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Abstract

The present paper focuses on trajectory optimization problems for complex first-principle models of rotorcraft
vehicles, accounting for the presence of slow and fast dynamic components in the solution. The trajectory
optimal control problem is solved through a direct approach by means of a novel hybrid single-multiple shooting
method. The capabilities of the proposed procedures are illustrated with the help of an application regarding the
estimation of the H-V diagram of a tilt-rotor.

1 INTRODUCTION

The term trajectory optimization refers to the process
of computing the optimal control inputs and the re-
sulting response of a model of a vehicle, a rotorcraft
in the present case, which minimize a cost function
(or maximize an index of performance) while satis-
fying given constraints (which specify, for example,
the vehicle flight envelope boundaries, and/or safety
and procedural requirements for a maneuver of inter-
est) [6, 7, 10, 11, 13]. Hence, one can usually give
a precise definition of a maneuver by formulating an
equivalent optimal control problem. The formulation
of such a problem necessitates of a model of the ve-
hicle system with its inputs, states and outputs, of a
cost function and of a list of all constraints.

Clearly, the fidelity of the predictions made using
this approach crucially hinges on the fidelity of the
vehicle model. In fact, trajectories and performance
limits predicted with oversimplified models might ex-
hibit significant discrepancies with real flight data. Fi-
delity improvements may be obtained by considering
a more sophisticated description of the vehicle; the
current state-of-the-art calls for analysis tools based
on comprehensive approaches [1, 4, 21, 27], which
offer the ability to create hierarchical models of vary-
ing levels of fidelity of the various sub-systems of the
vehicle.

Reference [13] illustrate a suite of trajectory opti-
mization procedures which cater to vehicle models
of varying complexity. Solution procedures for rotor-
craft flight mechanics models have been previously
described by Okuno and Kawachi [24], Carlson and
Zhao [15], and Bottasso et al. [11, 12]. The extension

of such procedures to handle fine-scale aero-servo-
elastic comprehensive vehicle models have been first
described by Bottasso et al. [8, 9].

In this work we focus on the direct multiple shooting
approach to the solution of maneuver optimal control
problems and on the so-called level 2 rotorcraft mo-
dels, according to the classification of the different de-
grees of vehicle models’ complexity into three levels
proposed by Padfield [26].

As noted in Reference [22], these models are sel-
dom used in the solution of optimization problems be-
cause it is often hard to provide the required accuracy
within a reasonable computation time, while avoiding
numerical instabilities due to the complex nonlinear
rotor model. The reason for this is twofold: on the one
hand, one needs to use a small integration time step
length to correctly resolve the high frequency compo-
nents of the solution within a given accuracy. On the
other hand, one has to guarantee the continuity of the
rotor states by imposing the proper gluing constraints.
We have observed that the satisfaction of such con-
straints can be particularly difficult and usually ends
up dominating the problem. This is not surprising,
since the rotor generates most of the aerodynamic
forces acting on the vehicle and even small variations
in its states may imply large variations in the result-
ing forces, which hinders the satisfaction of the gluing
constraints.

We have found that these problems can be alle-
viated by using multi-time scale arguments. In fact,
level 2 models include both slow flight mechanics
scales and faster ones, the latter being related to ro-
tor degrees of freedom, including both structural (rigid
and/or flexible) and aerodynamic states. To treat more
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effectively this class of optimal control problems, we
use multiple shooting on the slow scales, and single
shooting on the faster ones; this avoids the enforce-
ment of the multiple shooting gluing constraints for
the faster scales, which improve efficiency and robust-
ness of the direct methods when applied to complex
vehicle models.

The paper is organized according to the follow-
ing plan. After having more precisely defined the
maneuver optimal control problem in Section 2, in
Section 3 we review the mathematical formulation
of direct shooting methods for their solution. In
Section 4 we present a novel hybrid single-multiple
shooting method specifically designed for dealing with
the presence of different timescales in the model,
whereas in Section 5 we describe an application of
the proposed method to the estimation of the H-V di-
agram of the ERICA tilt-rotor [23]. Conclusions are
given in Section 6.

2 THE MANEUVER OPTIMAL CONTROL PROB-
LEM

A maneuver can be defined as a finite-time transition
between two trim conditions [18]1. Clearly, given a
start trim and an arrival trim, there is an infinite num-
ber of ways to transition between the two. A way to
remove this arbitrariness is to formulate a maneuver
as an optimal control problem [11, 7], where one min-
imizes a cost (time, altitude loss, control activity, fuel
consumption, etc.) which in general is some given
function of the vehicle states and control inputs. The
solution of the optimization problem must satisfy the
dynamic and kinematic equations of the vehicle, the
initial and final conditions corresponding to the start
and arrival trims, and all other equality and inequality
constraints which need to be met in order to satisfy
given performance and procedural requirements.

Consider a flight mechanics vehicle model M,
which includes structural and aerodynamic models of
the vehicle components, possibly (but not necessar-
ily) using a multibody approach [4]. The dynamics of
model M can in general be described in terms of a
set of non-linear index 1-3 differential algebraic equa-
tions written as

fSD(ẋSD, xSD, λ,xA, u) = 0,(1a)
c(xSD) = 0,(1b)

MẋA + LxA − τ (xSD, u) = 0,(1c)

where xSD are the structural dynamics states (in-
cluding states which describe rigid and possibly flex-
ible rotor(s), fuselage, engine, etc.), λ are constraint-

1Although this is the only rigorous definition of a maneuver, in
the context of the present work it will be more useful to use the
term maneuver more loosely, and we will often consider the case
of terminal conditions which are not trimmed.

enforcing Lagrange multipliers in a multibody vehicle
model, xA are aerodynamic states (e.g. dynamic
inflow variables), and u is the control input vector.
Equations (1a) group together the equations of dy-
namic equilibrium and the kinematic equations. Equa-
tions (1b) represent mechanical joint constraint equa-
tions in a multibody vehicle model, while Eqs. (1c) are
the aerodynamic state equations. Finally, the nota-
tion ˙(·) = d(·)/dt indicates a derivative with respect to
time t.

For the sake of simplicity, in the following we will
consider that the Lagrange multipliers λ and redun-
dant structural dynamics states can always be for-
mally eliminated in favor of a minimal set of coordi-
nates [19]. Therefore, the governing equations will be
assumed to be of the ordinary differential type and will
be simply expressed as

fSD(ẋSD, xSD, xA, u) = 0,(2a)
MẋA + LxA − τ (xSD, u) = 0.(2b)

When using quasi-steady aerodynamics, the aero-
dynamic model expressed by Eqs. (2b) and its asso-
ciated aerodynamic states xA are of an algebraic na-
ture. The numerical solution is in that case performed
by eliminating the algebraic aerodynamic variables,
usually through a fixed point iteration. Therefore, even
in that case, we can consider an ODE model with no
loss of generality.

It will be convenient to use a more synthetical form
of the above equations in the following pages, and
hence we will write the vehicle model as

f(ẋ,x,u) = 0,(3a)
y = h(x),(3b)

where x = (xT
SD,xT

A)T and f stacks together
Eqs. (2a) and (2b). In addition, Eq. (3b) defines a vec-
tor of outputs y. The outputs will typically represent
some global vehicle states which describe its gross
motion, such as position, orientation, linear and angu-
lar velocity of a vehicle-embedded frame with respect
to an inertial frame of reference, or other quantities
useful for formulating the maneuver optimal control
problem.

Equations (3a) can be marched forward in time by
providing a time history of control inputs u(t) and ini-
tial conditions on the states x(0) = x0. In terms of
its states, the response of system M to u(t) can be
formally written as

(4) x(t) = Φu(x0, t),

where Φ(·)(·, ·) is the state flow function. Accordingly,
one obtains also the associated values of the outputs
through (3b) as

(5) y(t) = h(Φu(x0, t)) = Ψu(y0, t),
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where Ψ(·)(·, ·) is the output flow function and y0 =
h(x0).

The trajectory optimization problem is defined on
the interval Ω = [0, Tf ], t ∈ Ω, where the final time
Tf is typically unknown and must be determined as
part of the solution to the problem. Specific events
might be associated with unknown time instants Te,
0 < Te < Tf , as for example the reaching of specific
values of certain states, the jettisoning of part of the
cargo, etc.

The maneuver optimal control problem (MOCP)
consists in finding the control function u(t), and hence
through (3a) the associated function x(t), which min-
imize the cost

min
x,y,u,Tf

J = φ(y, t)
∣∣Tf

0
+

∫ Tf

0

L(y, u, u̇, t) dt,(6a)

s.t. : f(ẋ, x,u) = 0,(6b)
y = h(x),(6c)
g(y, u, t, Tf ) ≤ 0.(6d)

The first term of Eqs. (6a) in the previous expression
is a boundary or internal event term which accounts
for values of the states at the initial and/or final in-
stants and/or at the instant Te corresponding to an
event, while the second term is an integral cost term.

The minimizing solution must satisfy the vehicle
equations of motion (6b), together with other con-
straints generically represented by Eqs. (6d), which
can be boundary (initial and/or terminal) conditions on
the states, bounds or any other kind of conditions.

2.1 Problem Complexity

In this section we introduce a measure C of the com-
plexity of problem (6). A meaningful index which
takes into account the underlying complexity of the
problems to be solved is given by the expression

(7) CMOCP = κ
Tf

τ
,

where κ is the number of unknown components in the
problem, Tf is the length of the temporal domain and
τ is the characteristic time length associated with the
fastest solution scale component that one needs to re-
solve. In the context of the present discussion, κ is the
number of states plus the number of inputs and out-
puts. For sophisticated models, the number of states
is significantly larger than the number of inputs (which
is usually very small for most vehicles) and of outputs
(which is also typically a rather small number).

Problems of modest complexity use vehicle models
with a small number of unknown quantities κ, and a
solution is sought which captures only those compo-
nents of the response which are slow compared to the
overall duration (Tf/τ small). On the contrary, prob-
lems of high complexity use models with many un-
known quantities (κ large, typically because of a large

number of states) which capture fine scale response
components, that are possibly very fast compared to
the length of the temporal domain (Tf/τ large).

It is useful to introduce a complexity index reference
value

(8) C∗
MOCP = n∗

x

T ∗
f

τ∗
c

,

where n∗
x = 12 represents the number of standard

flight mechanics states, T ∗
f = 10 s is typical refer-

ence time duration for guidance problems [25] and fi-
nally τ∗

c = 0.1 s is a typical characteristic timescale
for flight mechanics problems. Hence, C∗

MOCP has a
typical value of 1200. This is the complexity index of
the simplest MOCP that one can solve.

This way we can define a more significant relative
complexity index as

(9) CMOCP = CMOCP/C∗
MOCP.

The value of CMOCP dictates the choice of the most
suitable solution technique for the MOPC at hand, as
depicted in Figure 1.

3 DIRECT SHOOTING METHODS

There are two principal approaches to the solution of
trajectory optimization problem: indirect [3, 14, 17]
and direct methods [5, 11, 12, 16]. Following [13], we
prefer the direct approach even for the present pa-
per. In fact, in the case of indirect methods one has
first to derive the optimal control governing equations
by using the calculus of variation, and then numeri-
cally solve the arising two-point boundary value prob-
lem. On the contrary, the direct approach does not re-
quire any manipulation of the equations of motion, as
one first discretizes the problem by time stepping (us-
ing either a transcription or a shooting method [13])
and then solves the resulting Non-Linear Program-
ming (NLP) problem [20] by a standard solver, such
as SQP (Sequential Quadratic Programming).

Before describing the two methods used in this
work, namely the direct single shooting (DSS) and the
direct multiple shooting (DMS) methods, let us intro-
duce some notation.

We consider a partition of the time domain Ω given
by 0 = t0 < t1 < . . . < . . . < tk < . . . < tN = Tf with
Ωk = [ti, ti+1], k = (0, N − 1), i = k, where each Ωk

is a shooting arc, or simply arc. Here and in the fol-
lowing, quantities associated with the generic vertex
between segments i are indicated using the notation
(·)i, while quantities associated with the generic seg-
ment k are labeled (·)k. In each shooting segment Ωk,
the controls are discretized as uk(t) =

∑Nk
u

j=1 sj(t)uk
j

where sj(t) are basis functions, in particular cubic
splines in the present implementation, and uk

j are Nk
u
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unknown discrete control values. If controls are dis-
cretized in the entire domain Ω, instead of in each arc,
we use the notation uΩ.

3.1 Direct Single Shooting

A single shooting approach is used whenever the dy-
namic system (3) is sufficiently stable. Starting from
an initial condition, we march forward in time the
equations of motion of the vehicle from 0 to Tf :

xTf
− x̂Tf

= 0,(10a)

x̂Tf
= Φ̂uΩ (x0, Tf ),(10b)

where Φ̂uΩ (x0,Tf ) is the discrete counterpart of the
flow function in Eqs.(4) and represents the numerical
integration on the interval Ω. Here and in the follow-
ing, we use the notation x̂ to indicate the value of the
states obtained by numerical integration in time.

In this case, the set of NLP variables (unknowns) is
defined as:

(11) z =
(
uΩ, x0, xTf

, Tf

)T
,

i.e. they are defined as the discrete values of the con-
trols within the entire time domain, the initial and final
conditions on the states, and the final time. We re-
mark that, in general, x0 and xTf

will not be both un-
known, since we typically use equation (6d) to define
either the former or the latter.

Notice that with such an approach one does not
need to partition the domain Ω, nor to impose any
constraints on the states, as opposed to the case of
the multiple shooting approach described below.

3.2 Direct Multiple Shooting

Multiple shooting is often advocated as a better,
although somewhat empirical solution than single
shooting when dealing with unstable systems, as for
example when considering rotorcraft vehicles as in
the present case. In fact, in optimal control problems,
multiple shooting is the only way to avoid solution blow
up caused by dramatic amplification of small pertur-
bations [2].

The basic idea behind this approach is to break the
time domain into multiple arcs Ωk. The partitioning
of Ω requires the introduction of constraints on the
states, named gluing constraints, that ensure the con-
tinuity of their time history across the boundaries of
the shooting segments. For the k-th arc Ωk = [ti, ti+1]
we have:

xi+1 − x̂i+1 = 0,(12a)

x̂i+1 = Φ̂uk(xi, ti+1),(12b)

where now Φ̂uk is the flow function which brings the
state vector from ti to ti+1. Equation (12a) translates
the gluing constraints.

The set of NLP variables is defined as:

(13) z = (xi=(0,N), u
k=(0,N−1)

j=(1,Nk
u)

, Tf )T ,

i.e. they are defined as the discrete values of the
states at the interfaces between shooting segments,
the discrete values of the controls within each seg-
ment, and the final time.

4 THE DIRECT SINGLE-MULTIPLE SHOOTING
METHOD

In this section we describe the combined use of DMS
and DSS methods for the solution of MOCPs.

As reported in Reference [22], level 2 fidelity mo-
dels [26] are seldom used in the solution of optimiza-
tion problems because it is often hard to provide the
required accuracy within a reasonable computation
time, while avoiding numerical instabilities due to the
complex nonlinear rotor model.

The reason for this is twofold: on the one hand,
one needs to use a small integration time step length
to correctly resolve the high frequency components
of the solution within a given accuracy. For rotor-
craft models of the form (3a), this implies a poten-
tially significant computational cost associated with
the time-marching of the vehicle equations of motion
(which represents the main contribution to the total
cost of one iteration of the solution process). To ob-
tain the total cost of one evaluation of the gluing con-
straints (12a), this time must be multiplied by the num-
ber of perturbations of the unknown states needed
for the evaluation of the Jacobian matrix of the con-
straints. Clearly, as the number of model states in-
creases, the computational cost grows accordingly.

On the other hand, one has to guarantee the conti-
nuity of the rotor states by imposing the proper gluing
constraints (12a). We have observed that the satis-
faction of such constraints can be particularly difficult
and usually ends up dominating the problem. This is
not surprising, since the rotor generates most of the
aerodynamic forces acting on the vehicle and even
small variations in its states may imply large variations
in the resulting forces, which hinders the satisfaction
of the gluing constraints.

We have found that these problems can be alle-
viated by using multi-time scale arguments. In fact,
the rotor states (both structural and aerodynamic) are
significantly faster than the flight mechanics ones2.

2The flight mechanics states are here defined as those describ-
ing the gross rigid body motion of the vehicle, i.e. they represent
the position, orientation, linear and angular velocities of a body-
attached reference frame. The characteristic time length associ-
ated with this scales is of order O(1.0 − 0.1s).
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Thus, since the multiple shooting treatment of these
fast states is the main cause of the two aforemen-
tioned issues, i.e. raise in computational cost and dif-
ficulty in satisfying gluing constraints, one can think of
treating slow and fast scales using different methods.

More specifically, we use a multiple shooting ap-
proach for the slow states, i.e. for every arc Ωk we
have:

x∼i+1 − x̂∼i+1 = 0,(14a)

x̂∼i+1 = Φ̂uk(x∼i, x̂≈i, ti+1),(14b)

where x∼ and x≈ are the states associated with slow
and fast scales, respectively. This is crucial, since
with single shooting small changes early in the trajec-
tory can produce dramatic effects at the end of it [2];
hence, the multiple shooting treatment of slow scales
avoids the blow up of the solution.

On the contrary, we treat the fast scales using a
single shooting approach, as depicted in Figure 2:

x̂≈i+1 = Φ̂uk(x∼i, x̂≈i, ti+1).(15a)

This does not compromise the robustness of the pro-
cedure, since fast scales will not diverge if slow ones
do not; hence, the stabilizing effect produced by the
multiple shooting treatment of slow scales is felt also
at the level of the fast ones.

The set of NLP variables is defined as:

(16) z = (x∼i=(0,N),u
k=(0,N−1)

j=(1,Nk
u)

, Tf )T .

5 ESTIMATION OF A TILTROTOR H-V DIAGRAM

In this section we describe the application of the pro-
posed method to the estimation of the H-V diagram
of a tilt-rotor. We consider a level 2 model of the ER-
ICA vehicle [23] implemented in the general purpose
flight simulator FLIGHTLAB [1]. The control inputs are
defined as u = (δcoll, δped, δlat, δlong)T , where δcoll is
the collective stick deflection, δped is the pedal deflec-
tion, δlat and δlong are the lateral and longitudinal stick
deflection, respectively. Results are presented in Fig-
ures 3 and 4.

In the following sections we describe the formula-
tion of the maneuver optimal control problems that
we consider here. Their relative complexity index
CMOCP varies between 12 and 50, depending on the
maneuver duration.

5.1 Rejected take-off maneuver

In the rejected take-off (RTO) maneuver, the pilot, af-
ter an engine failure, aborts the take-off procedure to
safely land. In this case one is interested in minimiz-
ing the region enclosed by the so-called dead man’s
curve.

The following constraints on the terminal condition
specify the safety and procedural requirements for the
maneuver:

H(Tf ) = 3.5 m,

p(Tf ) = q(Tf ) = r(Tf ) = 0 deg/s,
0 ≤ VZ(Tf ) ≤ 2.5 m/s,

−1.0 ≤ θ(Tf ) ≤ 10.0 deg,

where H is the height above the ground, VZ is the
linear velocity along the z-axis (pointing down) in
a ground-attached inertial reference frame, θ is the
pitch attitude, p, q, r are the roll, pitch, and yaw rate,
respectively. Notice that for this maneuver the final
height H(Tf ) is known, whereas the initial one H(0)
is an unknown of the problem.

The power loss after engine failure is simulated us-
ing the following law for the maximum available torque
at the rotor shaft:

(18) Tmax(t) = T1 + (T2 − T1)e−t/π1 + T2e
−t/π2 ,

where T1 is the hover torque required, T2 is the one
engine inoperative maximum take-off torque available
at 100% rpm, while π1 = 1/9 s and π2 = 8/9 s are
suitable time constants.

5.1.1 RTO maneuver: lower branch

In the case of the upper branch of the H-V diagram
one is interested in maximizing the initial height from
which the vehicle can safely land with one engine in-
operative. The objective function which defines the
maneuver takes the form

(19) J low
RTO = −H(0) +

1
Tf

∫ Tf

0

u̇T Wu̇dt,

where the integral term penalizes the control rates.
The minus sign for the initial height H(0) originates
from the fact that the NLP problem solver used in this
work implements a minimization procedure.

Figure 5 depicts some of the most relevant quan-
tities for the RTO maneuver for the hover point. No-
tice that the control time history is such that at first it
produces a reduction of rotor speed with the effect of
reducing the final vertical velocity, thanks to the en-
ergy stored in the rotors. The computed maneuver
duration is of about 5 s. The maximum starting height
obtained is HRTO low

max (0) = 14.44 m.

5.1.2 RTO maneuver: upper branch.

In the case of the upper branch of the H-V diagram
one is interested in minimizing the initial height from
which the vehicle can safely land with one engine in-
operative. Thus, in this case, the objective function
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which defines the maneuver becomes

(20) Jup
RTO = H(0) +

1
Tf

∫ Tf

0

u̇T Wu̇ dt,

where the first term now has a positive sign.
Figure 6 depicts some of the most relevant quanti-

ties for the RTO maneuver for the hover point. Notice
that the maneuver can be divided into three different
stages. During the first stage, after the engine fail-
ure, the rotor speed rapidly decreases, calling for a
reduction of the collective input in order to increase
the rotor rpm. At the same time, the longitudinal cyclic
input makes the vehicle pitching down and accelerat-
ing forward. In the second stage, the rotor speed is
stabilized around its upper bound, the collective in-
put remains constant and the pitch angle reaches its
lower bound. During the final stage, the collective in-
put rapidly increases reaching its maximum allowed
value, the vehicle pitches up and the vertical veloc-
ity increases up to the admitted value of VZ(Tf ) =
2.5 m/s, while the rotor speed decreases. In this case,
the optimal initial height is HRTO up

min (0) = 42.1 m.
Figure 7 illustrates the effects of using the nacelle

tilt angle (DNAC) as an additional control. The perfor-
mance is improved and the optimal initial height be-
comes HRTO up∗

min (0) = 27.93 m. A comparison with the
helicopter mode simulation shows that the maneuver
duration is shorter and the maximum pitch angle is
held for a shorter time due to the nacelle tilting, which
ensures an appropriate acceleration.

5.2 Continued take-off maneuver

The continued take-off (CTO), or fly-away, maneuver
has the following limitations:

U(t) = const,
p(Tf ) = q(Tf ) = r(Tf ) = 0 deg/s,

−10.0 ≤ VZ(Tf ) ≤ −0.5m/s,
−10.0 ≤ θ(Tf ) ≤ 10.0 deg,

NR(Tf ) = 100.0 %,

where U is the linear velocity along the x-axis in a
ground-attached inertial reference frame and NR is
the percentage of rotor nominal speed; along the en-
tire maneuver

(22) H(t) ≥ 35 ft.

The cost function takes the same form of (20), i.e.

(23) JCTO = H(0) +
1
Tf

∫ Tf

0

u̇T Wu̇ dt.

Observing Figure 9 we note that the optimized con-
trol time history is quite similar to that of the rejected
take-off upper branch up to about 8 s, i.e. for the first

two stages of the maneuver. During this lapse of time
the goals are to recover the rotor speed and to sta-
bilize the attitude and the descent velocity when the
rotorcraft accelerates. The last stage is different and
longer than in the rejected take-off case and it can
be further subdivided: first the pitch angle increases
to reduce the vertical velocity, then rotor speed, ve-
locities and attitude are stabilized coherently with the
final conditions. The optimal initial height is HCTO

min =
66.16 m. Also in this case tilting the nacelles improves
the performance and HCTO∗

min = 57.44 m. The DNAC
effects are less important than in the case of the RTO
and the nacelle tilt angle returns to its initial value in
order to increase the rate of climb. Figure10 shows
a comparison between the maneuver in helicopter
mode and the one with the use of nacelle tilting.

6 CONCLUSIONS

In this work we have presented a strategy for the
efficient solution of rotorcraft trajectory optimization
problems using comprehensive vehicle models based
on the combined use of single and multiple shooting
methods.

The proposed approach considers a subdivision of
the model states based on timescale considerations.
The slower rigid body states are treated with the mul-
tiple shooting method. This is crucial, since with sin-
gle shooting small changes early in the trajectory can
produce dramatic effects at the end of it; clearly, the
problem is exacerbated when analyzing unstable sys-
tems, which is often the case when considering rotor-
craft vehicles. Hence, the multiple shooting treatment
of the flight mechanics scales avoids the blow up of
the solution. On the other hand, the faster solution
scales are treated using a single shooting strategy.
This does not compromise the robustness of the pro-
cedure, since the rotor states will not diverge if the
rigid body states do not blow up; hence, the stabiliza-
tion produced by the multiple shooting treatment of
the slower states is felt also at the level of the faster
ones.

The combined single-multiple shooting approach
based on a timescale separation argument leads to
a robust and effective formulation for optimal control
problems for vehicle models of significant complexity,
which in general exhibits superior convergence and
lower computational costs than either the single or the
multiple shooting methods used individually.
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Figure 1: Preferred methods for vehicle models of increasing complexity.

Figure 2: Hybrid single-multiple shooting approach.
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Figure 3: H-V diagram.

Figure 4: H-V diagram: effects of using the nacelle tilt angle (DNAC) as an additional control.
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Figure 5: RTO maneuver: lower branch, hover point. Up, from left to right: height above the ground, pitch
attitude (with bounds in red), vertical velocity (inertial frame, z-axis pointing down), pitch rate. Bottom, from
left to right: longitudinal velocity with respect to the ground, rotor rpm (with bounds in red), collective stick
deflection, longitudinal stick deflection.
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Figure 6: RTO maneuver: upper branch, hover point. Up, from left to right: height above the ground, pitch
attitude, vertical velocity (inertial frame, z-axis pointing down), pitch rate. Bottom, from left to right: longitudinal
velocity (inertial frame, x-axis pointing forward), rotor rpm (with bounds in red), collective stick deflection,
longitudinal stick deflection.
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Figure 7: RTO maneuver: upper branch, hover point. Effects of using the nacelle tilt angle (DNAC) as an
additional control. Helicopter mode (solid line) and DNAC effects (dashed line). Up, from left to right: height
above the ground, pitch attitude (with bounds in red), vertical velocity (inertial frame, z-axis pointing down),
pitch rate (with bounds in red), longitudinal velocity (inertial frame, x-axis pointing forward). Bottom, from left to
right: rotor rpm (with bounds in red), collective stick deflection, longitudinal stick deflection, nacelle tilt angle,
torque.

Figure 8: Hover point CTO: trajectory. In red some bounds.
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Figure 9: CTO maneuver: hover point. Up, from left to right: height above the ground, pitch attitude (with
bounds in red), vertical velocity (inertial frame, z-axis pointing down), pitch rate. Bottom, from left to right:
longitudinal velocity (inertial frame, x-axis pointing forward), rotor rpm (with bounds in red), collective stick
deflection, longitudinal stick deflection.
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Figure 10: CTO maneuver: hover point. Effects of using the nacelle tilt angle (DNAC) as an additional control.
Helicopter mode (solid line) and DNAC effects (dashed line). Up, from left to right: height above the ground,
pitch attitude (with bounds in red), vertical velocity (inertial frame, z-axis pointing down), pitch rate (with bounds
in red), longitudinal velocity (inertial frame, x-axis pointing forward). Bottom, from left to right: rotor rpm (with
bounds in red), collective stick deflection, longitudinal stick deflection, nacelle tilt angle, torque.
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