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ABSTRACT* 
A multi-objective and multi-point optimization 

framework for helicopter rotor performance is presented. 
This framework is based on a multi-objective surrogate-
assisted memetic algorithm which is coupled with two 
aerodynamic solvers for rotor performance prediction: a 
lifting-line comprehensive tool and a more advanced three-
dimensional panel method coupled with a constant vorticity 
contour free-wake vortex model. The purpose is to improve 
aerodynamic performance of helicopter main rotors in multi-
point forward flight operations by searching for optimal blade 
shape. The optimization procedure and the memetic 
algorithm are first described. Afterwards, they are applied to 
optimization of several features of a blade, like twist, chord 
and sweep and the outcomes from those optimizations are 
discussed from an aerodynamic viewpoint. The advantages of 
the proposed optimization procedure are finally illustrated 
and compared to more traditional techniques. 

 

INTRODUCTION 
The aerodynamic optimization of the main rotor is one of 

the most important aspects on the entire design of an 
helicopter, since it affects the performance and the 
capabilities of the aircraft at all flight conditions and, being 
the main source of power requirement, can drastically change 
the characteristics of the helicopter, e.g. total range and top 
speed. The extreme variability of the conditions in which an 
helicopter operates, makes the optimization problem highly 
complex and multi-objective. The possibility of using multi-
objective evolutionary algorithms on the field of blade rotor 
optimization has been precluded up to now due to the 
inefficiency of such kind of algorithms, that typically 
requires a large number of aerodynamic simulations. The 
development of high efficiency memetic algorithms (based 
on more common genetic algorithms) makes possible their 
application to rotor optimization. 

It has been evidenced by several relatively recent surveys 
[1,2] which are the main issues encountered by the helicopter 
optimization community during the last two decades. These 
assessments are mainly focused on dynamic optimization of 
rotors, therefore on the structural viewpoint, but similar 
conclusions can be drawn for pure aerodynamic rotor 
optimizations. This is particularly true if we consider that 
quite often the same code is used to predict aerodynamic 
performance or structural/dynamic loads, e.g. aeromechanic 
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comprehensive codes. Ref. [1] highlights the major problem 
of the accuracy of the numerical tools used to predict rotor 
performance, in fact optimization results obtained using 
analysis of insufficient accuracy have very limited worth. On 
the other hand, as the reliability of predicting tools increases, 
the most important features that drive the flow behavior over 
a rotor can be captured, making optimization a trusted way 
for rotor performance enhancement. Usually, accuracy 
improvement of rotor performance predictions leads to a 
substantial increase of computational demand [2], e.g. 
unsteady panel methods or computational fluid dynamics. 
The growing of computational capabilities and large scale 
parallel computers help to mitigate this problem and 
optimizations using such kind of codes are nowadays 
possible. Finally, the optimization algorithm is identified as a 
critical parameter [1,2]. This aspect has largely delayed the 
diffusion of optimization algorithm based design within the 
industrial area, because of the typical inefficiency of the 
available algorithms and the trouble process of integrating 
commercial codes with the algorithms themselves. However, 
several works have been carried out during the past years on 
rotor aerodynamic optimization, in which the traditional 
gradient-based optimization method is probably the mainstay 
algorithm. The well-known issue of such algorithms is the 
high sensitivity to local minima. To overcome the problem, 
nongradient-based stochastic algorithms have also been used, 
like genetic algorithms and simulated annealing. Response 
surface method [3] and hybrid approaches have been 
identified [2] as promising methods to enhance efficiency, 
reducing the number of aerodynamic simulations required 
and increasing the convergence rate. 

Several examples of rotor aerodynamic optimizations 
have been found in open literature. A tool for aerodynamic 
optimization of rotors was firstly presented in [4], based on 
the comprehensive analysis program CAMRAD/JA [5] as 
flow solver and the gradient-based optimizer CONMIN [6]. 
The horse power minimization at hover and forward flight 
conditions, properly combined into a weighted sum, was 
chosen as objective and a tapered planform was optimized 
together with the twist distribution. Similar approach has 
been developed in [7,8] in which an integrated 
aerodynamic/dynamic optimization was carried out, 
introducing also blade structural properties as design 
variables. In [9] a circulation optimization along the blade 
span was proposed with the aim of minimizing the induced 
power loss on a rotor in hover and forward flight. A multi-
level decomposition technique has been developed in [10] 
dealing with an integrated aerodynamic/dynamic 
optimization and based on gradient-based algorithm. By 
means of the multi-level decomposition method, 



aerodynamic and dynamic design was performed at a global 
level while the structural design was carried out at a detailed 
level. Response surface method (RSM) was used in [11] 
together with a gradient-based algorithm in order to reduce 
the total number of objective function evaluations, i.e. 
aerodynamic or dynamic simulations of the rotor. More 
recently, Reynolds-averaged Navier-Stokes (RANS) methods 
have been widely used in prediction of rotor performance, 
especially for hover condition. The advances in 
computational fluid dynamics (CFD) and the growing of 
computational capability have made possible the application 
of these methods to optimization. An example is found in 
[12] where the CONMIN optimizer is coupled with a CFD 
code for rotor optimization in hover. The trim information 
necessary to run a CFD simulation are computed using a 
simpler lifting-line solver. Twist, chord, sweep and anhedral 
have been considered separately for as many optimizations. 
Moreover, adjoint methods [13] coupled with CFD solvers 
received much attention during the last years, due to the fact 
that the computational expense incurred in the calculation of 
the complete gradient is effectively independent of the 
number of design variables. The application of the adjoint 
method for helicopters in hover can be found in [14,15], 
while the same optimization problem was addressed for 
tiltrotors in [16]. Examples of application of evolutionary 
algorithms for helicopter rotor optimization are also available 
in literature. In [17] a lifting-line solver was used to predict 
performance of a rotor in hover and forward flight conditions, 
together with a two-dimensional interactive boundary-layer 
code to optimize blade sections. The method was based on a 
single-objective genetic algorithm with the aim of 
minimizing horse power. A very recent work [18] was also 
published where RSM, based on a CFD database, was used in 
conjunction with a single-objective genetic algorithm to 
optimize several aspects of rotor blades in hover and forward 
flight separately. 

In the present paper, the authors illustrate a framework 
for rotor blade aerodynamic optimizations, based on a state-
of-the-art multi-objective surrogate-assisted memetic 
algorithm (SAMA). Such an algorithm extends the concept of 
RSM applied to genetic algorithms (GAs) with the 
advantages of robust global search based on GA and local 
search based on more efficient gradient-based algorithms. 
From an aerodynamic viewpoint, this multi-objective 
optimizer is coupled with two interconnecting codes, which 
are CAMRAD/JA [5] and the AgustaWestland in-house-
developed code ADPANEL [19], a panel method tool 
coupled with a constant vorticity contour (CVC) free wake 
vortex model. Several applications to rotor blade 
optimization in forward flight conditions are presented and 
discussed. It is worth noting that the ultimate aim of the 
present work is not only to show optimal rotor blade shapes, 
but to develop and validate an efficient methodology for 
multi-objective optimization of rotors, with intention to 
couple this strategy, in the close future, to more complex and 
computational demanding aerodynamic tools, like for 
instance RANS solvers. 
 

PROBLEM FORMULATION 
The present work was aimed at optimizing the 

aerodynamic performance of a rotor in forward flight 
conditions searching for optimal planform shape of the blade. 
The main objective of the optimizations is minimization of 
horse power required by a generic helicopter main rotor in 

the aforementioned flight conditions. As previously stated, 
the optimization approach is based on a multi-objective and 
multi-point methodology that, from a designer point of view, 
leads to many advantages. As a matter of fact, this approach 
generates a Pareto optimal frontier composed of several 
equally optimal solutions. These overabundant information 
allow the designer to select the final geometry considering 
also different aspects than the pure aerodynamic 
performance. 

In detail, the optimization problem under consideration 
is a two-objective minimization problem and each objective 
is related to a different flight. Table 1 summarizes the 
conditions used for the optimizations, that are two high-speed 
forward flights at different altitudes: 

 
The objectives of the optimization problem under 
consideration are defined in Eq. 1 as follows: 
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where x is the vector describing the blade geometry, Fi are 
the components of the objective function F and Pw is the 
main rotor horse power to minimize. The hover performance 
are not taken into account in Eq. 1 since the main aim of the 
present work is blade shape optimization for fast forward 
flight. However, a post-check constraint is defined at hover 
conditions out of ground effect (HOGE), due to the high 
importance of this condition for an aircraft. The rotor figure 
of merit (FM) of the optimized blades must not be lower that 
the baseline value: 
 

 , ,HOGE opt HOGE baselineFM FM≥ . (2) 
 

A limited number of optimized blades are also selected and 
analyzed at different altitudes and velocities. Table 2 lists the 
three different altitudes considered during this post-
processing analysis (ISA+0 conditions). Velocities vary from 
hover up to maximum achievable speed for a specified 
altitude. 

 
The baseline rotor configuration, used for comparison 

with the optimized solutions, is composed of five rectangular 
blades with a non-dimensional chord of 0.068 (with respect 
to the radius R). All the optimizations are carried out 
considering an isolated single main rotor without the 
fuselage, to avoid useless time loss. The radius R is set to 
6.9m and the tip speed Vtip is 215m/s. No sweep and anhedral 
are present in the baseline blade and a linear spanwise twist is 
considered. The twist slope is -9.4º/R and the twist value at 
the tip is chosen to be equal to -1.5º. To calculate the thrust 
required by the rotor a 6500kg weight helicopter is chosen. 
The weight is kept constant for all the flight conditions. 

Name Altitude ASL [m] Density ratio [ρ/ρ0] 
Flight1 0 1 
Flight2 3260 0.723 
Flight3 5150 0.591 

Table 2: Post-processing flight conditions. 

Condition Altitude ASL [m] Aircraft speed [kts] 
C1 0 150 
C2 5150 140 

Table 1: Optimization flight conditions (ISA). 



BLADE GEOMETRY PARAMETERIZATION 
The description of the blade geometry is based on four 

basic parameters, typically used to define a rotor blade: twist, 
chord, sweep and anhedral. These four parameters can be 
optimized separately or together during an optimization 
process, choosing any possible combination. When one 
parameter is not optimized, its distribution is kept constant 
during the optimization and equal to the baseline distribution, 
initially defined by the user. All the parameters are defined 
by means of b-spline curves [20]. This strategy permits to 
define smooth distributions with limited number of control 
points, allowing also the user to choose the curve’s order 
(that controls the curve’s smoothness). Moreover, the blade 
can be described by b-splines entirely or partially. The radial 
position of the control points is freely defined by the user 
(allowing local refinements, e.g. more dense concentration at 
the tip) and it is kept fixed during the optimization, while the 
remaining coordinate of the control points are the design 
variables for the optimizer. 

The main aspects of the blade, that are twist, chord and 
sweep, have been parameterized using the aforementioned 
technique and the different characteristics of each parameter 
are shown in Table 3. While twist and chord are described for 
all the length of the blade (the b-spline curve starts at 0.09 
r/R, that is slightly above the hub radius), sweep is defined 
starting from 0.4 r/R. Anhedral is not considered in the 
present work so it is not visible in Table 3. 

 
As previously said, the optimization algorithm treats the 

b-spline’s control points like generic design variables and 
these points are allowed to move inside a predefined range of 
variation. Each variable has its own range, that can be 
different from the range of another one. A range of variation 
is entirely defined by a lower and an upper bound and the 
user must specify these values for all the design variables. 
Figure 1 shows the bounds used for the present work, 
respectively for twist, chord and sweep. 

 

PERFORMANCE ANALYSIS PROGRAMS 
The present optimization tool makes use of different 

aerodynamic codes for rotor blade design. In particular, two 
aerodynamic solvers have been selected: a comprehensive 
code like CAMRAD/JA [5], based on lifting-line and 
momentum theories, and a more accurate and advanced 
three-dimensional panel method coupled with a state-of-the-
art free-wake vortex model, that is ADPANEL [19]. The 
optimization algorithm can manage both the solvers in an 
automated way without intervention of the user. The former 
is provided with an internal trimmer, while the latter needs 
information of rotor trim from an external source. For this 
reason, when ADPANEL is used CAMRAD/JA is 
preventively run to compute the rotor trim and these data are 
given to the panel code. Unfortunately, the CAMRAD/JA 
trim is not always able to assure exact values of rotor thrust 
when performance are calculated again in 

ADPANEL and this fact complicates further the optimization 
problem. To overcome this issue, two additional design 
variables are added to the optimization problem and the 
algorithm, during the optimization course of events, can 
change not only blade shape but also collective pitch of the 
whole rotor. In this manner, the algorithm chases optimal 
blades that assure minimum power with the required thrust. 
For both the solvers the assumption of rigid blade is used. 

CAMRAD/JA code 

The rotor aerodynamic model in CAMRAD/JA is based 
on lifting-line theory, using steady two-dimensional airfoil 
coefficient tables. Despite the possibility of introducing 
several complex features to increase the physical adherence 
of the model to reality, the philosophy used in the present 
work is the simplicity. The induced velocity on the main 
rotor is calculated from the momentum theory, without a 
time-marching wake model, and no additional unsteady 
effects (like dynamic stall) are introduced. It results in a 
quick and reliable analysis tool, with very high percentage of 
converged individuals. The robustness of the aerodynamic 
tool is a fundamental characteristic to preserve efficiency of 
the optimization algorithm. 

ADPANEL code 

ADPANEL is a full-unstructured panel method coupled 
with a time-stepping full-span free wake vortex model. 
Present tool implements the most advanced aerodynamic 
features in the field of potential methods, such as the 
capability to represent the geometrical surfaces into 
unstructured-hybrid meshes, a constant vorticity contour 
(CVC) modeling of both rotary and fixed wing wakes, and a 
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Figure 1: Range of variation for Twist, Chord and Sweep. 
Parameter Start [r/R] End [r/R] N. control 

points 
twist 0.09 1 7 
chord 0.09 1 8 
sweep 0.4 1 5 

Table 3: Parameterization intervals and number of control 
points for each parameter. 



multi-processor implementation. Thanks to the previous 
features, ADPANEL is able to analyze in short computational 
times and with detailed predictions entire helicopter and 
tiltrotor configurations even operating in ground effect. The 
wake modeling implemented in ADPANEL is composed of 
two parts: a “dipole buffer wake sheet”, and a set of “constant 
vorticity contour vortex filaments”. Buffer wake and CVC 
vortex filaments are used to represents the vorticity released 
from rotary and fixed wings for both their components, 
trailed and shed. The CVC free-wake modeling developed in 
ADPANEL allows to generate refined roll-ups and high 
spanwise resolution along rotor blades without enforcing an 
unnecessary large number of wake elements. Figure 2 shows 
an example of the computed CVC wake development in case 
of a full-helicopter configuration operating OGE (AW101). 
Recent and validated “vortex dissipation laws” have been 
implemented in ADPANEL in order to represent the 
increasing of the vortex core with the time passing. Detailed 
information on both theory and validation of present tool can 
be found in [19,21-23]. 
 

OPTIMIZATION ALGORITHM 
The optimization algorithm used in the present work 

belongs to the family of the surrogate-assisted memetic 
algorithms (SAMA). Memetic algorithms (MAs) are 
population-based metaheuristich search methods inspired by 
Darwinian principles of natural evolution and Dawkins 
notion of a “meme”, defined as a unit of cultural evolution 
that is capable of local refinements [24,25]. The main 
advantage of MAs over concurrent strategies lies in creating 
a synergy between global and local search. The global 
searcher should be able to explore the entire design space, 
selecting the best solutions in terms of their objective values, 
while the local searcher should improve further the solutions 
by means of small local changes in a time-efficient way. A 
genetic algorithm (GA) is the most appropriate choice as 
global search algorithm since it is insensitive to local 
minimum and can easily handle multi-objective optimization 
problems (MOOPs). The local search is carried out using a 
gradient-based algorithm that tries to improve the objective 

 

function using a surrogate model (SM) of the function itself. 
This method allows a very efficient local improvement of the 
individuals coming from a GA population, as the SM can be 
evaluated much faster than the original aerodynamic analysis. 
The time spent to estimate the local improvements is far less 
than that required for a single ADPANEL simulation. The 
drawback of this method lies on the approximated nature of 
the SM, but this is overcome by the improved achievable 
convergence rate. The use of an approximated model leads to 
the so-called SAMA approach. 

Following sections illustrate the basic elements that 
compose the SAMA framework, which are the multi-
objective genetic algorithm (called GDEA) and the surrogate 
model (an artificial neural network in the present case). 
Finally, the SAMA framework itself (called GDMA) is 
extensively presented. 

The Genetic Diversity Evolutionary Algorithm (GDEA) 

GDEA [26] is a multi-objective genetic algorithm 
(MOGA) specifically developed for handling complex 
aerodynamic optimization problems. The nature of GDEA 
makes it particularly suitable to incorporate memetic 
operators as it has two main objectives during a MOOP 
solution: 
 

1) To drive the search towards the true Pareto-optimal 
set/front; 

2) To prevent premature convergence and distribute the 
solutions along the set/front itself. 
 

The basic idea of GDEA is to actually use these 
objectives during the evaluation phase and to rank the 
solutions with respect to both of them, emphasizing the non-
dominated solutions as well as the most genetically different. 
This results in a selection pressure driving the search 
simultaneously towards Pareto-optimal and diverse solutions, 
or, from an equivalent point of view, towards the exploitation 
of the current non-dominated solutions and the exploration of 
the search space. GDEA was the GA selected as global 
searcher for the current optimization problem. The selection 
of this particular EA was driven by the demand of diversity 
preservation, especially when the GDEA (or any other GA) is 
managed by SAMA frameworks. In fact, SAMA strategies 
tend to increase rapidly the solution convergence resulting, 
however, in a rapid decrease in genetic diversity. 

The Artificial Neural Network as Global Surrogate Model 

A generic artificial neural network (ANN) [27] is composed 
of basic elements, called neurons. Figure 3 shows a general 
neuron structure: a vector input p, with a number Q of 
elements, is multiplied by the weights w and the solution is 
added to the bias b. The result is used as an input for the 
transfer function f, that provides the neuron’s output a. The 
transfer function f can be of different nature, the most 
commonly used for multi-layer networks are the tan-sigmoid 
and the linear transfer functions. 
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Figure 3: General neuron architecture with input vector. 

 
 

Figure 2: ADPANEL CVC wake development for a full-
rotorcraft configuration operating OGE (AW101 helicopter).



The neurons are connected together using a structure of 
links, as in a real biological nervous system. In an ANN the 
neurons are organized by layers with a finite number of 
neurons within each layer, and the connections (or weights), 
together with the biases, can vary their values to modify the 
response of the network. The ANN always needs a training 
process to reproduce a generic objective function: during the 
training, a set of individuals (stored in a database) are 
considered in relation with their scores. An iterative 
procedure changes the weights and the biases of the network 
until a sufficient approximation accuracy of the output data is 
reached. The original function can be represented following 
two different strategies: 
 

• Global Model: the ANN uses all the available 
individuals in the database and tries to represent the 
function for the complete variability range of the 
parameters. In this case the model is unique and it 
represents the entire function. 

• Local Model: the ANN uses just a small part of the 
available individuals in the database, i.e. the ones closest 
to the starting individual, so it can represent a limited 
range of variability of the parameters. In this case the 
SAMA algorithm needs a new surrogate model for every 
individual. 

 

In the present work, the first method (Global Model) was 
used, which is more efficient and requires a single training 
process for all the individuals. 

The particular ANN used here was a feed-forward Back-
Propagation Neural Network (BPNN) that was made up of an 
input, one or more hidden layers, here used with Tan-
Sigmoid neurons, and an output layer with a Linear neuron. 
The Linear neurons were used in the output layer for their 
non-limited output. Typically, networks with more layers can 
learn complex relationships more quickly, while layers with 
more neurons help to fit more complex functions. 

Overfitting is one of the most relevant problems in 
BPNN training: hence, two techniques are usually employed 
to achieve a good generalization of the solution. The first 
action to improve generalization is to use a network with a 
minimum number of neurons, specifically the amount which 
is just enough to adequate approximation. In fact, larger 
networks allow fitting more complex problems but they are 
prone to overfitting the data. The second action is to use the 
available data to validate the network. The global database, 
containing input individuals and output solutions from the 
true objective function, is divided into two subsets. The first 
one is the training subset, used to train the network. It 
contains the 75 % of the data, that are chosen randomly. The 
second one is the evaluation subset, containing the remaining 
data. The network is trained using the Levenberg-Marquardt 
algorithm (LM), a quasi-Newton method really faster than 
the traditional back-propagation. In the present work, the 
Mean Square Error (MSE) was used to measure the BPNN 
performance, as defined in Eq. (3): 
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where MTDB is the number of available individuals in the 
training subset. The iterative training process was stopped 
when the algorithm reached 100 epochs (iterations), or when 
the training performance index MSEtrain was lower than    
5×10-7. Finally, the evaluation performance index MSEeval 
was calculated simulating the trained network with the 

evaluation subset. The training process was repeated 5 times, 
since each one has different convergence history, and only 
the surrogate model with the minimum MSEeval was accepted. 
The BPNN model used here was developed and adapted from 
the neural network package of Octave [28]. 

The Genetic Diversity Memetic Algorithm (GDMA) 

GDMA [29] was the algorithm used to perform the 
optimizations described in the problem formulation section. It 
is based on a SAMA framework developed from [30] with 
proper adaptations to the specific global search algorithm 
(GDEA [26]), local search algorithm (the fmincon function 
within the Matlab® environment [31]) and surrogate model 
(the BPNN as global metamodel [27]). The course of events 
during a generic optimization procedure is described in 
Figure 4 and it can be summarized as follows: the 
optimization starts with few GDEA generations (the exact 
number depends on the problem under consideration, on the 
population size, and other specific considerations): in fact, a 
minimum number of exact fitness function evaluations are 
needed to perform a well SM training. Then, the SAMA 
framework manages the GDEA to create a new population 
using the typical genetic evolution operators, but all the new 
individuals are now locally improved before being evaluated 
by the exact fitness function (the rotor performance solver in 
the present case). The local improvement is driven by the 
gradient-based algorithm that, starting from one GDEA’s 
individual, performs its optimization making use of the 
surrogate and approximated model. A locally improved 
individual replaces the older one if, and only if, it exhibits an 
improvement of the objective value. The modified (and 
hopefully improved) population is finally evaluated using the 
aerodynamic tool. The process is repeated with another 
population until the complete convergence or the attainment 
of the maximum number of exact evaluations. The described 
technique allows reaching the best compromise between 
diversity conservation, therefore exploration of new solutions 
and convergence quickness to the final Pareto front. 

The implementation inside the SAMA framework of the 
gradient-based algorithm for the local improvement leads to 
several problems connected to the transformation from a 
general multi-objective problem to a single-objective one, the 
only supported by the gradient-based algorithm. Different 
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Figure 4: Schematic representation of the GDMA operation. 



strategies can be followed to handle this issue. In the present 
implementation, a multi-objective problem is transformed 
into a constrained single-objective one. Specifically, the 
objective to be optimized by the gradient-based algorithm is 
chosen randomly, while the remaining one is constrained to 
remain lower than or equal to the starting value. 

 

RESULTS 
The innovative optimization strategy (i.e. the GDMA 

algorithm) developed to improve the efficiency of more 
common genetic algorithms, has been applied to the problem 
formulation stated above. CAMRAD/JA solver has been used 
extensively and the outcomes from this first part of tests is 
presented. This comprehensive aeromechanical tool is used to 
validate in a very quick way the entire optimization 
framework and to demonstrate the effectiveness of blade 
parameterization based on b-spline curves. The next step 
carried out was the application of the same methodology to 
the more accurate (and time consuming) ADPANEL code. 
Using the latter solver the twist optimization has been 
repeated highlighting differences and common features 
respect to CAMRAD/JA. In the final section several 
comparisons have been performed to show and demonstrate 
the practical advantages of the GDMA approach respect to a 
basic genetic algorithm like GDEA, in particular when a 
computational demanding code is used as flow solver. 

Results from GDMA+CAMRAD/JA 

The results of the optimizations carried out using 
CAMRAD/JA are here presented. Three different 
optimizations of increasing complexity were performed 
regarding different aspects of the baseline blade 
configuration. The first one considers a simple twist 
distribution optimization (Tw), the second one a combined 
chord-sweep design (Ch+Sw) and the third one all the three 
features together. Table 4 summarizes the characteristics of 
these optimization. The three cases have an increasing 
number of design variables, that can be qualitatively 
associated to the complexity of the problem. Another 
important parameter is the population size, a common 
characteristic of metaheuristic evolutionary algorithms. It 
represents the number of individuals (in this case an 
individual is associated to a rotor blade geometry) within a 
generation. For all optimizations a total number of 40 
generations are done, subdivided in 10 initial generations 
using basic GDEA while the remaining 30 generations with 
the memetic algorithm GDMA. 

 
As previously stated, Table 1 summarizes the flight 

conditions used for the present optimization. Since the 
helicopter weight is fixed at 6.5 tons, this problem means 
nearly to optimize forward flight capabilities of its main rotor 
at the following two values of disk-loading: CT/σ = 0.075 for 
the condition C1, and CT/σ = 0.126 for the condition C2. A 

multi-objective optimization problem produces as output a 
set of optimal solutions, defined as Pareto optimal front and 
made up of all the non-dominated [26] solutions from the 
entire set of analyzed solutions. Since the problem under 
consideration is a two-objective problem, a Pareto front is 
represented by a curve that lies onto a plane. Figure 5 shows 
the final Pareto fronts from the three different optimizations 
compared to the baseline rectangular blade rotor. It is 
possible to note that the first objective PwC1 (that is, the horse 
power required by the rotor in the condition C1) calculated at 
sea level experiences much less variation if compared to the 
second one PwC2 at high altitude (5150 m ASL) that varies 
from about 1400 up to 2000 Hp. This is certainly due to the 
higher normalized disk-loading at high altitude that allows, 
on the contrary, larger improvements during the 
optimizations, especially in terms of retreating blade stall. 

The three Pareto fronts reported in Figure 5 give some 
useful qualitative information about the best achievable 
performance of this particular rotor and optimization 
problem. Optimization 1 and 2 lead to similar performance 
improvements (note the portion in which the Pareto fronts are 
almost overlapped) but the twist feature seems to affect 
performance at sea level as at high altitude (the range of 
variation is around 100 Hp for both the objectives), while 
chord and sweep distributions greatly affect the high-altitude 
condition with minor changes at sea level. This is 
understandable since no limitations or constraints are set for 
the solidity of the rotor and even a low increase of it can 
positively affect the behavior at high altitude, with the 
drawback of a slight increasing of viscous power at sea level. 
Optimization 3 entails the complete rotor blade redesign and 
permits the best performance improvements. 

As an example, three solutions of each Pareto front are 
selected and the corresponding distributions (twist, chord and 
sweep depending on the particular case) are plotted and 
compared to the original one. The three solutions are equally 
distributed along the Pareto front extent to describe the 
influence of each blade feature. 
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Figure 5: Final Pareto fronts for optimizations performed 
using CAMRAD/JA, respectively Optimization 1, 2 and 3. 

Optimization Features Design 
variables 

GDMA 
population 

1 Tw 7 40 
2 Ch+Sw 13 70 
3 Tw+Ch+Sw 20 100 

Table 4: Summary of the three optimizations performed using 
CAMRAD/JA solver. 



Optimization 1 – Twist 
 
The twist distribution was optimized using 

CAMRAD/JA and described by means of seven design 
variables along the entire blade. A total of 1600 individual 
evaluations were carried out (corresponding to 40 generations 
with a population size of 40 individuals). Since each 
objective corresponds to a specific flight condition, double 
the CAMRAD/JA analyses were performed. The total time 
required to complete the 40 generations is around 1/2 hour 
using a quad-core E5607 Intel® Xeon® processor and a single 
rotor evaluation is carried out in few seconds on a single 
core. Three solutions from the final Pareto front (visible in 
Figure 5) are selected (points 1a, 1b and 1c) and compared to 
the baseline trend in Figure 6. A clear increase in twist slope 
is observed if compared to the original distribution and all the 
plotted solutions are highly non-linear. A small central 
portion remains unchanged for all the optimal solutions but 
an increasing of the inner twist (from 0.2 to 0.5 r/R) and a 
slight decreasing of the outer (from 0.8 to 1 r/R) were found 
to help improving performance at high altitude when 
comparing the three optimized blades. 
Solution called Blade 1b is further analyzed using 
CAMRAD/JA for three different altitudes (refer to Table 2 
for an exact specification) at all the achievable velocities. The 
horse power levels are plotted in Figure 7 versus the aircraft 
speed. It can be noted that the sea level condition (Flight1) 
remains substantially unchanged, while an increasing power 
reduction can be reached for higher heights. Power is 
normalized by the density ratio ρ/ρ0 for clarity. Reduction in 
power for Blade 1b at C2 optimization condition is around 
20%.

 

The same blade is analyzed in terms of local section 
efficiency (Figure 8) at C2 optimization condition (where the 
improvements are maximum). Efficiency is enhanced almost 
everywhere on the disk and particularly on the central 
portion, with the drawback of a slight reduction in efficiency 
on the transonic (near the tip) region of the advancing blade, 
certainly due to more negative local incidences. 
 
Optimization 2 – Chord and Sweep 
 

Optimization 2 redesigns contemporarily chord and 
sweep of the baseline blade at fixed twist. The population 
size in this case is 70 and a total of 2800 individuals are 
evaluated. Also for this optimization three solutions are 
selected to represent the variation along the final Pareto front 
(points 2a, 2b and 2c) and their distributions are visible in 
Figure 9. The optimum chord trends describe clear physical 
effects. Firstly, as the power is reduced at higher altitudes the 
mean chord rises, which means that the rotor solidity rises. It 
is interesting noting that the chord increasing is gradual but 
the spanwise location of the maximum chord changes, 
starting from about 0.7 r/R and going gradually toward inner 
direction to increase further solidity. The most outer part 
(above 0.92 r/R) is always equal to the lower admitted bound 
to reduce transonic effects of the advancing side. The same 
happens to the inner part (under 0.2 r/R), even if this is due to 
the typical viscous losses of this region with generation of 
drag and limited lift. Sweep parameterization is defined from 
0.4 r/R up to the blade tip and the final optimal distributions 
describe typical swept trends. After a recovery of the sweep 
(from 0.7 to 0.92 r/R) that helps to keep the blade’s leading 
edge fairly straight, the tip zone almost reaches the maximum 
available sweep. This tip geometry, together with the 
minimization of chord in this region reduces the 
compressibility effects, especially in fast forward flight. 
Blade 2b is analyzed at different altitudes and 

 
Figure 8: Comparison between Baseline and Blade 1b from 

Optimization 1. Contour plots of local section efficiency at C2 
condition with CAMRAD/JA. 
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velocities (Figure 10). The reduction in power at high altitude 
is lower than the previous Blade 1b where the twist was 
optimized, but a similar trend is observed in terms of power 
reduction. 
 
Optimization 3 – Twist, Chord and Sweep 

 
Optimization 3 is the most complex blade design carried 

out in the present work, due to the high number of design 
variables (equal to 20 to describe the complete blade). 
GDMA was run with a population size of 100 individuals for 
a total number of 40 generations. This means that around 
4000 individual evaluations were performed in approximately 
2 hours time. Combining the three features (twist, chord and 
sweep) a remarkable improvement was possible if compared 
to optimization of lonely twist or chord and sweep (refer to 
Figure 5 for comparison of the final Pareto fronts). Again 
three different blades (3a, 3b and 3c) were selected among 
the Pareto optimal set and the feature distributions plotted 
and compared to baseline ones. Comparison between current 
distributions and the ones from Optimization 1 and 2 

shows common aspects (Figure 11). Chords describe 
distributions almost identical respect to Optimization 2 and 
also sweep is very close to the results of previous case with 
minor differences: now the tip value reaches the upper 
admitted bound and the sweep recovery before the tip zone 
(around 0.8 – 0.9 r/R) is lower. Twist feature is the most 
different, although similar behavior is recognized respect to 
Optimization 1. Reduced twist slopes are clearly visible 
(certainly due to the contemporarily chord redesign that 
redistributes local lift) but with identical non-linear trends. 
The main disparities are localized on twist value at the tip 
and mostly on the maximum value at inner portion. 

The three optimized blades are plotted together in Figure 
12 to give also a visual evidence of the tool reliability. It is 
not uncommon to observe in literature optimization works 
where remarkable performance results are obtained, which 
unfortunately lead to unfeasible blades. The present tool 
seems to be able to optimize rotor blades reaching good 
performance enhancements and, above all, feasible blade 
geometries, which is a critical requirement from a 
manufacturing viewpoint. 

Blade 3b is selected for further analyses, visible in 
Figure 13 and Figure 14. The improvements at high altitude 
conditions are the maximum observed over the three 
optimizations. Additional small gains in power are visible 
also at sea level for high velocities. The comparison of local 
section efficiency at C2 optimization condition demonstrates 
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the effects of the blade redesign. Similarly to Optimization 1, 
even with lower performance of the advancing blade tip 
region, the remaining part of the disk experiences a large 
efficiency amelioration. 

 

Results from GDMA+ADPANEL 

The three previous optimizations with CAMRAD/JA 
were carried out to validate the procedure in a quick and 
rapid manner, while obtaining also remarkable results and a 
wide survey of the influence of each blade feature on power 
level in forward flight. 

After the validation process, the in-house panel method 
code ADPANEL has been used to repeat the twist 
optimization in order to observe differences and similarities 
with previous results. Outcomes from it are presented in 
following chapter. 

 
Optimization 4 – Twist 

 
The present optimization problem has the same 

characteristics of Optimization 1 carried out with 
CAMRAD/JA solver. The parameterization of the twist 
distribution is unchanged, having 7 design variables and the 
same lower/upper bounds. The problem formulation is also 
unchanged and the optimization conditions remain the two 
forward flights defined in Table 1. The main difference lies 
on the flow solver, which is the more accurate ADPANEL 
code. This new code introduces several complications, 
related to its nature. First of all, it does not trim automatically 
the rotor and CAMRAD/JA must be run before to calculate 
mast inclination, blade flapping motion and cyclic 
commands. Since the CAMRAD/JA trim does not ensure 

 

 
the required thrust level when used in ADPANEL, the rotor 
collective command is used as an additional design variable 
and during the optimization the algorithm searches for 
optimal solutions (in terms of horse power level) but 
contemporarily trims those solutions. For this reason, the 
present optimization problem is actually more complex that 
the one described in Optimization 1, even if the ultimate aim 
is the same: the twist distribution optimization. In fact, this 
problem has a total of 9 design variables, 7 describing the 
twist distribution and 2 collective commands (each one 
related to a different flight condition); in addition the trim 
process (in which collective command is calculated to match 
required thrust) is implemented by means of penalty 
functions added to each objective of the original objective 
function (Eq. 1). The second issue arising from ADPANEL is 
the increased computational demand, which imposes the use 
of multi-processor computers (cluster) and the consequent 
remote control from a user terminal, where the real 
optimization is performed. Analyzing the course of events of 
Optimization 1 and its convergence history, a more effective 
strategy was followed, in fact it was observed that 40 
generations was an excessive and unnecessary number. The 
best compromise between rapidity and convergence level was 
a value between 15 and 20 generations. The latter value was 
chosen as the current problem is mildly more difficult than 
Optimization 1 and GDMA algorithm was started just after 4 
GDEA’s generations (instead of 10, like done in 
Optimization 1). The population size is unchanged and equal 
to 40 individuals. This means that about 800 individuals have 
been evaluated (and 1600 forward flight simulations have 
been run in ADPANEL). Using 40 processors, the entire 
process took about 3 days of computation, which means 
around 6 generations per day. 

The final Pareto front is plotted in Figure 15. Since the 
lower number of generations and higher complexity of the 
problem, the Pareto optimal set is more scattered than the one 

 
Figure 14: Comparison between Baseline and Blade 3b from 
Optimization 3. Contour plots of local section efficiency at C2 

condition with CAMRAD/JA. 
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Figure 12: Blade plot of three solutions of the Optimization 3, 
respectively 3a, 3b and 3c blades. 
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of Optimization 1 and the number of optimal solutions is 
smaller. Despite this, it is reasonably well converged and all 
the visible solutions are trimmed to the required thrust force. 
Again, three solutions were selected and the corresponding 
twist distributions have been plotted in Figure 16. Twist tends 
to increase its slope and its maximum value (around 0.28 r/R) 
going from solutions 4a to 4c, which corresponds to larger 
improvement of high-altitude performance. The solutions 
show highly non-linear trends and, in particular, it seems that 
ADPANEL was able to capture specific effects that did not 
arise using CAMRAD/JA. Since the flowfield complexity in 
case of forward flight and the high variability of section 
conditions during a single turn, the reason of this particular 
shape is not completely clear, but it can be associated to 
three-dimensional effects and/or due to the influence of 
vortices on the local blade sections. 

Solution 4b is selected and the local section efficiency 
contour plot is compared to baseline blade (Figure 17) for the 
C2 optimization condition. This optimized blade allows a 
reduction of power at C2 equal to about 17% maintaining 
performance at sea level. It is clear that the optimized rotor 
has improved behavior almost on the entire disk. 

For the same blade, a qualitative plot of the free-wake 
development is plotted in Figure 18 and compared to the 
baseline blade behavior. From the comparison, it seems that 
tip vortex of the optimized solution has lower strength 
(vortices detached from blade tips have lower number of 

 

 
filaments) and in general more distributed and smoother 
vortex intensity is observed. 

Finally, the three twist distributions from the present 
optimization are compared to the ones found in Optimization 
1 using CAMRAD/JA solver (Figure 19). It is worth noting 
that, a part a small shift of the green dashed curve (Blade 1c), 
it almost overlaps the Blade 4c twist distribution. Quite 
similar trends are visible for the other solutions, at least up to 
0.5 – 0.6 r/R. After that the curves have quite different trends, 
with differences that can reach 2 or 3°. This deviation is due 

Figure 18: Qualitative comparison of free-wake development 
between Baseline and Blade 4b from Optimization 4. 

Calculated at C2 condition with ADPANEL. 

 
Figure 17: Comparison between Baseline and Blade 4b from 
Optimization 4. Contour plots of local section efficiency at C2 

condition with ADPANEL. 

0 0.2 0.4 0.6 0.8 1

Tw
is

t [
°]

r/R

Baseline
Blade 4a
Blade 4b
Blade 4c

Figure 16: Twist distributions of three Pareto front solutions 
of the Optimization 4. 
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Figure 15: Final Pareto front for Optimization 4 performed 

using ADPANEL. 
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to the aforementioned ability of ADPANEL to capture effects 
that CAMRAD/JA is not. Nevertheless, we must assert that 
also CAMRAD/JA seems to be a valid tool for blade 
development seeing that it was able to catch at least the major 
features and characteristics of optimized twist distributions. 

GDEA-GDMA comparison 

A comparison has been carried out to highlight the 
capabilities of the new optimization framework based on the 
memetic algorithm GDMA respect to more common 
optimization techniques like, for instance, basic multi-
objective genetic algorithms, available within the framework 
itself (i.e. GDEA). To do this the most complicated 
optimization problem has been selected among the previous 
ones, which is the Optimization 3 test, where all the blade 
features were optimized contemporarily (twist, chord and 
sweep) and a total of 20 design variables were present. 
Additional tests (not reported here for brevity) demonstrated 
that GDMA’s advantages arise in particular when the number 
of design variables (proportional to problem complexity) is 
higher than about 8-10. For lower values GDMA is anyway 
superior but differences are smaller and GDEA is able to get 
an almost complete convergence in a reasonable amount of 
aerodynamic simulations. The performances of the two 

algorithms were evaluated with the same problem and 
settings. The basic genetic algorithm, GDEA, was run for 40 
generations and a total number of 4000 individual 
evaluations. GDMA was started after 10 initial GDEA’s 
generations and 30 additional generations were performed by 
means of the memetic framework. In this manner, the same 
individuals (aerodynamic simulations) were evaluated, 
requiring approximately the same time. This means that after 
the first 10 generations the results in terms of Pareto optimal 
front are identical for both the algorithms. For this reason in 
Figure 20 the Pareto fronts of the competing algorithms are 
plotted at several generations starting from 12 (just above 
GDMA’s activation) increasing up to 40. The superiority of 
GDMA approach is clear already after 2 generations from its 
activation and is almost constant in all the six plots shown. 
After 15 generations the GDMA’s Pareto front is stabilized 
and further calculations just contribute to intensify density 
and enlarge Pareto spread.  

This example evidences the advantages of GDMA and 
its abilities to deal with highly complex optimization 
problems. First of all, this approach helps to reach a wide 
convergence level that is not possible with other traditional 
algorithms (to be run within reasonable computational time), 
which means, in this case, more improved optimal blades. 
Secondly, the final Pareto optimal front has improved density 
and a larger set of optimal solutions. This aspect is not 
marginal since it allows the designer to choose from a wider 
range of options. Finally, the most important benefit is 
certainly the higher efficiency (also defined as convergence 
rate) which permits to reduce the total number of function 
evaluations to obtain the same solution improvement. In fact, 
observing again Figure 20, we can state that carrying out just 
15 generations with GDMA we obtained the same or better 
solutions than after 40 generations of the basic GDEA. This 
result was already used in Optimization 4 (performed with 
ADPANEL) to reduce to minimum the number of 
simulations and the corresponding computational time, and it 
could be a central aspect in case of even more computational 
demanding codes, like Navier-Stokes solvers. 
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CONCLUSIONS 
An optimization framework for helicopter rotor blade 

design has been developed, which is based on state-of-the-art 
multi-objective surrogate-assisted memetic algorithm coupled 
with different aerodynamic tools, like CAMRAD/JA and in-
house developed ADPANEL solver, a three-dimensional 
panel method with CVC free-wake vortex model. This 
optimization methodology has been applied to the redesign of 
a main rotor with rectangular blades in forward flight as an 
example. Several blade features were considered during the 
tests, like twist, chord and sweep, first separately and then 
together. 

Comparison of final Pareto optimal fronts and optimized 
blade solutions yield the following specific conclusions: 

 

• GDMA optimization strategy demonstrated to be a valid 
and efficient tool for rotor blade optimizations. The 
advantage of a real multi-objective (and multi-point) 
approach is present, while the main drawback of genetic 
algorithms, which is the large number of evaluations, is 
mitigated by the use of surrogate models and local search 
with gradient-based algorithms. Multi-objective 
approach is used here to deal with different forward 
flight conditions, but it can be extended (with limited 
additional computational efforts) to more challenging 
problems like hover-forward flight blade shape 
optimizations. 

• GDMA showed also to be superior to more traditional 
optimization methods like genetic algorithms, obtaining 
more improved optimal solutions with minimum value of 
aerodynamic rotor simulations. This is an essential 
characteristic to make possible in the close future the 
coupling of this multi-objective optimization strategy 
with highly complex and computational demanding 
aerodynamic tools, like Navier-Stokes solvers. 

• Both CAMRAD/JA and ADPANEL codes proved to be 
flexible and capable tools for coupling with fully 
automated optimization frameworks. Furthermore, from 
a manufacturing viewpoint, feasible blade geometries 
were obtained for all the tests performed. It is worth 
noting that this important result is also due to excellent 
capabilities of b-spline curves as blade shape 
parameterization. 

• Remarkable results were obtained in terms of horse 
power reduction, particularly at high altitude operations. 
In this conditions, since the high normalized disk-
loading, large improvement margin is possible and a 
reduction between 12% and 24% respect to the baseline 
blade was obtained from numerical computations. This 
ameliorations lead not only to power decrease but also to 
a possible extension of maximum aircraft speed. Limited 
variations are encountered at sea level, on the order of 
50-100 Hp. 

• Many information were obtained from the final 
optimized solutions. Optimal twist distributions showed 
to be highly non-linear with greater twist slope around 
the central blade portion respect to the baseline and a 
gradual reduction of the slope itself from 0.8 r/R up to 
the tip. Swept blades were found when chord and sweep 
features were taken into account. Chord trends reached 
lower bound around tip zone to better uniform lift 
distribution and reduce tip vortex influence. Maximum 
chord value is located around blade center and tends to 
increase as power at high height goes down, accordingly 
to the typical effect of solidity growth. Sweep starts from 

about 0.9 r/R and tends to reach the maximum available 
value, to minimize compressibility effects. 

• Similar twist distributions were found comparing results 
from CAMRAD/JA and ADPANEL, proving that the 
basic features of the flowfield over the rotor were 
captured also by the simpler lifting-line solver, like slope 
and general trend. Nevertheless, ADPANEL seems to be 
able to gather more detailed information of blade loading 
and three-dimensional effects, as demonstrated by the 
quite different shape of tip blade twist obtained by means 
of the panel method. 
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