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Abstract

This paper deals with the investigation of performance and sta-
bility characteristics of a two-seater, two-bladed, lightweight he-
licopter developed in the framework of VLR certification spec-
ifications. The main rotor features a gimballed hub with elas-
tomeric bearings equipped with a Bell-Hiller bar to improve
stability, while the fixed pitch, rpm controlled, five-bladed tail
rotor is a fenestron design.

The main technical drivers of the novel design are to reduce
the high level of 2/rev vibrations occurring in teetering rotors,
to retain adequate control power in low–g maneuvering and to
improve handling qualities using the stabilizing bar to increase
roll and pitch damping. A specific aspect of the gimballed rotor
is the presence of a sustained wobbling motion of the hub, even
in steady–state conditions.

A nonlinear model of the vehicle is developed that includes,
among other aspects, a detailed model of main rotor, nonlin-
ear, quasi–static blade aerodynamics, inflow dynamics, a simple
fuselage aerodynamic model and a tail rotor model derived from
experimental wind–tunnel tests.

Periodic trim conditions are evaluated using a shooting

method in order to assess the impact of rotor wobbling mo-

tion on helicopter steady–states. Results on performance and

controllability are presented and discussed. Finally, the stabil-

ity characteristics are assessed in order to gain some preliminary

insight on the handling qualities of the helicopter.
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Nomenclature

CL, CD lift and drag coefficients
DP monodromy matrix
h flight altitude
KH fly–bar/swash–plate command ratio
L, D lift and drag forces
M Mach number
n rotor rpm
pI = [N E D]T position vector in the Earth frame
P available power
T rotor thrust force
v = [u v w]T velocity vector in body–axes
V flight speed modulus
xB rigid–body (fuselage) state vector

Greek symbols
α, β angle of attack and sideslip angle
θ0 collective pitch command
θbl blade section pitch angle
θfb secondary cyclic pitch command
θcyc primary cyclic pitch command
θH rotor longitudinal tilt
θSW longitudinal cyclic pitch command
θtw twist angle of blade section
λ eigenvalue
Λ eigenvalue of the monodromy matrix
µ advance ratio
ν = [ν0 νs νc]

T state vector of the inflow model
ρ air density
τ period of rotor revolution
φH rotor lateral tilt
φSW lateral cyclic pitch command
Φ = [φ θ ψ]T Euler angles vector
ψ blade anomaly



ω turn rate
ω = [p q r]T angular velocity vector
Ω rotor rate
Subscripts
bl blade
fb fly-bar
h horizontal tail
TR tail rotor
v vertical fin

Introduction

This paper aims to analyze performance and stability
of a novel two–seater, two–bladed lightweight helicopter
(dubbed KA–2H and shown in Fig. 1) developed by K4A
S.r.l. in the framework of very light rotorcraft (VLR) cer-
tification specifications. Among other innovative features
for VLRs such as the two-engine configuration and the fen-
estron, five–bladed tail rotor with fixed pitch blades and
variable rpm, the helicopter features a two–bladed gim-
balled main rotor equipped with a Bell–Hiller fly–bar to
improve the damping of rotational motions [1].

More in detail, a rigid yoke is connected to the shaft
through a homokinetic spherical joint, realized by means
of a set of elastomeric springs (Fig. 2). The blades are
connected to the yoke by means of coning hinges, in order
to provide a gust–alleviation effect. The impact of coning
motion on helicopter performance and response to controls
is marginal and coning dynamics is thus neglected in the
derivation of the model. A fixed coning angle β1 = β2 =
1.8 deg is assumed in the sequel.

The rotor yoke thus features two mechanical degrees
of freedom, that is, rotations around the teetering and
feathering axes. The feathering motion is coupled with
blade pitch command and it is driven by the fly–bar, which
features two low aspect ratio paddles at the tips. Finally
the hub has some undersling to limit 2/rev loads.

Figure 1: KA–2H helicopter.

The rotor hub is designed with the main objective of
addressing some of the negative characteristics that affect
the dynamics of helicopters equipped with teetering rotors
as, for instance, high 2/rev oscillatory loads, poor response
characteristics at low gs and a somewhat pronounced sen-
sitivity to gusts and/or large pilot inputs.

The analysis of the gimballed hub [1,2] shows that in
most flight conditions a wobble (precession) motion devel-

ops, that is, the hub axis, orthogonal to the plane defined
by the blades axis and the fly-bar axis, describes a cone
about its mean position at twice the rotor rotational fre-
quency even in steady–state conditions. This unusual rotor
behaviour can affect considerably helicopter performance
in terms of - among others - controllability and handling
qualities which deserves a detailed analysis of (periodic)
steady–states and their stability.

Figure 2: Main rotor hub.

In order to investigate trim conditions in a wide portion
of the expected operating flight envelope, non-linear ro-
tor and fuselage models are developed and analyzed, with
the main objectives of supporting the design phase of the
helicopter. In particular, an estimate of reasonable perfor-
mance limits and a preliminary handling quality assessment
are performed on the basis of a complete aerodynamic he-
licopter model. Together with other minor effects, a con-
stant rotor rpm is assumed in the derivation of the model,
thus neglecting engine dynamics, a reasonable assumption
within a study focused on steady–state performance.

Two different trim techniques are used, in the frame-
work of performance and controllability analysis, on one
side, and stability analysis on the other one. In the first
case, a periodic shooting method [3,4] for the complete he-
licopter model with fully coupled fuselage, rotor and inflow
dynamics is devised. A nested trim technique is adopted
for the stability analysis [5], where periodic steady states
are evaluated for a decoupled rotor model (featuring ro-
tor mechanical degrees of freedom and inflow states only),
whereas fuselage degrees of freedom are trimmed on the
basis of average rotor loads. This second technique allows
for a more straightforward derivation of helicopter stabil-
ity derivatives, required to carry out the stability analysis
through the linearization of the rigid body model of the
rotorcraft. In this case, a quasi–static rotor response is
assumed.

A stability analysis for the complete model of the vehicle
(rotor, inflow and fuselage) is carried out by application of
a Poincaré map methodology, in order to validate the re-
sults obtained on the basis of the quasi–static model. At
the same time, the physical interpretation of the eigen-
structure of the linearized helicopter model allows for a
better understanding of the results of the Poincaré anal-
ysis, obtained in terms of eigenvalues for a discrete map.



These eigenvalues are used for a preliminary evaluation of
handling qualities against stability requirements obtained
from CS-27 specifications.

In what follows, the main features of the rotorcraft
model are illustrated in the next section. Then, in the
third section, the methodologies for trim analysis are re-
called and the vehicle performance characteristics are dis-
cussed. The stability analysis is dealt with in the fourth
section. A section of conclusions ends the paper.

Rotorcraft Model

Rotor configuration

The rotor configuration is rather unusual and only a very
limited number of previous studies is available on the dy-
namic characteristics of two–bladed gimballed rotors [6,7].
The homokinetic joint is designed to rotate about its axis
with the same angular speed Ω of the shaft, even when
they are not aligned. In the absence of an engine dynamic
model (not necessary in the evaluation of steady–state ve-
hicle performance), a constant angular speed can be as-
sumed, ψ̇H = Ω = const.

Inertial and aerodynamic forces developed by the rotor
are transmitted to the fuselage through the homokinetic
joint. The relative motion between rotor elements (blades,
yoke, and shaft) also develops i) elastic moments and ii)
elastic and/or friction moments around the blade pitch axis
due to the feathering motion, all perpendicular to the hub
axis. Finally, the engine torque Qeng is assumed directed
along the hub axis.

The governing equations for the main rotor are derived
using a Lagrangian approach and, in order to accurately
represent the inertial loads, all nonlinear terms are retained
in the formulation. A symbolic manipulator software is
used to formulate the dynamical model of the rotor. A
detailed description of the model can be found in [1].

The assumptions of rigid blades, rigid shaft, constant
coning angle and quasi-steady aerodynamics provide a rea-
sonable level of accuracy for the the analysis of rotor be-
havior and the assessment of helicopter performance.

Rotor aerodynamics

Each blade section is modeled as a two-dimensional airfoil.
The wake–induced velocity, that modifies the angle of at-
tack of the blade sections, is provided by the Pitt-Peters
dynamic inflow model [8] with triangular distribution on
the rotor disk. Stall and compressibility effects are taken
into account in the aerodynamic model of the blade airfoil
where lift and drag coefficients are expressed in tabular
form as functions of angle of attack (−180 ≤ α ≤ 180
deg). A correction for Mach number effects in the range
0 ≤M ≤ 0.8 is also introduced.

Rotor control

The blade pitch command mechanism, shown in Fig. 2,
features two contributions:

• a primary command from the swash–plate, repre-
sented by a collective blade pitch increment, θ0, and a
cyclic pitch command, θcyc = θSW cosψ+φSW sinψ,
where θSW and φSW are the longitudinal and lateral
tilt angles of the swash–plate, respectively;

• a secondary command, that varies the actual value
of the cyclic pitch, mechanically driven by hub rota-
tion around the blade feathering axis, θfb, that corre-
sponds to the flapping of the fly-bar.

Taking into account also the twist angle of the blade
section at x along the blade span, θtw(x), the local pitch
angle with respect to the shaft plane is given by

θbl(x) = θ0 + θtw(x) +KHθcyc + (1−KH)θfb

where KH is the fly–bar/swash–plate command ratio.
Note that a secondary command is always present when a
teetering rotors features a flybar that is mechanically linked
to the pitch horn. As a major difference, the fly–bar is here
rigidly connected to the yoke, thus providing a contribu-
tion to its dynamic behaviour, the secondary command
being determined by the yoke inclination with respect to
the shaft axis, as outlined above.

Tail rotor, empennages and fuselage

The tail rotor is a fenestron featuring a fixed pitch
shrouded rotor. Thrust control is obtained by varying tail
rotor rpm through a hydraulic motor, instead of the usual
tail rotor collective pitch command. Tail rotor thrust is
expressed by means of a third–order polynomial function
depending on rotor speed, nTR, in the form

TTR = TTR(nTR, V, βv)

= c3 n
3
TR + c2(V ) n2TR + c1(V ) nTR + c0(V, βv)

where the coefficients ci, which depend on flight speed V
and sideslip angle βv (−10 ≤ βv ≤ 5 deg), are obtained
from least–square approximations of wind tunnel test data.

Horizontal tail and vertical fin are modeled as finite
wings. Their lift and drag are given by the classical ex-
pressions

Lh,v =
ρ

2
V 2
h,vSh,vkh,vCL(αh,v)

Dh,v =
ρ

2
V 2
h,vSh,vCD(αh,v)

where Vh,v is the wind velocity on the surfaces and kh,v <
1 is a factor that depends on the aspect ratio.

The inflow velocity on the tailplane is assumed parallel
to the rotor shaft, uniform and constant in the far wake, so
that the harmonic components are neglected in the inter-
action model. Wake radius is assumed constant and equal



to R. No circulation effects are considered. Under these
assumptions, the main rotor wake affects the aerodynamic
characteristics of the horizontal tail only in an interval of
flight velocities, when the airmass accelerated by the rotor
impinges on the tail as a result of the combination of vehi-
cle airspeed and inflow velocity increment. The interaction
between wake and empennage is modeled using an inflow
velocity intensity factor [9,10] for the inflow component
normal to the tail surface.

The fuselage aerodynamic model only considers the drag
force with the assumptions that the center of pressure is
located in the geometric center [11], and the aerodynamic
moments due to angular rates are negligible with respect
to those developed by tailplane and fin. The drag is

Df =
ρ

2
V 2
f Sf

where Sf is the equivalent flat plate area, estimated ac-
cording to [12], and Vf includes the uniform component
of the inflow velocity increment [8].

The rotorcraft dynamics is thus described by 19 state
variables:

• helicopter fuselage rigid–body states xB : velocity
v = [u v w]T , angular rate ω = [p q r]T , Euler angles
Φ = [φB θB ψB ]T , c.g. position in the inertial frame
pI = [N E D]T

• rotor states: tilt angles of the hub ΘH = [θH φH ]T ,
defined in a non-rotating frame and their derivatives
Θ̇H = [θ̇H φ̇H ]T

• inflow states ν = [ν0 νs νc]
T

As a consequence of the aforementioned wobble motion,
the rotor states present periodic steady–states in the entire
range of flight speed, leading to not negligible periodic
loads on the fuselage.

Trim techniques

In what follows, the dynamics of rotor and fuselage will be
considered either coupled or uncoupled. In the first case all
the state variables (rotor and body) are considered periodic
at steady state. In the second approach, only rotor periodic
motion is retained, whereas fuselage variables at trim are
constant under the action of rotor forces and moments
averaged over half a rotation. This is equivalent to a quasi-
static assumption [13]. Accordingly, two techniques are
used to solve the trim problem for the helicopter.

Periodic trim considers all the state variables, and solves
the coupled system (rotor and fuselage) taking into ac-
count the oscillations of the fuselage due to the periodic
dynamics of the rotor. In particular, trim states are cal-
culated by means of the periodic shooting method [3,4]
applied to the complete model of the helicopter (including
rotor, inflow and fuselage states). The full set of equi-
librium equations is solved using a standard nonlinear al-
gebraic equation solver implementing a Newton–Raphson

method. The shooting problem is solved numerically, in-
tegrating the equations of motion of the rotor/helicopter
with a fourth-order Runge-Kutta algorithm with fixed-step
(∆ψ = 2 deg) from an initial guess.

This technique is adopted for the study of helicopter
performance as well as for the stability analysis based on
the Poincaré map technique [14].

The nested trim technique in based on uncoupling ro-
tor dynamics from fuselage equations of motion, assum-
ing that the high frequency variations of rotor forces and
moments do not affect significantly fuselage variables at
steady–state. The structure of the nested trim algorithm
consists of two loops: the inner loop identifies a periodic
equilibrium condition for the isolated rotor (rotor and in-
flow states) for the current values of fuselage states and
rotor control variables, while the outer loop is a classical
trim procedure for the fuselage degrees of freedom, where
average rotor force and moment transmitted to the fuse-
lage are determined on the basis of the rotor periodic con-
dition identified by the inner loop. This technique provides
an approximate solution of helicopter equilibrium, suitable
for the derivation of stability derivatives and the interpre-
tation of the stability characteristics of the vehicle based
on the linearization of the quasi–static model.

Helicopter Performance

The periodic trim technique is adopted for the solution of
the trim problem for performance analysis. The relevant
geometric and inertial characteristics of the vehicle consid-
ered in this analysis are reported in Tables 1 and 2 together
with some design parameters.

The hub angular position at different values of forward
speed in horizontal flight is reported in Fig. 3. The wob-
bling motion has an amplitude of 1.5 deg in hovering, it
reaches a minimum around 35 m/s, and increases up to
2.5 deg at the maximum speed, V = 60 m/s. The cor-
responding values of flapping coefficients of blades and
paddles vs. air speed are shown in Fig. 4(a). In hovering,
the thrust vector is tilted 2 deg backward to compensate
for the forward tilt of the shaft axis with respect to the lon-
gitudinal fuselage axis, whereas in forward flight the value
of a1s decreases (thrust vector tilted forward in order to
compensate for the pitch–up moment developed by the
tailplane.

Note that the moment components delivered to the fuse-
lage are, in part, specific for the gimballed rotor case. To-
gether with the usual moment of thrust developed by tip–
path–plane (TPP) rotation, an elastic moment due to the
elastomeric joint, proportional to the hub tilt angles with
respect to the shaft, and the projection of the in–plane
moment along the hub axis are also present. At increasing
speed the two latter contributions determines a significant
pitch–down moment, as a result of the increasing ampli-
tude of the wobbling motion. This somewhat limits the
forward rotation of the TPP.
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Figure 3: Hub angular position at trim as a function of forward
speed.

The lateral flapping b1s decreases at low speed to com-
pensate for the reduction of the roll moment due to the
tail rotor. At higher speed the lateral tilt of the TPP re-
mains close to zero as, again, the forward rotation of the
TPP projects a component of the in–plane moment onto
the roll axis that balances the moment of the tail rotor.

Figure 4(b) shows the variations of pitch (θ) and roll (φ)
angles vs. speed, that appear quite conventional. Control
angles are reported in Fig. 4(c), where the behavior of
collective pitch (θ0) and tail rotor rpm is also typical for
a rotary wing vehicle. As for cyclic pitch, note that, for
the considered vehicle configuration, blade pitch depends
on two contributions. In particular, at steady–state, when
the TPPs of blades and fly–bar are constant [2], θbl can
be written as

θbl = θ0 −A1 cosψ −B1 sinψ

with
A1 = KHφSW + (1−KH)d1s

B1 = −KHθSW − (1−KH)c1s

where c1s and d1s are fly-bar flapping coefficients, evalu-
ated with respect to a plane perpendicular to the shaft axis
(Fig. 4(a)). In spite of the peculiarities of the configura-
tion, the variations of the longitudinal B1 and lateral A1

cyclic pitch commands, defined as outlined above, resem-
bles those of a conventional helicopter, where B1 compen-
sates for the backward flapping of the rotor at increasing
speed, whereas the variation of A1 depends on the lateral
flapping which, at least at low speed, is influenced by the
longitudinal inflow distribution.

As a further analysis, limiting performance characteris-
tics of the vehicle are determined on the basis of its dy-
namical model, by comparing an estimate of the necessary
power in the considered flight condition against the maxi-
mum available power. In the absence of more detailed in-
formation on the actual characteristics of the powerplant,
the available power is estimated assuming that it remains
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Figure 4: Trim conditions as a function of forward speed
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constant with forward speed (for constant rpm) and pro-
portional to the air density ρ(h), so that it is

Pmax(h) = Pmax,SL[ρ(h)/ρSL]σ

where the subscript SL indicates value at sea level and h
is the altitude. The exponent σ, that accounts for the
variation of engine performance with the density ratio, is
assumed equal to unity. Maximum available power at sea
level is Pmax,SL = 104 kW (with both engines operative).

All limiting performance are determined by numerically
solving the equation Pmax(h) = Pn(V, h, ω, ḣ), where ω is
the turn rate and ḣ the rate of climb. As an example, max-
imum airspeed in level flight at altitude h̄ is determined
by letting ω = ḣ = 0 and evaluating Vmax such that
Pn(Vmax, h̄, 0, 0) equates the maximum available power.
Similarly, service ceiling at a given airspeed V̄ is eval-
uated increasing altitude h until Pn(V̄ , hmax, 0, ḣSC) =
Pmax(h), with ḣSC equal to 0.76 m/s (150 fpm). Simi-
lar conditions can be easily derived for any other limiting
performance of interest.

The flight envelope in level flight is shown in Fig. 5
where it appears that service ceiling is above 5000 m at
an airspeed of approximately 35 m/s. Maximum airspeed
at sea level is approximately 60 m/s. Ceiling in hovering
condition out of ground effect is around 1200 m, where
this value increases up to more than 2300 m in ground
effect.

Maximum turn rate and maximum rate of climb vs.
flight speed are reported in Figs. 6 and 7, respectively,
at sea–level and 2000 m of altitude. The numerical values
obtained for the model are in line with those expected for
a vehicle in the VLR weight class.

Stability Analysis

Two different approaches were considered in order to eval-
uate helicopter stability, with the following objectives: (i)
to analyse the effect of the gimballed rotor on stability
derivatives of the helicopter; (ii) to interpret the results
obtained for the complete helicopter model using models
of reduced order with uncoupled dynamics; and (iii) to as-
sess the accuracy of the reduced–order models using the
analysis carried out for the the complete model based on
the Poincaré mapping technique. The two methodologies
can be briefly outlined as follows.

1. Linearization of the quasi-static 6 DoF model [13] al-
lows the rigid-body modes (frequency and damping) to
be determined and, among other aspects, the coupling of
longitudinal and lateral dynamics to be examined for the
purpose of handling qualities evaluation. The linearization
of the quasi–static model consists in the numerical eval-
uation of the elements of the state matrix when each of
the state variables xB of the reduced–order model is per-
turbed from the steady–state value obtained by the nested
trim method. To this end the averaged values (over one



rotor revolution) of the perturbed linear and angular accel-
eration (and Euler angles rates) are calculated when rotor
and inflow states subside, that is, rotor dynamics is as-
sumed faster than helicopter modes (hence the name of
the approach).

2. Poincaré map analysis of the complete nonlinear, time–
periodic model of the helicopter, that provides information
on the stability of the coupled rotor–fuselage system. As a
major limitation, this approach does not allow to univocally
determine the frequencies of the characteristic modes. For
each considered flight condition, the Poincaré map [14]
is built starting from the knowledge of the corresponding
periodic solution of the states, determined by the shooting
method. Such a solution is represented by means of the
state vector p at trim for ψ = 0. Point p is a fixed
point for the discrete map that transforms an arbitrary
initial state p + δx at ψ = 0 into the values of the state
variable after an interval ∆t = 2π/Ω. The stability of the
periodic solution in the time domain is directly related to
the stability of the equilibrium p for the map. The map
is numerically evaluated by perturbing each state variable
from the periodic trim condition, and determining the state
variables after one period.

The fundamental solution matrix of a particular initial
condition, evaluated at a time equal to the period of the
orbit, is known as the monodromy matrix which in turn, for
a fixed point p, becomes the local linearization of the map
evaluated in p. Basically, this means that the monodromy
matrix determines the local dynamics of the system at the
fixed point that represents the periodic orbit.

The (i, j)–th element of the monodromy matrix DP |p
can be calculated as

[DP |p]i,j =

[
xj(τ)− xjtrim

∆xi(0)

]
where xjtrim is the jth variable at trim, xj(τ) is the jth

variable after one period and ∆xi(0) is the perturbation
of the ith variable from its trim condition at t = 0.

The stability analysis of the system is then carried out
through the analysis of the eigenvalues of DP |p. As for
the Floquet analysis [15] the system is unstable if |Λj | > 1
for any eigenvalue of the monodromy matrix.

The eigenvalues λj = σj + iωj in the time domain can
be obtained from the roots of the map as

λj =
1

τ
ln Λj (1)

where real and imaginary parts of λ are given by
ωj =

1

τ
arctan(Im(Λj)/Re(Λj))± n

2π

τ

σj =
1

2τ
log[Re(Λj)

2 + Im(Λj)
2]

(2)

Since arctan is a multivalued function, each frequency may
only be determined as a basic frequency plus or minus an
integer multiple of 2π/τ . In this respect it is well known

that the correct value of frequency can be identified on the
basis of physical reasoning, when in a given condition the
frequency of a mode can be determined with no ambiguity.
As an example, at hovering the periodically varying terms
of the dynamical system have minor effects. As usual, the
periodic solution is unstable if Re(λj) > 0 for any one of
the eigenvalues.

Figure 8 shows the eigenvalues of the quasi-static he-
licopter model at hovering, transformed into the Gauss–
plane for the Poincaré map by means of the inverse trans-
formation Λj = exp(τλj). These roots are compared with
those obtained for reduced–order models obtained uncou-
pling the longitudinal from lateral–directional dynamics. It
is apparent that the roots of the coupled and uncoupled dy-
namics are similar. Using the eigenvalues of the uncoupled
systems to identify the characteristic modes of the rotor-
craft [10], we have that the complex conjugate unstable
longitudinal and lateral roots correspond, respectively, to
the pendulum (phugoid) and dutch-roll modes. The real
eigenvalues around λ = −0.3 are the heave and the spi-
ral subsidences, while the roll and pitch modes are around
λ = −1.6. With the coupled state matrix the roll and
pitch subsidences are coupled in a roll/pitch oscillation.
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Figure 8: Comparison between eigenvalues of the quasi–static
helicopter model and roots for reduced–order decoupled models
in hovering.

In Fig. 9 the eigenvalues of the complete helicopter
model, calculated by Poincaré map technique, are com-
pared with those of an uncoupled model, where the rigid–
body eigenvalues (labeled Body) come from the lineariza-
tion of the quasi–static model, while the Poincaré mapping
performed on the isolated rotor provides the eigenvalues
labeled Rotor. The eigenvalues are plotted as a function
of flight speed at sea level, where hovering and maximum
speed (µ = 0.29) conditions are identified with a diamond
(�) and a circle (◦), respectively. The plot demonstrates
that the approach based on the analysis of either the iso-
lated rotor or the quasi–static model provides reasonable
results when, for the sake of validation, reference is made
to the dynamical characteristics of the complete model.

According to the results of the quasi-static model, it



is apparent that the frequencies of the helicopter modes
obtained from the eigenvalues of the monodromy matrix
(complete model) are in the range [0, Ω]. Accordingly,
the characteristics of these modes can be studied in the
λ-plane using Eqs. (2) with n = 0. The same conclusion
cannot be drawn for the eigenvalues of the rotor states, as
the frequencies are not in the range of the principal values.

Figure 9 shows the eigenvalues of the Poincaré map cor-
responding to the helicopter (rigid–body) dynamics in for-
ward flight in the Λ-plane (top) together with the eigenval-
ues of the quasi–static model (bottom). As a general com-
ment some of the characteristic helicopter modes are ap-
parent such as phugoid, short period and dutch-roll, while
other modes are in the same frequency range and are dif-
ficult to identify. In particular, the roll and pitch modes as
well as the heave and spiral (yaw) modes become coupled
in certain ranges of flight speed.

The eigenvalues of the quasi-static model (bottom) ex-
hibit an unstable phugoid mode at low and medium speed
(see also Fig. 8, where the eigenvalues at hovering are
shown). The dutch–roll oscillation is also unstable for ve-
locity lower than µ = 0.1, turning into a stable mode at
medium speed. Dutch–roll damping decreases again at
high speed, until the mode becomes unstable again for
µ > 0.28, whereas mode frequency steadily increases.

The pitch/roll mode uncouples into two subsidences
whereas the heave and spiral mode remains stable in the
whole range of flight speed. The root locus of the short
period mode presents a discontinuity at high speed that de-
pends on the effect of the inflow on the tailplane, as step
variations of the stability derivatives (in particular Mw and
Mq) result when the tailplane enters and exits the rotor
wake.

As for the results of the Poincaré analysis on the com-
plete model, Fig. 10 (top) shows that the dutch-roll mode
is stable throughout the speed range and the phugoid is
unstable only at very low speed whereas the other eigen-
values present minor variations in comparison with those
of the quasi–static model. Apparently, approximating the
helicopter modes with the quasi-static model brings to a
pessimistic estimate of helicopter stability characteristics.

The eigenvalues of the helicopter characteristic modes
computed with the Poincaré technique are shown in Fig. 11
in the λ-plane together with some of the limitations result-
ing from the requirement on handling qualities for VLR
[16]. In particular, the numbers labeled in the figure refer
to the following specifications: 1. Any oscillation having a
period of less than 5 seconds must damp to 1/2 amplitude
in not more than one cycle, 2. Any oscillation having a
period of 5 seconds or more but less than 10 seconds must
damp to 1/2 amplitude in not more than two cycles, 3.
Any oscillation having a period of 10 seconds or more but
less than 20 seconds must be damped, 4. Any oscillation
having a period of 20 seconds or more may not achieve
double amplitude in less than 20 seconds, 5. Any ape-
riodic response may not achieve double amplitude in less
than 6 seconds.
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Figure 9: Root loci as a function of speed for linearized
Poincaré map of the complete model (top), transformed eigen-
values of the quasi-static model (bottom, Body) and linearized
Poincaré map of the isolated rotor (bottom, Rotor)
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It is apparent from the figure that all the CS–27 require-
ment are satisfied when the analysis is conducted on the
complete model but for the phugoid mode that presents
the already observed instability at low speed. It is worth to
mention again that when reference is made to the quasi-
static model for the sake of comparison, at hovering the
phugoid is unstable, with the period between 10 and 20 s,
and therefore does not match the requirement 3 whereas
at high speed the dutch-roll tends to be marginally stable
so that requirement 1 is not satisfied.

Table 1: Main rotor characteristics

Blade
Radius R 3.80 m
Chord c 0.23 m
Teetering mom. of inertia Iteet 176 kg m2

Built-in coning βc 1.8 deg
Undersling δ 0.06 m
Twist at tip θttw -14 deg
Lift slope a 6.3
Paddle and fly-bar
Radius R2 1.5 m
Root cut-out R1 1.1 m
Chord cfb 0.25 m
Teetering mom. of inertia Ifb 2 kg m2

Lift slope afb 2.61
Hub
Hub stiffness K 3610 N m/rad
Command ratio KH 0.57
Feathering hinge
stiffness Kfeat 150 N m/rad

Table 2: Helicopter design parameters.

Fuselage
Weight W 7 000 N
Mom. of inertia Ixx 286 kg m2

Iyy 550 kg m2

Izz 630 kg m2

Equivalent flat plate area Sfx 0.6 m2

Sfy 2.2 m2

Sfz 1.3 m2

Horizontal tail
Surface Sh 0.1 m2

Aspect Ratio ARh 1.9
CL attenuation factor kh 0.6
Vertical fin
Surface Sv 0.4 m2

Aspect ratio ARv 3.1
CL attenuation factor kv 0.6
Tail rotor
Radius RTR 0.46 m
Number of blades NTR 5
Solidity σTR 0.17

Conclusions

A nonlinear model of a novel light helicopter featuring a
two–bladed, gimbaled rotor was formulated and analyzed
in detail. A periodic trim procedure was adopted for the
analysis of trim conditions. The stability analysis was con-
ducted using two methodologies, that is, the quasi–static
approach, where the steady–states are determined by a
nested trim technique, to determine the rigid–body, char-
acteristic modes of the rotorcraft, and the Poincaré map-
ping method to analyze the stability of the complete model
so as to assess the effects of coupling between rotor, inflow
and rigid body dynamics.

For what concerns the steady–state analysis, the vari-
ation of trim parameters with tip speed ratio was deter-
mined and discussed while the performance analysis led to
the evaluation of the flight envelope together with turning
and climbing flight characteristics. As for the interpre-
tation of trim conditions, when reference is made to the
effects of the hub stiffness and in–plane moment due to
the engine torque on the gimbaled rotor, the forward tilt of
the TPP gives a relevant contribution to the roll moment
which, in turn, affects lateral cyclic pitch command and
the lateral attitude of the helicopter.

The major conclusions of the stability analysis are as
follows
- the quasi–static analysis gives an approximation of the
frequencies and dampings of the helicopter characteristic
modes, the accuracy of which deteriorates as the ampli-
tude of the wobbling increases. Therefore, the use of this
methodology is to be carefully assessed for the purpose of
evaluating the flying qualities of the vehicle
- the quasi–static analysis provides valuable information for
the interpretation results obtained by the Poincaré map-
ping technique
- the eigenvalues obtained from the linearized Poincaré
map of the complete helicopter can be evaluated with re-
spect to the requirements of the certification specifica-
tions. For the considered configuration it appears that the
stability of the phugoid mode in hovering and at very low
speed is to be improved.
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