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Abstract 
The paper presents methods for calculating bending stresses in the rotor blade of a helicopter blown by a 
wind flow. The data obtained using the methods set out in this paper can be used in the design of the rotor 
blades and the determination of safe operation to ensure the required reserves for operational wind speeds. 
For the problem in the linear formulation, convenient calculation formulas for calculating deflections, angles 
of rotation and bending moments (stresses) directly through their values for the "rigid" blade are obtained. 
For the problem in the nonlinear formulation, a simple-to-implement computational scheme for solving the 
initial nonlinear equation of loading of the blade based on the method of successive perturbations of the 
parameters of V. V. Petrov is obtained. The results of calculations made for the tested rotor blades of the 
helicopter.  
 
 
1. INTRODUCTION 

One of the main problems facing the designer 
when creating a helicopter, still remains to ensure 
the strength of the rotor blade. When creating 
large diameter rotors, this problem is solved 
especially hard. The magnitude of the loads at 
which the destruction occurs, there are residual 
deformations or disturbed functioning of the blade 
should be greater than the maximum load 
possible in operation. Previously, when designing 
the rotor blades, in terms of ensuring static 
strength, limited its calculation under the influence 
of forces of its own weight. At the same time in the 
operation of helicopters, there are cases of 
damage to the units of the main and tail rotor after 
exposure to the storm wind.  

These phenomena are possible due to the low 
intrinsic stiffness of the rotor blades, which makes 
them very sensitive to wind loading. Designers in 
the design of rotorcraft need to take measures to 
ensure protection from the effects of wind flow. 

According to paragraph 29.675 b advisory circular 
AC 29-2C [1], which provides procedures for 
determining compliance with the requirements of 
the airworthiness, the design of the carrier system 
it is necessary to avoid overloading the stops and 
blades in terms of wind gusts in the parking lot or 
the thread of the rotor is close taxiing rotary-wing 
apparatus. 

Therefore, from a practical point of view, when 
considering the impact of the wind on the non-
rotating rotor blade of a helicopter in a parking lot, 
it is important to determine the most dangerous 

direction and the maximum permissible wind 
speed for the unmoored rotor blade at a given 
position of the helicopter in the parking lot. In [2], 
the most dangerous directions and the minimum 
critical speeds of the wind flow for the non-rotating 
rotor blade at a given position of the helicopter in 
the parking lot are determined. They are 
implemented on the modes of oblique blowing 
with negative sliding angles - when the blade end 
is located towards the wind flow. The minimum 
critical speed is achieved at a slip angle of -45˚. 
Therefore, increased stress values should be 
expected at these positions of the blade. The 
results of the calculation of the critical speed for 
the test blade are shown in figure 1.  

The existence of the phenomenon of buckling in 
the bending of the blade under the influence of 
wind, as well as the fact that the calculated critical 
speeds were relatively small, confirm the need to 
calculate the stresses in the blade exposed to 
wind. Therefore, designers in the design of 
rotorcraft need to take measures to ensure 
protection from the effects of wind flow. 

2. MODELLING 

2.1. Problem statement 

Determine the tension in unmoored the blades of 
the rotor is inhibited when blowing the helicopter 
parked, a horizontal wind flow. Consider the case 
when the speed of the wind flow is directed at an 
angle to the longitudinal axis of the helicopter. 

The position of the blade is determined by the 
azimuthal angle measured in the direction of 
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rotation of the rotor, with its zero value 
corresponds to the position of the blade along the 
longitudinal axis of the helicopter end back. Flow 
diagram of the rotor blade is shown in figure 2. 

The range of variation of the azimuthal angle, limit 
area from 0˚ to 180˚, counting it’s in the direction 
of rotation of the rotor during the consideration of 
the modes of the blower blades with a forward 
edge and against the direction of rotation of the 
rotor, in consideration of the blowing modes of the 
blade trailing edge. In this case, the sliding angle 
will vary from 90˚ to -90˚. 

2.2. Basic assumption 

When determining the stresses in the unmoored 
rotor blades of the helicopter, located in the 
parking lot under the influence of the wind, 
imagine the blade in the form of a beam (rod) of 
variable cross-section. The parameters of this 
beam will be considered continuously distributed 
along the length of the blade. In addition, we use 
the following assumptions. 

1 Wind is considered as a steady flat-
parallel horizontal flow. 

2 The plane of the least stiffness of the 
blade coincides with the plane of the 
swing. Therefore, the blade will bend only 
under the action of forces acting in this 
plane. 

3 When determining the loads in the plane 
of the swing torsional deformation of the 
blade is not taken into account. 

4 We consider the usual type of rotor with 
hinged blades, and the distance to the 
horizontal hinge is not neglected. Also, 
friction forces in the blade suspension 
hinges are not taken into account. 

5 The blade desalvatore and hanging on 
the focus limiter of overhang, with a 
design scheme corresponds to a beam 
rigidly clamped left end and free right. 

3. METHODS 

3.1. Stress calculation method based on 
linear loading model 

The bending of the rotor blade in the sweep plane 
is described by a well-known differential equation 
of the following form [3]: 

(1) ( ) .nEIy Y mg     

The magnitude of the aerodynamic force nY  

depends on the deformation of the blade and 
varies in the azimuth of the blade rotation. Linear 
aerodynamic force acting on the blade in the 
plane of the sweep with oblique blowing, 
according to [2,4-6], is determined by the 
expression: 

(2) .cos
2

2
2


 bC
V

Y nn   

The expression for the linear aerodynamic force   
can be used both when blowing the blade from 
the leading edge and from the rear. To calculate 
the angles of attack of sections when blowing the 
blade from the trailing edge, it is enough to 
change the signs of the angles of relative twist of 
the blade, as well as the angle of installation of 
the profile to the reverse. 

Substituting the expression (2) in the right part of 
the expression (1), and making algebraic 
transformations, we obtain the following 
differential equation of the blade bending: 

(3) ( ) ,rEIy wy tg w mg       

 
2

2cos ,
2

n

V
w C b


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0 0

cos
.

cos
r t vtg


      


      

Equation (3) allows a reduction of order by 

replacing a variable y  . Then equation (3) will 

take the form: 

(4) ( ) .rEI w tg w mg         

Equation (4) is a third-order linear inhomogeneous 
equation with variable coefficients. To solve 
equation (4), we apply the method of                   
B. G. Galerkin [7-9]. Imagine the function of the 
angles of rotation of the elastic axis of the blade 

 , as the sum of a certain number of tones: 

(5) 
( ).j

j

j

    

Substitute expression (5) in (4), and all terms of 

equation (4) are alternately multiplied by 
( )j  

(where j=0,1,2...n) and integrated by radius. Due 
to the orthogonality of the blade bending forms, 
equation (4) decomposes into n independent 
equations of the form: 
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(6) .j j jP A   

Here: 
( ) ( ) ( )2

0 0

( ) ,

R R

j j j

jP EI dr w tg dr        

( ) ( )

0 0

.

R R

j j

j rA w dr mg dr      

It is known that the values included in equation (6) 

have a certain physical meaning. The value of 
jP  

is the potential energy accumulated by the blade 
during its bending in the form of j-th tone; and the 

integrals jA , standing on the right side of 

equation (6) – the algebraic sum of the 
aerodynamic forces and forces of its own weight. 
Solving equation (6) with respect to the 
deformation coefficient 

j , we obtain: 

(7) 

( ) ( )

0 0

( ) ( ) ( )2

0 0

.

( )

R R

j j

r

j

j R R

j j jj

w dr mg dr
А

P
EI dr w tg dr

  



   



 

  

 

 

 

From (7) it can be seen that the coefficient 
j  

depends on the direction and speed of the wind 
flow. In [2] it is shown that at a critical value of the 
wind flow velocity, a static loss of stability of the 
blade occurs. Here, the condition of loss of 
stability is the reversal of the denominator of 
expression (7) to zero. This equality gives: 

(8) ( ) ( ) ( )2

0 0

( ) 0,

R R

j j j

crEI dr w tg dr         

(9) 2cos .cr cr nw q C b   

But the critical velocity head at a given direction of 
blowing, according to [2] is determined by the 
expression: 

(10) min 1
.

sin 2
cr crq q


   

Substituting (9) in (8), taking into account (10) we 
obtain:  

(11) ( )2 ( ) ( )

min

0 0

2
( ) .

R R

j j j

n

cr

C b dr EI dr
q

        

Substituting (11) into (7) gives:  

(12) 

( ) ( )

0 0
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0

.
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R R
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j R

j j
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w dr mg dr

q
EI dr

q
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Let us turn to the bending equation of a 
hypothetical "rigid" blade, whose deflections do 
not change the angles of attack of the sections. 
By excluding the term containing   from equation 

(4), we obtain: 

(13) ( ) ,r rEI w mg      

(14) 
( ).

j

j

r r

j

    

Doing the same for (4) calculations, we obtain the 
following expression for the deformation 
coefficient of the "rigid" blade:  

(15) 

( ) ( )

0 0

( ) ( )

0

.

( )
j

R R

j j

r

r R

j j

w dr mg dr

EI dr

  



 





 

 



 

Comparing (12) and (15), we obtain the following 
important relation:  

(16) 

min

.
sin 2

1

jr

j

cr

q

q









 

Note that the sign of the second term in the 
expression (16) is determined by the sign of the 
sliding angle  , i.e. the direction of blowing the 

blade. For blowing modes with a negative angle  

 , the denominator decreases with increasing 

speed head and at 
min sin 2crq q    

turns to zero. In this case, the deformation of the 
elastic blade, in comparison with the deformation 
of the "rigid" blade, increases and in the limit, at a 
velocity head corresponding to the minimum 
critical at a given  , turns to infinity. For blowing 

with positive angles opposite picture is observed – 
the elasticity of the blade reduces strain. 

The resulting ratio (16) avoids the need to 
integrate the original equation (3). We introduce 
the concept of load increase factor: 

(17) 
min

1
,

sin 2
1j

j

w

r

cr

К
q

q




 


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which shows how many times the actual 
deflection of the elastic blade is greater than (less 
than) the deflection obtained under the condition 
of neglect of additional aerodynamic loads caused 
by elastic deformations of the blade. Then we can 
write: 

(18) .
jj w rК   

Substituting (18) in (4), taking into account (14), 
we obtain: 

(19) 
( ) ,

j

j

w r w r

j

К К      

where 
r  is the function of the angles of rotation 

of the elastic axis of the "rigid" blade, which is the 
solution of equation (13). Integrating equation (13) 
three times, we obtain: 

(20) 
2

2 3 3

0 0

1 1
cos .

2

r R R r R R

r n r

r r r r

V
C b dr mgdr

EI EI


          

Knowing that y  , M EIy EI   and taking 

into account (19), we obtain: 

(21) 

,w ry К y  ,w rМ К М  

2
2 4 4

0 0 0 0

1 1
cos ,

2

r r R R r r R R

r n r

r r r r

V
y C b dr mgdr

EI EI


         

 

2
2 2 2cos .

2

R R R R

r n r

r r r r

V
M C b dr mgdr

       

Thus, expressions are obtained for calculating 
deflections, angles of rotation and bending 

moments (stresses M W  , W – moment of 

resistance to the bending of the section) directly 
through their values for the "rigid" blade. 

3.2. Stress calculation method based on 
nonlinear loading model 

The need to consider the problem of wind loading 
of the blade in a nonlinear formulation is mainly 
due to two facts. The non-rotating rotor blade by 
its characteristics refers to a flexible rod having 
deflections within the elastic deformations of the 
material commensurate with their length [10]. The 
aerodynamic load, normal to the blade axis, is a 
tracking load – its direction changes with the 
change in the angles of rotation of the blade axis 
during bending. 

The nonlinear integro-differential equation of the 
rotor blade under wind loading has the form [11]: 

(22) 

2
2 2

3
2 2

(1 )
2(1 )

( ) .

R R R R

n

r r r r

R

n l

r

y y
EI mgdr Y dr

y

Y y y y dr

 
   



 

   



 

The method of successive perturbations of          
V. V. Petrov's parameters is increasingly used to 
solve nonlinear problems of the theory of 
elasticity, which include the problem of complex 
bending of the blade [12-17]. In this method, 
based on the consideration of static loading as a 
process that develops with a monotonous 
increase in the loading parameter, the interval of 
load change by gradual application of its small 
increments is divided into steps, for each of which 
the boundary value problem for linearized 
equilibrium equations is solved. The thus obtained 
deformed state of the system at the current step is 
taken as the initial one for the next loading step. 
However, the linearization procedure, based 
mainly on physical representations, introduces 
inevitable errors that accumulate as the loading 
parameter increases. To improve the accuracy of 
the solution by the method of successive 
perturbations of the parameters in this paper, the 
iteration process of the solution for error 
correction at each loading step is used. 

Traditionally, the method of successive parameter 
perturbations is used to solve problems in which 
only one loading parameter 𝜆 is considered. 

In General, if you have 𝑘 loading parameters, you 
can use the following computational scheme. The 
step-by-step loading procedure is based on the 
initial equilibrium equation (22). The loading 
process is divided into 𝑘 loading stages. Each 
stage of loading will be characterized by the 
loading parameter 𝜆𝑘 and the function of the 

influence of the loading parameter 𝐹𝑘, for 𝑘 =1..m. 
Inside each 𝑘 stage of loading will break the 

interval [0, 𝜆𝑘] changes the load on 𝑛𝑘 (for 
definiteness equal) levels of loading, and will 
apply the load step by step in small increments 
∆𝜆𝑘 = 𝜆𝑘/𝑛𝑘. Let for some 𝑖 loading step at  

∆𝜆𝑘,𝑖 = 𝜆𝑘,𝑖−1 + ∆𝜆𝑘 the exact solution of the 

original equation is known. This makes it possible 
to calculate the influence functions 𝐹𝑘, included in 
the original equilibrium equation of the loading 
process, as free terms. In this case, this equation 
is reduced to a linear differential equation with 
respect to an unknown function: 

(23) 





m

k

iiki ryyFy
1

11 ).,,(  
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From which, taking into account boundary 
conditions, after a single integration is the function 
𝑦𝑖
′; after a double - 𝑦𝑖, the current loading step. 

Next, we will look for refined functions 𝑦𝑖 and 𝑦𝑖
′ 

corresponding to the 𝑖 step of loading. Why build 

an iterative process in which the found on the 𝑖 
step of loading function are the initial 
approximation to find their exact (with accuracy ε) 

values. Then for 𝑗 iteration, according to equation 
(23) we have: 

, , 1 , 1 1

10

( , , ) ,

r m

i j k i j i j

k

y F y y r dr C 



    

, , 1 2

0

.

r

i j i jy y dr C r C    

The constants 𝐶1 and 𝐶2 are from boundary 
conditions. The condition for termination of 
iterations is the equality of deflections of the end 
section of the blade, on two adjacent iterations, 
with an accuracy of ε: 

(24) 

, , 1
,

i j i jl ly y 


   

, ,

0

sin ,
i j

l

l i jy y dr   
, 1 , 1

0

sin .
i j

l

l i jy y dr
 

   

After fulfilling the conditions (24) repeats the 
above-described calculation procedure the 
functions of the deflections and angles of rotation 
of the elastic axis of the blade in the loading 
parameter for the 𝑖 + 1 step loading, etc. to 

achieve a given value of 𝜆𝑘, and then transition to 
the next stage of loading. The calculations 
continue until the specified 𝜆𝑚 value of the last 
loading stage is reached. 

Separately, we note the need for an iterative 
process to account for changes in the influence 
functions 𝐹𝑘,..., 𝐹1, due to additional deformation 
of the blade per loading step. And also to clarify 
them before the 𝑖 + 1 step, because the influence 

of the loading parameter 𝜆𝑘,𝑖, can change them. 

The representation of static loading as a process 
allows us to divide the problem of complex 
bending of the blade under the influence of wind 
into two stages corresponding to the actual 
loading picture: - transverse bending under the 
action of its own mass; - longitudinal and 
transverse bending of the blade under wind 
loading. Based on the general bending equation 
(22), we obtain the equations corresponding to 
each of the loading stages. 

First stage: 1.y F   Second stage: 1 2.y F F    

Here 𝐹1, 𝐹2 functions of influence of parameters of 
loading which according to the equation (22) have 
the form: 

3
2 2

2

1

(1 )
,

R R

r r

y
F mgdr

EI


     

3
2 22

2

2

(1 )
(1 ) ( ) .

2

R R R

n n l

r r r

y y
F Y dr Y y y y dr

EI

  
    

 
    

Note the features of each of the stages of loading. 
At the first stage, the loading parameter is the 
proper mass of the blade. As an initial 
approximation, we will use the exact solution 𝑦0 

and 𝑦0
′  obtained from the solution of the linear 

equation of the blade bending: 21
.

R R

r r

y mgdr
EI

      

Deformed state of the blade under the action of its 
own mass will be the initial one for the next stage 
of loading. 

In the second stage, the blade is loaded with wind 
load. Here, the loading parameter is the wind 
speed 𝑉. Peculiarity of this loading stage is the 
presence of a second load – mg, the value of 
which does not change during wind loading, but 
its function of influence 𝐹1 changes. When the 
loading parameter reaches the specified value 
𝜆𝑘 = 𝑉, the loading process ends. 

4. NUMERICAL RESULTS 

In accordance with the methods described above, 
programs are compiled in the algorithmic 
programming language Maple 18. The object of 
the study is the rotor blade of helicopters, which 
by its aeroelastic characteristics belongs to the 
number of blades more susceptible to the 
damaging effects of wind. However, this type of 
blades is the most common. 

All calculations are carried out for the alignment of 
the helicopter, which corresponds to a strictly 
vertical position of the rotor shaft, ie γ=0. 

4.1.1. Features of wind loading 

The results of calculations of bending moments 
based on linear models of loading are shown in 
figure 2, where: 1 – the bending of the blade 
under its own weight, 2 – blowout with the rear 
edge of the elastic blade, 3 – air cooling with the 
rear edge of the "rigid" blade, 4 – blowing with the 
front edge of the elastic blade, 5 – air cooling with 
the front edge of the "rigid" blade. 
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Common to both cases is that the dependence 
𝑀 = 𝑓(𝜒) at a positive angle of the "common step" 
is symmetrical with respect to the azimuth of    

𝜓 = 180° a similar dependence at a negative 
angle of the installation. The difference in the 
magnitude of the angles of the installation, for 
which there is a quantitative equality of the 
extremes of these dependencies, is due to the 
presence of the blade twist. 

As can be seen, elasticity makes significant 
changes in the distribution of bending moments. 
The peculiarity is that for the elastic blade, in 
comparison with the "rigid", the maxima of the 
curve 𝑀 = 𝑓(𝜒) increase slightly, while the minima 
decrease sharply. The latter moves in the region 

of angles 𝜒 = −45° that correspond to the 

azimuths 𝜓 = 135° at negative angles "collective 

pitch", and 𝜓 = 225° – if positive. As the flow rate 
increases, this pattern becomes stronger. 

From figure 2, it is also clear that the conditions of 
ensuring the strength of the blade are dangerous 
oblique blowing modes at negative sliding angles 

close to 𝜒 ≈ −45°. The calculations performed 
according to the proposed method showed that 
the stresses from wind loading exceed the 
stresses from the forces of the blade's own weight 
and, therefore, should be taken into account in its 
design. The stress distributions over the radius of 
the blade obtained at the slip angle are shown in 
figure 4, the designation of the curves is 
preserved. 

4.1.2. Influence of nonlinear factors 

Comparison of bending stress distributions along 
the blade length calculated on the basis of linear 
(curve 2) and nonlinear (curve 1) loading models 
are shown in figure 5. 

The results obtained on the basis of solving the 
linear problem give a fairly complete picture of the 
behavior of the rotor blade under static wind 
action. However, to obtain more accurate 
quantitative results, consideration of the nonlinear 
problem is required. This is due to the need to 
take into account various kinds of nonlinearities 
that appear at large deflections of the blade. 

5. CONCLUSIONS 

Taking into account the results obtained in this 
study will allow to design the rotor blades of the 
helicopter, providing the required safety standards 
of operation, at specified operating speeds of the 
wind flow. For this purpose: 

1 A method for calculating bending stresses in 
the non-rotating rotor blades of a helicopter 
based on a linear loading model is proposed. 

2 The coefficient of load increase is determined, 
on the basis of which the solution is 
constructed, allowing to avoid the need for 
direct integration of the initial differential 
equation of the blade bending under the 
influence of wind. 

3 Expressions are obtained that are convenient 
for calculating deflections, angles of rotation 
and bending moments (stresses) directly 
through their values for the "rigid" blade. 

4 A method for calculating bending stresses in 
the rotor blades of a helicopter based on a 
nonlinear model of loading under static wind 
action is proposed. 
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Figures 

 

 

Figure 1: Change in the critical speed of the rotor test blade depending on the 
direction of airflow: 1-blowing from the leading edge, 2-blowing from the trailing edge. 

 

Figure 2: Flow diagram of the rotor blade when blowing the helicopter. 
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a) 28,50   V  m/s. b) 0 5 , 28V    m/s. 

Figure 3: Changing the bending moment in the blade sealing. 
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а) 0 10 , 20V     m/s. b) 0 10 , 20V    m/s. 

Figure 4: Distribution of bending stresses along the blade length. 
 
 
 

  

а) blowing from the leading edge at 

0 10 ,    ψ = 135°. 

b) blowing from the leading edge at   

0 10 ,   ψ = 150°. 

Figure 5: Distribution of bending stresses along the blade length. 

 

 


