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Abstract.1 Helicopters carrying sling loads suffer a decrease in handling qualities. In addition, the pilot
control task is expanded by controlling the sling load. Both factors contribute to a significant increase in pilot
workload, which can lead to a reduction in flight safety. In order to support sling load operations, the control of
the load – damping and stabilization of the load pendulum swing – can be automatized by means of feedback of
the load dynamic. The load pendulum controllers are integrated into an existing AFCS, featuring limitations in
actuator rate and saturation. Based on a comprehensive simulation of the overall helicopter-slings-load system,
an algorithm for the automatic determination of optimal feedback controllers has been developed. Selected
controllers are tested for the potential of increasing the load pendulum damping and for the robustness under
parameter variations.

Notations

Symbols
A [−] system matrix
a [m/s2] acceleration (u̇, v̇, ẇ)T

B [−] control matrix
cS [N/m] sling spring constant
dC [m] diameter of cylinder load
dS [N s/m] sling damping constant
F [N ] force vector
GM [rad] gain margin
I [kg m2] inertia tensor
l [m] length
M [Nm] moment vector
PM [rad] phase margin
S [m2] surface
TM [−] transformation matrix

(Φ, Θ, Ψ) [rad] Euler-angles
ω [rad/s] angular rates (p, q, r)T

δa [%] cyclic lateral control (A1s [◦])
δb [%] cyclic longit. control (B1s [◦])
δc [%] collectiv control (ΘMR [◦])
δp [%] pedal control (ΘTR [◦])

Indices
A, a aerodynamic
AP attachment point
C cylinder
cmd command

cur current
F vertical fin
g geodetic
H helicopter
HCG helicopter center of gravity
i i-th sling
L load
LCG load center of gravity
LH load hook
P pendulum
R rod with swivel joint
S sling

Abbreviations
AFCS automatic flight control system
OM optical marker
PIO pilot induced oscillations

1 Introduction

H
elicopters are designated to transport sling
loads in many fields of application, for instance
search and rescue operations, disaster relief,

transport to remote locations, and other military sup-
port operations, respectively. However, the pilot work-
load is increased by the task of controlling the sling
load, which implies the damping of load pendulum
motions as well as the positioning of the helicopter
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and load. Due to the presence of the sling load, the
dynamic behavior of the overall system is changed,
compared to the helicopter without the load attached.
Carrying external loads can lead to a reduction of sta-
bility margins, for eigenmodes governed by the pendu-
lum sway motion, which can become unstable in case
of improper pilot control feedback (PIO): In general,
pilots cannot see the swinging load, but recognize its
influence – lateral acceleration and roll – on the he-
licopter. If the pilot counteracts the induced lateral
force, the pendulum oscillation can be further excited.
Whereas, the proper control strategy would lead to a
compensation of the lateral force by following the pen-
dulum motion of the sling load. Hence, when attaching
a sling load to a helicopter, the handling qualities can
degrade leading to a reduction of flight safety.

The analysis of flight tests as well as incident and
accident statistics reveal that the risk of these events
rise with increasing pilot workload, particularly during
sling load operations ([1], [2], [3], [4]). Recent trends
in sling load control focus on either the manual pilot
control, supported by a flight director [5], or the aero-
dynamic stabilization by means of fins and tails [6].

In the following, the modeling and simulation of
the overall system, including a camera-based sensor
model for sway detection, is described: This sensor is
the basis for the development of pendulum damping
controllers. The analysis of the flight dynamics of the
coupled system is accomplished; relevant results are
presented, which clarify the need for controlling the
load pendulum motions in an analytical manner. In
section 4, the structure of the control loop for the feed-
back of the sling load dynamics is discussed: Distinc-
tive target values for a desirable dynamic behaviour
of the overall system are defined. Section 5 deals with
the development of the algorithm for the automatic
derivation of the pendulum damping controllers. The
performance of the closed-loop system is investigated
in section 6 and evaluated regarding changes in pa-
rameters, which exert strongest influence on the flight
dynamic of the overall system, such as sling length,
load mass, and flight velocity, respectively.

2 System Modeling and Simula-
tion

The modeling and simulation of the overall system
helicopter-slings-load is supported by using Matlab

& Simulink
®. The system is built up of two rigid-

bodies – helicopter and load –, and a rod in which
the slings are fitted (q.v. app., fig. 18). The rod
is connected to the helicopter’s single load hook and
features a swivel joint in order to allow the load to
turn without twisting the slings, which could elsewise
exceed the load limits of the slings. The slings are

modeled as flexible cables: Hence, the cable-forces
represent the constraining forces within the two-body
system. Different load aerodynamics can be consid-
ered. The rigid body dynamics of the helicopter, the
load and the rod is discussed in the appendix.

Aerodynamics

The aerodynamic forces and moments of the he-
licopter (F A

H,b, M
A
H,b) are nonlinear functions of the

helicopter motion and the atmosphere, which include
the relevant multi-dimensional effects sufficiently. For
the present work, linear aerodynamics of a CH-53D
cargo helicopter are implemented, leading to a quasi-
nonlinear description of the helicopter dynamic in (50)
and (51). The derivatives are obtained from [7]: They
were derived by linearization of a generic nonlinear
simulation code and cover a speed range from hover
up to 140 kts at a helicopter gross weight of 16 tons.

For the following investigations of the performance
and robustness of the pendulum damping feedback
control, a cylinder with vertical fins is considered as
external load. It is well known that cylinders equipped
with tail-fins suspended by slings, develop marginally
stable eigenmodes [8]. The aerodynamic forces of the
cylinder are subdivided into normal and tangential
forces. The latter ones result from skin friction and im-
pact pressure, and are summed up according to equa-
tions (57)-(60) (q.v. app.).

Due to differences in pressure distribution between
the front and the back side of the cylinder, every un-
symmetrical shaped cylinder develops aerodynamic
moments. The cylinder is unstable around its pitch
and yaw axis. The resultant moments are given by
(62). For directional stability, a vertical fin is at-
tached to the rear of the cylinder, whose aerodynamic
forces and moments are determined in (64) and (65).

Constraining forces

The load carrying harness consists of one or more
slings, whose dynamic properties are defined by spe-
cific spring and damping constants, depending on the
sling material. Due to the relative motion between he-
licopter and load, the slings are elongated, resulting in
forces (eq. 66), which in turn generate moments (eq.
71, 72) due to the offset between the sling attachment
points and the respective center of gravity (fig. 18).

The sling forces and moments as well as the aerody-
namic forces and moments are added to the vectorial
forces and moments in the equations of motion (50)
and (51).

Automatic flight control system

In order to stabilize the basic unstable helicopter,
an AFCS is implemented according to [7] (fig. 2). It
superposes the pilot inputs by ±10% in cyclic and col-
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Figure 1: Sensor installation

lective control, and by ±3% in pedal control; the ac-
tuator rates are limited to 100%/s.

In section 4, the pendulum controllers are deter-
mined on the basis of the AFCS-controlled, and thus,
stable helicopter.
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Figure 2: AFCS basic sketch

Sensor selection and modeling

The states of the model description do not deliver di-
rect information about the load pendulum sway. Thus,
the pendulum motions, which are to be controlled,
must be measured and provided as output variables.
Different types of sensors are considered: For instance,
an IMU that is mounted on the load can measure the
body rates and transmit the data to the helicopter for

further processing. Another approach is the installa-
tion of a sensing arm that follows the motions of the
rod as an indicator for the load dynamic.

In general, sensors that do not require to transmit
the information of the load dynamic from the load sys-
tem to the helicopter system are advantageous, be-
cause then system complexity is kept to a minimum,
which in turn leads to higher reliability. For this rea-
son, a camera sensor featuring digital image process-
ing for measuring the pendulum dynamic is chosen: A
camera, which is mounted underneath the helicopter,
tracks an optical marker (OM), which is placed on the
load or at the slings, and generates visual information
of the load position and velocity with reference to the
helicopter body system (fig. 1). The load pendulum
angles ˙̄ϕP and ˙̄ϑP in the helicopter body system are
then determined. These data are further processed us-
ing the helicopter attitude and body rates – measured
by the onboard IMU – in order to derive the controller
variables ϕ̇P and ϑ̇P , which describe the load pendu-
lum motion in the geodetic system.

This kind of sensor was developed by iMAR GmbH
[9] and is the basis for the simulation setup. The digi-
tal image processing provides short time delays as well
as sample rates, which are sufficiently high concern-
ing the rather slow load pendulum dynamic. Figure
1 shows the mounting position of the camera; its field
of view covers an opening angle of 60◦, which can be
extended to 180◦ at the expense of process time.

Besides the derivation of the system pendulum an-
gles and rates, the digital image processing includes
Kálmán-filtering for the simulated prediction of the
position of the optical marker. The load dynamics is
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calculated by means of a simplified analytical pendu-
lum model. This information is needed, in case the
external load is not located within the camera field
of view, due to large pendulum deflection angles, for
instance.

State space model

The equations of motion in (50), (51) and (53) de-
scribe the overall system helicopter and sling load, and
are used in the numerical simulation in their full non-
linear formulation. For analyses of the flight dynam-
ics – for instance, stability and controllability – the
system of equations must be simplified. For this, the
state variables are bound to a working point, in order
to enable a linearization: The theory of linear systems
considers stationary flight conditions at an operating
point x0. For the analysis and synthesis of linear sys-
tems, a multiplicity of tools – time-domain based as
well as complex-variable-domain based – is available.

The linearization of the overall system leads to the
state space model:

(1) ẋ = Ax + Bu (state equation), x(0) = x0

(2) y = Cx + Du (output equation)

The state vector is given with

(3) x = [xH , xR, xL]T

including the helicopter/load states (Λ = H,L)

(4) xΛ = (u, v, w, p, q, r, Φ,Θ)Λ

and the states of the rod

(5) xR =
(
ϕ̇, ϑ̇
)

R

and the control vector

(6) u = [δc, δb, δa, δp]T

as well as the output vector

(7) y =
[

(u, v, w, p, q, r, Φ,Θ)H ,
(
ϕ, ϕ̇, ϑ, ϑ̇

)
P

]T
The system state matrix consists of the main matri-
ces of the partial systems and the respective coupling
matrices

(8) A =

⎡
⎣ AH AR→H AL→H

AH→R AR AL→R

AH→L AR→L AL

⎤
⎦

where the submatrix AH contains the classical heli-
copter derivatives. The control matrix results in

(9) B =

⎡
⎣ BH

BR

0

⎤
⎦

with BL = 0. The observer matrix is given with

(10) C =
[

CH 0 (8x2) 0 (8x8)

CH→P CR→P CL→P

]

For the given system the feedthrough matrix is a zero
matrix:

(11) D = 0 (12x4).

3 Analysis of the System Flight
Dynamics

The flight dynamics describes the character of the mo-
tions of the overall linear system; one important re-
sult is the stability analysis. Applied for a cubical
load without aerodynamics, figures 3 and 4 show the
eigenmodes of the helicopter and the load at 60 kts for-
ward level flight. The considered weight of the cube is
3000 kg and the length of the single sling is 7m.

The incorporated degrees of freedom within the
eigenmodes were analyzed using the corresponding
eigenvectors. A characterization is given in table 1.
The eigenmodes I, II, V, VI, VII, VIII mainly de-
scribe the helicopter dynamic, slightly coupled with
the load dynamic. As a coupled motion of the sys-
tems helicopter-rod-load, the pendulum oscillation is
described by the eigenmodes III (lateral) and IV (lon-
gitudinal). A vertical oscillation of high frequency is
given by IX : The mode couples the vertical axes of the
helicopter and the load by the flexible sling. The in-
corporation of the dynamics of the two degrees of free-
dom of the rod are described in X and XI. They are
both of high frequencies, because of high constraining
forces acting at the rather light rod of 50 kg. Besides
the pendulum motions, the single suspended cube ex-
ecutes pitch and roll, which finds its expression in the
eigenmodes XII and XIII. Due to the lack of aerody-
namic stabilization, the load’s yaw motion has neutral
stability, caused by the yaw hinge of the rod – it is
located in the point of origin, and is not shown for
clarity reasons.

Depending on system parameters like the cable
length and the load mass, the eigenmodes of the over-
all system vary – particularly the pendulum motions
in III and IV. The overall system shows a tendency to
developing marginally stable pendulum motions (fig. 3
and 4). When increasing the sling length, the frequen-
cies of the eigenmodes III and IV decrease, as well
as of the vertical motion in IX, since the sling spring
constant is a function of its length (fig. 3b).
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Table 1: Characterization of eigenmodes

eigenmode characteristic eigenmode characteristic

I helicopter roll VIII coupled helicopter
mode longitudinal motion

II helicopter dutch- IX coupled vertical
roll mode oscillation

III coupled lateral X coupled DmL
pendulum motion lateral oscillations

IV coupled longitudinal XI coupled DmL
pendulum motion longit. oscillations

V helicopter lateral- XII load pitch mode
and roll mode

VI helicopter roll XIII load roll mode
mode

VII coupled helicopter
vertical motion
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Figure 3: Pole-zero maps for a steady-state horizon-
tal flight at 60 kts with a 3000 kg sling load, and a
variation of sling length
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Figure 4: Pole-zero maps for a steady-state horizontal
flight at 60 kts with a 7m sling, and a variation of load
weight

35th European Rotorcraft Forum 2009

©DGLR 2009 5



By increasing the load weight, the pendulum fre-
quencies rise (fig. 4a). This effect can be explained
by a simplified two-point dumb-bell model with the
pendulum frequency given by (q.v. [10]):

(12) ωP =

√
g

l
·
(

1 +
mL

mH

)

Since the helicopter roll rate in I and II is coupled
with the load weight, the change in the pendulum
frequency affects these eigenmodes, too – the damp-
ing declines with an increase in load weight. Fur-
thermore, helicopter body-rates are controlled by the
AFCS, which further amplifies the reciprocal effect
of decreasing system damping as result of increasing
system weight.

The stability graph of the cylinder eigenmodes is
shown in figure 5. The pole IIIa marks the lateral
pendulum swing and IIIb characterizes the yaw mo-
tion. For light loads and short slings, the yaw motion
becomes unstable.

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
2

0.7

0.46

0.32

0.22

0.16

0.105 0.07 0.035

Re {s}

IV

IIIb

Im
 {s

}

1m

100m

4m

1m
1m

100m

IIIa
4m

(a) sling length variation

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.7

0.46

0.32

0.22

0.16

0.105 0.07 0.035

IIIa

IIIb

IV 50kg

4000kg

150kg

50kg

4000kg

Re {s}

Im
 {s

}

(b) load weight variation

Figure 5: Cylinder eigenmodes at 60 kts, lS = 10 m,
mL = 500 kg

4 Pendulum Damping Con-
trollers

In a first step, the structure of the control loop is de-
termined. For this, the transfer functions from control
inputs in u to the sensor outputs in ϕ̇P and ϑ̇P are
derived. By means of a Dirac-input applying in the
four different controls, both pulse responses, the lat-
eral and longitudinal pendulum oscillations, are deter-
mined, which deliver insight into the system’s main-
coupling and cross-coupling. Figure 6 shows, that the
lateral control δa and the longitudinal control δb lead
to relevant pendulum oscillation in their relative main
axis without noteworthy cross-coupling effects. The
response of excited by collective control is only small.
The pedal control input initially leads to a rotation
and subsequently to a lateral displacement of the heli-
copter, which induces a lateral oscillation of the load.
Hence, pedal input is not considered for pendulum
damping control.

The camera sensor detects the pendulum angles and
rates. Since the deflection angles of the external load
may vary with different flight states, only the pendu-
lum rates are used for feeback control. Hence, a trim-
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Figure 6: Impulse responses in
[
rad s−1

]
of the flight

case V = 60 kts, lS = 7m, and mL = 3000 kg

-point tracing of the stationary deflection angles
ϕP,cmd and ϑP,cmd is not necessary, so that both an-
gles can vary slightly without causing the controller to
engage.

With the command variables ϕ̇P,cmd and ϑ̇P,cmd set
to zero, the control variables are given with:

(13) ϕ̇P = ϕ̇P,cmd − ϕ̇P,curr

(14) ϑ̇P = ϑ̇P,cmd − ϑ̇P,curr

The analysis of the impulse responses leads to the as-
signment of the control variables to their related main
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control inputs in δa and δb; any cross-coupling is disre-
garded. Figure 7 shows the control loop of the overall
system that is expanded by the control modes for the
pendulum damping. As mentioned above, the feed-
back inputs of the AFCS as well as the pendulum con-
trols are limited in rate and amplitude.

In general, control loops must achieve performance
requirements that refer to stability, controllability,
quickness and robustness of the feedback control. For
stability and damping, the system must execute pen-
dulum motions of rapidly declining oscillation ampli-
tudes. After experiencing a disturbance – for instance,
a control input or gust –, the pendulum dynamic must
return to the command input quickly and only with
marginal overshooting. The time until the maximum
overshoot is reached, must be minimal.

For the controller design, the requirements of the
closed loop in the time-domain are translated into re-
quirements of the open loop in the frequency-domain.
In doing so, the basic demand of stability refers to
a phase margin of ΦPM > 0◦ and a gain margin of
AGM < 0 dB. Approximating the pendulum dynamic
by a PT2-element, the damping ζ of the closed loop is

G(s)
overall system

Hx
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control-
authority

Gimag.proc.(s)

Hy
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R �a �
G

�
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Figure 7: Feedback loop of the pendulum damping
controllers

proportional to the phase margin according to:

(15) ΦPM = arctan
2ζ√√

4ζ4 + 1 − 2ζ2

Thus, considering the minimum damping of ζ > 0.2
and the beginning of the aperiodic response at ζ > 0.7,
an adequate phase margin is chosen to be in the range
of:

(16) 60◦ ≤ ΦPM ≤ 90◦

In addition to the dynamic requirements, a high
static amplification of the feedback control is desirable,

if it is not threatening stability. Hence, together with
an appropriate behaviour in response and disturbance,
the gain margin of the open loop G0(s) is chosen to be
in the range of:

(17) −3,5 dB ≤ (AGM = G0(jω−180◦)) ≤ −20 dB

Furthermore, the closed loop must be fast enough in
terms of meeting the system’s natural pendulum fre-
quency ωP , at the minimum, which can be estimated
using equation (12). Thus, the required gain crossover
frequency is given with:

(18) ωd,cmd = (ωP )test case

The controller design parameters are displayed in
the frequency responses of the transfer functions
Gδa ϕ̇P

(s) and Gδb ϑ̇P
(s) of the test case featuring

V = 60 kts, lS = 7m, mL = 3000 kg in figure 8.
The system eigenmodes of table 1 are illustrated.

The influence of the the eigenmodes IX to XIII is
marginal: They are parasitic poles. For (ω → 0), the
responses feature a distinct D-element: In case of a
step input in the command variables, a control offset
persists due to the missing I-element. This effect is
evident since a stable pendulum oscillation is always
returning to the initial states ϕ̇P = ϑ̇P = 0. The de-
crease of the frequency responses for (ω → ∞) marks
the time-delay of the system.

A detailed analysis of the open loop frequency re-
sponse over the variation of the flight speed, the sling
length, and the load mass revealed that an increase in
flight speed generally reduces the phase margin cor-
responding to a decrease in the pendulum damping.
The gain margin is reduced, which degrades the ro-
bustness of the feedback control in terms of variations
in static amplification. The gain cross over frequency
raises slightly. Increasing the weight of the sling load
leads to an increase in damping – the amplitude de-
creases – with only marginally shifting the cross over
frequency. The shorter the slings are, the faster the
pendulum motions will be, which is expressed by an
increase in the cross over frequency. In this case, the
phase margin and the gain margin decrease.

Particularly for a combination of high flight speeds,
short slings, and light loads, the requirements that
have been defined previously cannot be achieved; this
means marginally stable or even unstable pendulum
oscillations. Furthermore, only minor static amplifi-
cations can be accomplished in order to comply with
the basic stability requirements. Thus, the frequency
responses must be customized by controllers to even-
tually allow for high amplifications together with suffi-
ciently high phase and gain margins. These controllers
must be effective over the entire flight envelope, which
is defined by the flight speed, the sling length, and the
load weight, respectively.
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The controllers for both pendulum directions
(GR)δaϕ̇P

and (GR)δbϑ̇P
each consist of two sub-

controllers – GPM (s) for the modulation of the phase
response and GGM (s) for the gain response:

(19) GR(s) = kamp · GPM (s) · GGM (s)

The phase response controller GP M(s)

The uncontrolled system

(20) GS(s) =

{
Gδa ϕ̇P

(s) lateral swing
Gδb ϑ̇P

(s) longitudinal swing

is first proportional amplified by

(21) k0dB = 10
∣∣∣ A(ωd)dB

20

∣∣∣
in order to lift the gain response to the gain crossover
frequency ωd = ωP of the 0 dB-line. Hence, the quick-
ness of the closed-loop equals the system’s natural

pendulum frequency. Considering the phase response
of the proportional amplified open loop, the current
phase margin is determined by

(22) ΦPM (ωd) = ∠ GS(ωd) + 180◦

The actual desired phase margin ΦPM,cmd is defined
as a value of the intervall in equation (16). Hence, the
quantiative demand on modulating the phase response
is expressed by

(23) ΔΦPM (ωd) = ΦPM,cmd − ΦPM (ωd)

The shaping of the phase response in place of the cross
gain frequency ωd is accomplished by the controller
transfer function

(24) GPM (s) =
1 + ω−1

I s

1 + ω−1
II s

which corresponds to

• a phase-lifting controller GPDT1(s)
in case of ωI < ωII or

• a phase-lowering controller GPPT1(s)
in case of ωI > ωII

The respective frequency response is given with

(25) GPM (jω) = A(ω) ejΦ(ω)

with the amplitude response

(26)

|GPM (jω)| =
√

Re2 {GPM} + Im2 {GPM}

=

√
1 + ω−2

I ω2

1 + ω−2
II ω2

and the phase response

(27)

∠ GPM (jω) = arctan
(

Im {GPM (jω)}
Re {GPM (jω)}

)

= arctan
(

ω−1
I ω − ω−1

II ω

1 + ω−1
I ω−1

II ω2

)
The frequency ωΦmax

of the maximum phase-lift and
phase-decline, respectively, is determined by the max-
imum of the phase response of the controller, which is
derived by differentiation

(28) d

dω
(∠ GPM (jω)) = 0

and thus, accounts for:

(29) ωΦmax
=

√
ωI · ωII

The phase response must be either lifted or lowered at
the point of the gain crossover frequency, so that

(30) ωΦmax = ωd = ωP
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applies. The magnitude of the modulation of the phase
response controller is determined by means of equation
(27)

(31)
ΔΦPM (ωd)

!= ∠ GPM (jωΦmax)

= arcsin
(

mPM − 1
mPM + 1

)
and by the correction factor mPM that is defined as
the ratio of the cut-off frequencies

(32) mPM =
ωII

ωI

Thus, the correction factor is expressed by

(33) mPM =
1 + sin (ΔΦPM (ωd))
1 − sin (ΔΦPM (ωd))

and it is derived using equation (23). Eventually, the
cut-off frequencies of the phase response controller are
calculated by

(34) ωI =
1√

mPM
· ωP

and

(35) ωII =
√

mPM · ωP

In place of the gain crossover frequency, the gain re-
sponse of the control loop is either lifted or lowered
by the amount of

√
mPM . This deviation must be

compensated by the controller, so that in completion,
the transfer function of the phase response controller
is defined by

(36) GPM (s) = k0dB · 1√
mPM

· 1 + ω−1
I s

1 + ω−1
II s

The gain response controller GGM(s)

Besides the modulation of the phase response, a sec-
ond controller shapes the gain response of the respec-
tive pendulum transfer function, on the basis of the
open loop

(37) G0(s) = GPM (s) · GS(s)

in order to adjust the gain margin AGM according
to the previously defined parameter range in equation
(16). Due to the specific dynamic of G0(s) – it depends
on the flight case and the GPM -controller –, the need
for either lifting or lowering the gain response in place
of the phase crossover frequency ω−180◦ is stated. For
the modulation, another controller of the same kind
like the phase response controller in equation (24) is
defined and connected to GPM (s) in series:

(38) GGM (s) =
1 + ω−1

IIIs

1 + ω−1
IV s

The gain response of the controller frequency re-
sponse realizes a stationary correction of the ampli-
tude for high frequencies ω → ∞, which is expressed
by the correction factor

(39) mGM =
ωIII

ωIV

The quantitative demand on lifting or lowering in
place of the phase crossover is derived by the differ-
ence of the desired and the current gain margin

(40) ΔAGM = − (AGM,cmd − AGM (ω−180◦))dB

and results in

(41) mGM = 10
ΔAGM

20

The cut-off frequencies ωIII and ωIV must be lower
than those of the phase response controller in order to
avoid a re-modification of the phase response in the
frequency range that is relevant for flight mechanics.
Thus, the upper cut-off frequency is defined to be much
lower than the gain crossover frequency:

(42) ωIII � ωd

With the presetting of the upper cut-off frequency,
the frequency ωIV is determined according to (39),
(40), and (41), considering the required gain margin
to be within the range of (17).

Depending on the quantitative demand on ΔAGM ,
the controller GGM (s) either lifts or lowers the phase
in the low-frequency region (ω ∈ [ωIII , ωIV ]) and thus,
either lifts or lowers the gain in the frequency range of
the flight dynamics (ω ∈ [0.1, 10]).

The application of GGM (s) leads to an additional
displacement of the gain response, causing the gain
crossover frequency to be disarranged. A correction
of this offset would lead to a change in phase margin,
again. Thus, the displacement of ωd remains at this
point, but will be evaluated unfavorably in the perfor-
mance index of section 5.

Eventually, the overall controller for shaping the fre-
quency responses of both tansfer functions – Gδa ϕ̇P

(s)
and Gδb ϑ̇P

(s) – according to the dynamic requirements
is defined as

(43)

GR(s) = GPM (s) · GGM (s)

=
k0dB√
mPM

· 1 + ω−1
I s

1 + ω−1
II s

· 1 + ω−1
III s

1 + ω−1
IV s
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5 Optimization Algorithm

The parameters of each controller (GR)δaϕ̇P
and

(GR)δbϑ̇P
are derived by means of an optimization al-

gorithm. The objective is the achievement of the re-
quirements defined in equations (16), (17), and (18) by
the open loop G0(s). The performance is then rated
by the attained percental correlation of the target val-
ues. In addition, a high static amplification is regarded
favorably.

The variation parameters of the optimization al-
gorithm are given with the desired phase margin
ΦPM,cmd and the upper cut-off frequency ωIII of the
gain response controller GGM (s). Due to a varying
presetting of the phase margin, it then becomes feasi-
ble to differ in the theoretical optimum of 90◦ for the
benefit of a better gain margin and gain crossover fre-
quency, respectively. The presetting of ωIII allows for
a distinct assignment of the scope of effectiveness of
the gain response controller, in order to not interfere
with the phase response, but shape the gain response
for the better.

Figure 9 shows the process of the determination of
the controller parameters. At first, a flight case – de-
fined by the flight speed, the sling length, and the load
weight – is selected, trimmed, and linearized. There-
upon, the simplified pendulum frequency ωP is de-
rived, and the step sizes of the variation parameters
ΦPM,cmd and ωIII are configured. Subsequent to the
lifting of the gain response by the factor k0dB up to the
correlation of ωd with ωP , a search algorithm detects
the phase margin ΦPM (ωd). Hence, the quantitative
demand ΔΦPM on modulating the phase response is
calculated. According to the equations (32) through
(36), the controller parameters are derived for the spe-
cific flight case and the current presetting parameters.

linearization of flight case and determination of �P

variation of

variation of

determination of

 -1
E3� n 0.1 : 0.1 : 1 rad s� �� � � �� �

	 
PM ,cmd� m 60 : 1 : 90� � �

� 
0 dB d Pk � ��

� 
PM PM ,cmd PM d�� � � �� �

PMm 1�

1PM PDTG G�

P P
a bG , G ��� � � �

lead - element

amplification

phase lifting

(21) 

A

(33) 

(32)
(34)

(36) 

0� 0�

PMm 1�

E1 E2  � �� � E1 E2  � �� �

1PM PPTG G�
lag - element

phase lowering

(16) 

Figure 9: Determination of the phase response con-
troller GPM (s)

The quantitative demand on modulating the gain
response ΔAGM is determined by means of equation
(40). The desired gain margin AGM,cmd is set to
−12 dB, as the average of the requirement formulated
in (17).

The current amplitude in place of the phase
crossover frequency ω−180◦ is determined by means of
another search algorithm that scans the gain response
of the open loop according to (37). A secondary con-
dition defines the gain of the pendulum poles to be
0.5 dB at the minimum – compare eigenmodes III and
IV in figure 8. Hereby, it is accomplished that the
static amplification cannot become arbitrary low for
the benefit of an optimal gain margin, by what quick-
ness and effectiveness of the closed loop would decrease
significantly. Hence, by deriving ΔAGM and by con-
sidering the presetting ωIII of the optimization algo-
rithm, the controller parameters are defined accord-
ing to equations (39) through (41). The development
process of the gain response controller is once more
described in figure 10.

In case of a minor gain margin (ΔAGM ≥ 0) to-
gether with a sufficiently high pendulum amplitude
(ΔAcorr ≥ 0), the gain response is lowered until either
the 0.5 dB-border or the required AGM,cmd is achieved.
If the gain margin is too high (ΔAGM < 0), the gain
response will be lifted up to −12 dB.

� 
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Figure 10: Determination of the gain response con-
troller GGM (s)
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In a third case, the amplitude of the pendulum
eigenmode may be too low. Hence, the gain re-
sponse is lifted, but – in case of a minor gain margin
(ΔAGM ≥ 0) – only up to the required 0.5 dB, in or-
der to not move away from the optimium of −12 dB
more than necessary. If with (ΔAGM < 0) the gain
margin is too high instead, the gain response is lifted
up to −12 dB or at least up to 0.5 dB of the pendulum
eigenmode.

The calculation of the performance index J is shown
in figure 11. At first, the performance parameters ωd,
AGM , and ΦPM are derived by analyzing the open loop
according to

(44) G0(s) = GPM (s) · GGM (s) · GS(s)

For the subsequent use in the perfomance index, the
percental values of the parameters are considered in
order to have a common basis of evaluation. The con-
version for all three parameters is accomplished by

(45) Λ% =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Λ+

Λ∗ · 100% , (Λ+ ≤ Λ∗)

(
−Λ+−Λ∗

Λ∗ + 1
)
· 100% , (Λ+ > Λ∗ ∧

Λ+ ≤ 2 · Λ∗)

applying for

• Λ% = (ΦPM,perc, AGM,perc, ωd,perc)

• Λ+ = (ΦPM (ωd), AGM (ωd), ωd)

• Λ∗ = (ΦPM,cmd, AGM,cmd, ωP )

The procentual correlations of the performance pa-
rameters – they describe the dynamic of the respective
open loop – are weighted and merged into the perfor-
mance index J in equation (46)

(46)
Jn,m =KV

(
ωd,perc +

(
Φ3

PM,perc + A3
GM,perc

) · 10−4
)

considering

(47)
n = ΦPM,cmd ∈ [60, 90]
m = ωIII ∈ ]0, 1]

The weighting of the static amplification according to

(48) KV =
(

k0 dB√
mPM

)1/8

causes small values of KV to be evaluated unfavorably,
which leads to a decrease in J , since a low magnitude

d d ,perc� , �

determination of

GM GM ,percA , A

B

� 
 � 
 � 
 � 
0 PM GM SG s G s G s G s� � �

gain crossover frequ.

gain margin

phase margin PM PM ,perc� , �

performance index � 
n,m PM GM d percJ � , A , �

, maxn mJ J�
yes no

max ,n mJ J�                   

maxflight caseJ J�

(45) 

with R,opt PM AMG G G� �

(45) 

(45) 

(46) 

(44) 

Figure 11: Calculation of the performance index

of the static amplification means a decline in the con-
troller’s effectiveness. However, very high amplifica-
tions are also weighted unfavorably. Relevant anal-
yses showed that an exponent of 1/8 guarantees a
well-balanced weighting of either very low or very high
static amplifications, so that mean amplifications are
considered favorably.

In addition, the weighting of the procentual correla-
tions of the performance parameters is different. Devi-
ations of the closed loop from ΦPM,cmd and AGM,cmd

are penalized stronger than deviations from the gain
crossover frequency. Hereby, it is expressed that the
requirements of stability, and a sufficient damping, and
robustness are more important than the quickness of
the control loop.

Finally, the optimal pendulum damping controller
of the considered flight case is derived by the determi-
nation of the maximum performance value:

(49) Jmax = max (Jn,m)

over the variation of ΦPM,cmd and ωIII .

6 Closed-Loop Analysis

Starting from the flight case at V = 60 kts, lS = 7m,
and mL = 500 kg, some optimal pendulum damping
controllers are derived by means of the optimization
algorithm. The sensitivity of the controller parameters
is analyzed regarding a variation of the sling length and
the load weight, in order to detect relations between
the controller design parameters and the dynamic re-
sults, expressed by the performance index.

Figure 12 shows the parameters of the longitudinal
pendulum controller for the flight case and a variation
of the load weight from 300 kg up to 4000 kg. Besides
the attainable performance index Jmax and the static
amplification KV , the intervals between the cut-off fre-
quencies of the phase response controller and the gain
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Figure 12: (GR)δb ϑ̇P
controller parameter analysis at

60 kts and lS = 7m

response controller are illustrated. In case of a pos-
itive interval, the respective controller works either
phase lifting or gain lifting; otherwise, phase and gain
response are lowered. The intensity of correction is
defined by the magnitude of the interval: The larger
the distances of the cut-off frequencies are, the greater
the correction is. The figure at hand reveals that for
the derivation of high performance indices, the con-
troller parameters do not vary considerably in case of
a change in load weight. The static amplification as
well as the intensity of both controllers remain fairly
constant. The positive values of the distances of the
cut-off frequencies characterize a phase lift in place of
the gain crossover frequency and a gain lift in place
of the phase crossover frequency, respectively. That
means – independent on the load weight – that for the
longitudinal pendulum damping, the phase margin is
enlarged and the gain margin is decreased in order to
meet the requirements on the dynamics of the closed
loop. Further tests for 20 kts and 100 kts showed that
this conclusion applies also for a change in flight speed.

As before, the parameters of the lateral pendulum
controller are analyzed in figure 13 in case of a varia-
tion of the load weight at 60 kts flight speed and a sling
length of 7m. It can be seen that with an increase
in load weight, greater static amplifications KV are
achievable, and the maximum performance index rises.
At the same time, the demand on enlarging the phase
margin decreases, which is indicated by the falling in-
terval of (ω−1

I −ω−1
II ) of the phase response controller.

However, the gain response must be lowered signifi-
cantly, in case of an increase in load weight.

The analysis in section 3 showed that the flight dy-
namic of the pendulum motions is changed in partic-
ular with a change in sling length. Consequently, the
parameter variations of both, the longitudinal and the
lateral pendulum damping controllers, are displayed in
figures 14 and 15. In the former case, a great demand
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Figure 13: (GR)δa ϕ̇P
controller parameter analysis at

60 kts and lS = 7m
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Figure 14: (GR)δb ϑ̇P
controller parameter analysis at

60 kts and mL = 500 kg

on lifting the phase response and decreasing the gain
response is required in order to enlarge the gain mar-
gin for short slings. By enlongating the slings, the
intensity of the controllers declines, because the phase
margin of the open loop is enlarged and its gain re-
sponse is lowered, respectively. From a sling length
of approximately 8 m up, the gain response is lifted
by GGM (s) = f(ωIII , ωIV ). The natural raise of the
phase margin leads to a decrease in the intensity of the
phase response controller GPM (s) = f(ωI , ωII). Due
to the increase in stability margins, the static amplifi-
cation KV is enlarged. In general, it can be seen that
the performance of the controllers is degraded for very
short (≈ 3 m) and very long (> 30 m) slings, respec-
tively.

The discontinuous developing of the parameter
curves results from the step sizes of the design param-
eters ΦPM,cmd and ωIII . As advanced analyses show,
the basic characteristics of the parameter variations in
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Figure 15: (GR)δa ϕ̇P
controller parameter analysis at

60 kts and mL = 500 kg

case of a change in sling length also apply for 20 kts
and 100 kts.

Similar to the change in parameters for the longitu-
dinal controller, a variation in sling length affects the
lateral pendulum damping controller (fig. 15). For
very short slings, the controller loweres the gain re-
sponse; in case of very long slings, it is lifted. The
controller performance remains sufficiently high over
the parameter variation. However, as further analyses
revealed, the performance is decreasing with increasing
flight speed.

The analysis of the variation of the eigenmodes
pointed out that the helicopter dutch roll mode in II
was destabilized by the longitudinal pendulum damp-
ing controller to such an extent that it became unsta-
ble at low amplifications, already. Hence, the pitch
rate feedback of the AFCS was increased. The influ-
ence of the pendulum controller on the root locus of
the eigenmodes of the closed loop Gδb ϕ̇P

is shown in
figure 16a. It can be seen that the damping of the
longitudinal pendulum motion in IV is increased at
the optimal amplification kopt, without destabilizing
the helicopter in II significantly. The roll mode in VI
merges with the controller to an oscillation. Further-
more, the �-symbol marks the amplification that is
feasible until the damping of the helicopter mode in II
decreases below ζ < 0.3.

The root locus of the laterally controlled pendulum
motion is displayed in figure 16b. Like before, the he-
licopter dynamics in I and II are slightly rearranged.
However, the lateral feedback of the AFCS was not
adjusted.

In section 2, cylinder aerodynamics have been added
to the rigid-body dynamics. The stability graph of
the cylinder eigenmodes is shown in figure 5. In a
next step, the pendulum damping performance of the
controllers in the time domain is analyzed. For this,
a trimmed level flight at V = 60 kts, lS = 10m, and

mL = 500 kg is considered. The helicopter is disturbed
by a 15%-pulse input in lateral control δa (fig. 17a).
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60 kts, lS = 7m, mL = 3000 kg
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Hence, the cylinder develops an unstable coupled
roll-yaw-oscillation in (ϕP , ΨL) as expected. In the
upper pane of figure 17a, it can be seen that the
lateral control is periodically deflected: Due to the
coupling between the sling load (ϕP , ϑP ) and the he-
licopter (ΦH , ΘH), the load oscillation induces rolling
moments to the helicopter. The AFCS tries to com-
pensate the helicopter dynamics, without success. In
figure 17b, the same flight test is displayed until at
t = 25 s, the 2-axes-pendulum-damping controller is
activated. Within the range of the controller limiter,
the unstable roll-yaw-oscillation is damped rapidly
and sustainably. Due to the inflow at the vertical fin,
a slight dynamic in yaw remains over time.

7 Conclusion and Outlook

Sling loads influence the helicopter dynamics. The
handling qualities are degraded and the pilot workload
is increased significantly due to the additional task to
control the load. Hence, not only the helicopter’s op-
erational range and its flight envelope are reduced, but
also flight safety is decreased. The need for pilot sup-
port is therefore evident: The paper at hand focusses
on the development of supplementary AFCS-modes,
which generate control inputs that eventually damp
lateral and longitudinal load oscillations.

On the basis of a comprehensive system simula-
tion featuring trim-calculation, linearization and vir-
tual flight testing, load pendulum damping controllers
are developed by means of an automatic optimization
algorithm. Analyses show that the pendulum dynamic
can be damped sufficiently over a broad range of pa-
rameter variations in sling length, load weight, and
flight speed. The controllers are effective within the
operating range of the AFCS-actuators regarding the
limited rate and saturation.

In a next step, the controller algorithm and the dig-
ital image processing system will be implemented into
the DLR system simulator and the Flying Helicopter
Simulator (FHS) in order to analyze the controller
effectiveness for different helicopter types, and to eval-
uate pilot acceptance.

Appendix

Rigid-body dynamics

In a first step, the helicopter and load are described
separately as two independent six degree-of-freedom
rigid bodies. The general equations of the nonlinear
translational and rotatory motions are given by (50)
and (51) (q.v. app.). The index Λ = (H,L) enunciates
the compatibility of the equations for the helicopter

and the load, respectively. For the validity of (50) and
(51) following conditions apply:

• the earth is considered as initial frame

• the helicopter and the load are considered as
rigid bodies

• the helicopter and the load are symmetric relat-
ing to the xz-plane, leading to Ixy = Iyz = 0

• external forces are concentrated in resultant
forces acting in the respective center of grav-
ity

The rod is considered as additional body with two
degrees of freedom; its dynamics is determined by
angular-moment-theory in equation (53).

Therefore, the dynamics of the overall system is de-
scribed by the states

xH = (u, v, w, p, q, r, Φ,Θ)H

xL = (u, v, w, p, q, r, Φ,Θ)L

xR =
(
ϕ̇, ϑ̇
)

R

The general nonlinear equation of the translational
motion is given by:

(50)
(

dV

dt

)
Λ,b

=
1

mΛ
·
∑

F Λ,b − ωΛ,b × V Λ,b

and of the rotation by:

(51)

(
dω

dt

)
Λ,b

= I−1
Λ,b ·

[∑
MCG

Λ,b

− ωΛ,b ×
(
I−1

Λ,b · ωΛ,b

)]

applying for the helicopter and the load (Λ = (H,L)).
The rod is considered as additional body with two

degrees of freedom:

(52)
(

dω

dt

)
R,b

=
(
ϕ̈, ϑ̈
)T

R

The analytical modeling is based on angular-moment-
theory for systems, whose reference point is neither its
center of gravity nor its fixed-point:

(53)

(
dω

dt

)
R,b

=
(
ILH

R,b

)−1

·
[∑

MLH
R,b

− mR · (rLH→R × aabs
LH,g

) ]

The sum of the resulting moments with respect to the
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Figure 18: Overall system helicopter, rod and sling load

load hook is derived by

(54)

∑
MLH

R,b = − lR mR g

2
·
⎡
⎣ sin ϕ cos ϑ

cos ϕ sinϑ
cos ϕ cos ϑ

⎤
⎦

R

+

⎡
⎣ 0

0
lR

⎤
⎦× F sling

R

The absolute acceleration of the helicopter load hook
in the geodetic system is obtained by

(55) aabs
LH,g = TMH

gb · aabs
LH,b

and the absolute acceleration of the load hook in heli-
copter body-axes:

(56)

aabs
LH,b = aabs

H,b + ω̇H,b × rHCG→LH︸ ︷︷ ︸
tangential acc.

+ ωH,b × (ωH,b × rHCG→LH)︸ ︷︷ ︸
centripetal acc.

+ 2 · ωH,b × vrel
LH,b︸ ︷︷ ︸

coriolis acc.

+arel
LH,b

The distance between the helicopter center of grav-
ity and the load hook remains constant. Hence, the
relative acceleration arel

LH,b as well as the coriolis accel-
eration, both become zero.

The external forces and moments in the equations
(50), (51), and (53) result from aerodynamics and the
sling forces.

Aerodynamics

The tangential forces of the cylinder result from skin
friction and impact pressure, and are summed up ac-
cording to:

(57) XL,b =
ρ

2
V 2

x (SF,C Cf + SS,C Cpress,0)

The normal forces are derived by

(58) ZL,b(α) =
ρ

2
V 2

xz SC CD0 sin2(α)

for the xz-plane with the angle of attack α and by

(59) ZL,b(β) =
ρ

2
V 2

xy SC CD0 sin2(β)

for the xy-plane with the angle of sideslip β. The re-
sulting aerodynamic forces acting in the cylinder body
axes are given by:

(60) F A
L,b =

ρ

2
·
⎛
⎝ (SS,C Cpress,0 + SF,C Cf ) V 2

x

V 2
xy SC CD0 sin2(β)

V 2
xz SC CD0 sin2(α)

⎞
⎠

where the drag coefficient is derived by [11, p.3-11]:

(61)

CD0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 Cf,lam.

(
1 + cE

bE

)
+ 1,1

(
bE

cE

)
if (Re < Recrit)

2 Cf,turb.

(
4 + 2

(
cE

bE

)
+ 120

(
bE

cE

)2
)

if (Re ≥ Recrit)
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The surface of the cylinder is given with SC = dC lC ,
and the surface passed by flow with SF,C = 0.5π dC lC ,
and the cross section surface with SS,C = 0.25π d2

C .
The frictional resistance changes with the transi-

tion from laminar (Cf = 0.0075) to turbulent flow
(Cf = 0.005). The actual flow condition is distin-
guished by the critical Reynolds number Recrit = 105

[11, p.2-1].
The aerodynamic moments of the cylinder are given

by

(62) MA
L,b =

ρ

2
· VC

⎛
⎝ 0

V 2
xz (k2 − k1) sin(2α)

V 2
xy (k2 − k1) sin(2β)

⎞
⎠

The parameters k1 and k2 are derived from

(63)

k1 = aCbCcC

∫ ∞

0

dp

(a2
C + p)

√
(a2

C + p)(b2C + p)(c2C + p)

k2 = aCbCcC

∫ ∞

0

dp

(b2C + p)
√

(a2
C + p)(b2C + p)(c2C + p)

with aC = 0.5 lC , and bC = cC = 0.5 dC as semiaxes
of the spheroid [12, p.104].

The aerodynamic forces and moments of the vertical
fin are added to those of the cylinder:

(64) F A
F,b = − ρ

2
V 2

xySF · TM ba ·
⎛
⎝ CDβ

CLβ

0

⎞
⎠ · β

The fin is modelled as a symmetric NACA-0015 air-
foil, whose aerodynamic characteristics – especially the
drag and lift coefficients – were determined over the
full range of 180◦-angle of attack [13]. In the range of
(0◦ < β < 20◦) as well as (160◦ < β < 180◦), aerody-
namics are calculated for laminar circulation. In case
of angles of attack in the range of (45◦ < β < 135◦),
the fin is attacked laterally with the consequence of
turbulent circulation and stall effects: Only pressure
forces occur. For the transition regions (20◦ < β <
45◦) and (135◦ < β < 160◦), linear characteristics ap-
ply. The aerodynamic moments of the vertical fin are
added to those of the cylinder and are derived by

(65) MA
F,b = F A

F,b × rF,b

with rF as the distance from the center of pressure of
the fin to the center of gravity of the cylinder.

Constraining forces

The resultant vector of the sling forces in the respec-
tive body system (Λ = H,R, L) is given by the trans-
formation of the vectors of the geodetic sling forces

(66) F S
Λ,b = TMΛ

bg ·
∑

i

F S,i
Λ,g

derived by the vectorial description of the sling force

(67) F S,i
Λ,g =

∣∣∣F S,i
∣∣∣ ·
⎛
⎝ sinϑ · cos ϕ

cos ϑ · sinϕ
cos ϑ · cos ϕ

⎞
⎠S,i

g

which is determined for each sling due to its elongation
and elongation rate:

(68)
∣∣∣F S,i

∣∣∣ = cS,i ΔlS,i + dS,i l̇S,i

The attitude of each sling is given by (q.v. fig.18):

(69) ϕS,i
g = − arctan

(
yAP − yR

zAP − zR

)S,i

g

(70) ϑS,i
g = − arctan

(
xAP − xR

zAP − zR

)S,i

g

The moment vectors due to the sling forces in the
helicopter and load body system are given by

(71) MS
H,b =

⎡
⎢⎣
⎡
⎣ x

y
z

⎤
⎦LH

H,b

−
⎡
⎣ x

y
z

⎤
⎦HCG

H,b

⎤
⎥⎦× F S

H,b

and

(72) MS,i
L,b =

⎡
⎢⎣
⎡
⎣ x

y
z

⎤
⎦AP,i

L,b

−
⎡
⎣ x

y
z

⎤
⎦LCG

L,b

⎤
⎥⎦× F S,i

L,b
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