, it has been
proposed an algorithm for the tailoring, at a given
rotor configuration, of the optimal ‘smart spring’
addressed to aeroelastic stability augmentation.
The resulting ‘smart spring’ optimal parameters
can be considered as the tuning parameters of a
‘smart spring’ tunable dependently of the rotor
configuration to be stabilized.

Numerical results concerning two hovering rotor
configurations have demonstrated the capability
of this algorithm to identify a ‘smart spring’ that
considerably augment rotor blade stability.

In the case examined here, only three ‘smart
spring’ (stiffness) parameters have been included
in the optimization procedure, but the algorithm
is applicable to more general cases, in which addi-
tional ‘smart spring’ parameters like, for instance,
mass cross-section distribution and spanwise ex-
tension could be included in the identification
process.
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Figure 4: Instability regions for basic blade. R = 0.

Figure 5: Instability regions for basic and ‘smart’ blades. R = 0. (+:basic-blade instability boundaries; •:smart-
blade instability boundaries)
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Figure 8: Instability regions for basic and ‘smart’ blades. R = 1. (+:basic-blade instability boundaries; •:smart-
blade instability boundaries)

Figure 9: Critical lead-lag root locus for basic and ‘smart’ blades, at βpc = 0.2rad and θ = −0.1÷0.5rad. R = 1.
(+:basic-blade root locus; •:smart-blade root locus)

Appendix A

For the sake of completeness, in this appendix we
show the expressions of the ‘smart’ blade dynam-
ics equations, as they have been derived in Ref.
[12]. These are the equations that, after appli-
cation of the Galërkin method, yield the state-

space format of ‘smart’ blade dynamics that has
been used in the optimal-control procedure, for
the ‘smart spring’ tailoring (as described in Sec-
tion 3).

Using the notation introduced in Refs. [9] and
[11], lead-lag, flap and torsion deformation equa-
tions have the following expressions:
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(lead-lag equation)
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where ′ denotes differentiation with respect to
the abscissa, x, along the blade span, subscript
0 denotes basic-blade parameters, whereas sub-
script s denotes ‘smart spring’ parameters at
x1 < x < x2. Furthermore, R denotes the ro-
tor radius, Ω denotes the rotor angular velocity,
m denotes the blade mass per unit length, J de-
notes the cross-section torsional mass moment of
inertia, E denotes the Young modulus, G denotes
the shear modulus, Iz and Iy are the cross-section
area moment of inertia, I is the torsional rigidity

constant, kA is the cross-section polar radius of
gyration, whereas km1 and km2 are such that the
cross-section mass radius of gyration, km, is given
by k2

m = k2
m1 + k2

m2. In addition, R is the flap-
lag structural coupling parameter, θ is the collec-
tive pitch, βpc is the blade precone angle, ∆H is
the hat function defined in Section 3, whereas Lv
and Lw are, respectively, the in-plane and out-of-
plane aerodynamic forces per unit length acting
on the blade, whereas Mφ is the aerodynamic
pitching moment per unit length.
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