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Abstract The flow over an oscillating OA209 airfoil un-
der dynamic stall conditions was investigated by means
of unsteady surface pressure measurements and time-
resolved particle image velocimetry. The characteristic
features of the unsteady flow field were identified and
analysed utilising different coherent structure identifica-
tion methods. An Eulerian and a Lagrangian procedure
were adopted to locate the axes of vortices and the edges
of Lagrangian coherent structures, respectively. The
complementary information obtained by these methods
provided deeper insight into the spatiotemporal evo-
lution of vortical structures within a single dynamic
stall life cycle. In particular, the physical mechanisms
heralding the formation of the primary dynamic stall
vortex were identified as the emergence and subsequent
roll up of a shear layer at the interface between the free
stream and the reversing flow near the airfoils surface.
Accordingly, the stall development was subdivided into
two parts: a primary instability stage followed by a
secondary instability or vortex formation stage. The
characteristic time scales associated with the first stage
revealed an overall decrease of the dynamic stall delay
with increasing unsteadiness. The delay attributed to the
vortex formation stage was observed to be unaffected
by variations in the airfoils dynamics. The combination
of time-resolved imaging and extensive coherent struc-
ture analysis was shown to provide a new approach to
different aspects of dynamic stall.

1 introduction

The dynamic stall process of an airfoil comprises a se-
ries of complex aerodynamic phenomena in response
to an unsteady change of the angle of attack. It is ac-
companied by a lift overshoot and delayed massive flow
separation with respect to static stall. The salient feature
of the unsteadily separating flow is the formation and

convection of a large-scale coherent structure referred
to as the dynamic stall vortex. The most prominent
example can be observed on the retreating blades of
an helicopter rotor in forward flight. Although the
dynamic stall delay and the related increase of the max-
imum lift can be beneficial in some applications, the
large excursions of the aerodynamic loads that emerge
during vortex break down induce strong vibrations and
structural loads, potentially fatal for a helicopter rotor.
Hence, due to the incessant interest in improving the
manoeuvrability and performance of rotary-wing air-
craft and rapidly manoeuvring aircraft, dynamic stall
has been and still remains the subject of vivid interest
[11, 21, 20].

A detailed analysis of the dynamic stall events on
an oscillating airfoil was presented by Carr et al. [1].
They revealed that the prominent features within a full
cycle of oscillation are consecutively: the emergence and
spreading of flow reversal on the airfoil’s suction side,
the formation and convection of a large-scale leading
edge vortex, massive flow separation, and finally flow
reattachment. Analogously, Shih et al. [19] classified the
unsteady flow development over an airfoil pitching up
at constant rate into four successive stages: 1) a vortex
formation stage, 2) a vortex convection stage, 3) stall
onset, and 4) a stalled stage. Both descriptions show
that the flow over either a constantly pitching or oscil-
lating airfoil is qualitatively characterised by the same
prominent features, being the initiation, growth and
shedding of a leading edge vortex and the associated
lift overshoot. For both types of motion the process of
vortex formation and convection result in a delay of
massive flow separation to angles of attack beyond the
static stall angle. During this delay the lift continues
to increase with increasing angle of attack yielding the
lift overshoot which is characteristic of dynamic stall.
The inception of stall is generally accompanied by a loss
of lift and an increase of the negative pitching moment
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and marks the beginning of the stalled stage. This stage
can be recognised by large-scale vortex shedding and
associated large fluctuations of the lift, drag and pitch-
ing moment. Furthermore, when the airfoil motion is
oscillatory, a large amount of load hysteresis is present.

Although a lot of effort – analytical as well as nu-
merical and experimental – has been devoted in the past
to enhance the comprehension of the phenomenology
of dynamic stall, it is not yet fully understood and char-
acterised. In particular, the process that leads to the
formation of the primary stall vortex and the mecha-
nism that causes the vortex to break contact with the
airfoil are still controversial issues requiring further and
deeper examination.

Accurate knowledge of the state of the fluid flow
during dynamic stall is strongly tied to a fundamental
understanding of the development and interaction of
coherent structures. Due to the incessant technological
progress during the last decades yielding the develop-
ment of state-of-the-art digital cameras, high repetition
rate lasers and sophisticated evaluation algorithms, the
particle image velocimetry (PIV) technique established
itself as a valuable and indispensable tool in experi-
mental fluid dynamics. However, the investigation of
vortices and vortex dynamics from experimental data
remains a challenging task due to the lack of a uni-
versally accepted definition of vortical structures and
the difficulty to quantify them. Several specific defini-
tions have been proposed hitherto, i. a. [10, 6]. Despite
the plethora of publications on the issue no consensus
has been reached yet, reflecting the complexity of the
subject area. As a direct consequence, unambiguous
vortex detection remains elusive and various Eulerian
and Lagrangian criteria have been introduced over the
years with different validity depending on the specific
problem.

Within the scope of this study, the conspicuous
features of the experimentally investigated flow over
a sinusoidally oscillating airfoil in a uniform flow are
identified and analysed utilising a combination of an
Eulerian vortex centre allocation procedure [13] and a
Lagrangian approach based on the Lyapunov exponent
[7]. Whereas past experimental investigations generally
involve phase-locked measurements, the present study
provides time-resolved recordings of the velocity field in
addition to unsteady airfoil’s surface pressure distribu-
tions and allows for the examination of the chronology
of events leading to the onset of dynamic stall.

The onset of stall under dynamic conditions is gen-
erally defined as the detachment of the primary stall
vortex and was specified earlier in the present context
by Mulleners and Raffel [14] based on a characteristic
mode of the proper orthogonal decomposition (POD)
of the velocity field. Variations in the flow field topol-

ogy that accompany the stall onset were verified by a
Lagrangian coherent structure analysis. Furthermore, a
subtle but significant change was observed in the ori-
entation of the trajectories of the vortices that originate
at the very leading edge shortly before and after stall
onset. Due to the congruence with the Eulerian and
Lagrangian picture shown in Mulleners and Raffel [14],
the POD-based assignment of the stall onset is deemed
to be reliable and was utilised to specify the dynamic
stall onset for the present parameter combinations.

The next logical step – and the main focus of this
paper – is to assess the associated time delay with re-
spect to static stall. Furthermore, in order to model
and predict the dynamic stall onset and delay, special
emphasis is placed on the identification and characteri-
sation of the physical mechanisms and parameters that
play a key role in the initiation, growth, and subsequent
detachment of the dynamic stall vortex.

The paper is organised as follows. Prior to the de-
scription of the applied coherent structure identification
procedures, the experimental details will be specified.
Subsequently, the experimental results are presented
and discussed. The discussion covers the examination
of the chronology of events heralding stall onset and
a detailed analysis of the associated time-scales. The
discussion is concluded by a short summary of the most
important findings and by suggesting further avenues
of investigation.

2 experimental set-up

Wind tunnel experiments were conducted to investi-
gate dynamic stall on a constantly pitching airfoil in a
uniform flow at a free stream Reynolds number Re =

9.2× 105 based on the chord length c, with c = 0.3 m
(Mach number Ma = 0.14). A two-dimensional air-
foil model with an OA209 profile was subjected to a
sinusoidal oscillating motion about its quarter chord
axis with a mean incidence α0, an amplitude α1, and
an oscillation frequency fosc. The latter is preferably
written in dimensionless form as the reduced frequency
k = π fosc c/U∞ , where U∞ is the free steam velocity.
The mean incidence, amplitude and reduced frequency
were varied such that α0 ∈ {18°, 20°, 22°}, α1 ∈ {6°, 8°},
and k ∈ {0.050, 0.075, 0.10}.
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Figure 1: Position of the PIV field of view.
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Stereoscopic time-resolved particle image velocity
(TR-PIV) measurements were conducted in the cross
sectional plane at model mid-span (see figure 1). The
width of the field of view covered the entire chord for
the relevant angle of attack range. As maximally al-
lowed by the hardware, time series of 6144 frames with
full camera resolution were recorded at 3000 Hz, cor-
responding to an acquisition rate of 1500 Hz for the
velocity fields. After mapping the views of both cam-
eras, the dimensions of the PIV measurement win-
dow were 335 mm× 165 mm and the spatial resolu-
tion of the recording was 5.0 px/mm. The PIV images
were processed using an interrogation window size
of 32 px× 32 px and an overlap of approximately 80 %
yielding a grid spacing of 6 px or 1.2 mm which is less
then 0.005 c. The interrogation window size was min-
imised ensuring an acceptable signal-to-noise ratio. The
window overlap on the other hand was maximised to
avoid artificial smoothing of velocity gradients [17]. By
doing so the spatial resolution of the results of the vortex
detection algorithms was improved. Prior to the coher-
ent structure analysis, the velocity fields were rotated
into the airfoil reference system with the x-axis along
the chord, the y-axis along the span and the z-axis up-
ward perpendicular to the chord. The origin coincides
with the rotation axis, i. e. the airfoil’s quarter chord axis,
at model mid-span. Simultaneously to the TR-PIV, the
surface pressure distribution at the model mid-span was
scanned at approximately 6 kHz for about 15 s. The data
acquisition was synchronised with the recording of the
PIV images allowing for straightforward assignment of
the instantaneous pressure distributions to each of the
acquired velocity fields.

3 coherent structure analysis

The common goal of coherent structure identification
methods is to locate, extract, and visualise conspicuous
flow structures characterised by various spatial and tem-
poral scales. In the context of the present paper, two
different methods to analyse coherent structure were
adopted; one Eulerian and one Lagrangian procedure.

The Eulerian method utilises the dimensionless
scalar function Γ that was first introduced by Michard
et al. [13] to locate the axis of individual vortices. The
function is derived directly from the two-dimensional
in-plane velocity field and is defined in discrete form as

Γ(xi) =
1

M

∑
xj ∈Si

[
(xj − xi)× (uj − ũi)

]
·n

|xj − xi| · |uj − ũi|

=
1

M

∑
xj ∈Si

sin(θij) ,
(1)

with Si a two-dimensional area around xi, M the num-
ber of grid points xj inside Si with j 6= i, n the unit
normal vector, uj the velocity at xj, ũi the local mean ve-
locity around xi, and θij the angle formed by the vectors
xj − xi and uj − ũi. The local mean velocity is taken into
account in order for Γ to be Galilean invariant (cf. [4]).

According to its definition, Γ is a dimensionless
scalar function, with −1 6 Γ 6 1. The location of pos-
sible vortex axes is indicated by the local extrema of
Γ and the sense of rotation is given by the sign of the
local extremum. Besides the detection of the location of
the vortex centres, their trajectories over a time series
of flow fields have been traced. For this purpose, the
convection velocity of the individual identified vortex
centres within the reference frame are used to predict
their future position and narrow the number of possible
follow-up vortices.

The most popular Lagrangian approach, which
was adopted in the present study, leverages finite-time
Lyapunov exponents (FTLEs) and was introduced by
Haller and Yuan [7]. The FTLE method reverts directly
to the fluid particle trajectories and is therefore inher-
ently objective, includes information on the history of
the flow, and has a clear physical interpretation. The par-
ticle trajectories can be integrated in forward as well as
in backward time yielding positive finite-time Lyapunov
exponent (pFLTE) and negative finite-time Lyapunov
exponent (nFTLE) fields. The ridges in the pFTLE field
reveal material lines normal to which fluid particles are
being stretched or repelled, consequentially they are re-
ferred to as repelling material lines or stable manifolds.
Vice versa, ridges in nFTLE fields visualise attracting
materials or unstable manifolds, i. e. lines along which
fluid particles are being elongated, when integrating the
trajectories in backward time. The flow field around
the intersection of a repelling and an attracting material
line resembles that of a saddle point. Moreover, when
attached to a solid surface attracting material lines de-
pict separation lines while attachment lines are repelling
material lines. This FTLE method thus yields candidate
material lines and captures features of the flow that are
familiar from flow visualisation experiments. Accord-
ing to Shadden et al. [18] the ridges in the FTLE fields
delineate regions that exhibit qualitatively different dy-
namical behaviour, hence indicated the boundaries of
Lagrangian coherent structures (LCSs). For a compre-
hensive discussion of the general properties and basic
concepts involved in the computation of the FTLE, the
reader is referred to i. a. [5, 3].

The combination of two vortex identification pro-
cedures that are different in nature allows for different
aspects of the flow to be highlighted and delivers a more
detailed insight into the vortex dynamics.
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4 results and discusion

Analogous to the classification of Shih et al. [19] with
regard to the flow over an airfoil pitching-up at constant
rate, the unsteady flow development over an oscillation
airfoil can be divided into five different stages [14]. With
the starting point of a cycle taken at the minimum inci-
dence angle, the flow will consecutively pass through
the following stages within each individual cycle: 1) the
attached flow stage; 2) the stall development stage; 3) stall
onset; 4) the stalled stage; and 5) flow reattachment. The
onset of dynamic stall, defined as the detachment of the
primary stall vortex, was specified for the available time
resolved velocity field data based on a characteristic
POD mode as reported in a preceding publication (see
[14]). The focus in the present paper lies on the analysis
of the peculiarities of the dynamic stall development,
including the succession of the physical mechanisms
that herald stall onset, the governing parameters, and
the relevant time-scales.

4.1 Triggering Mechanism

The dynamic stall process is deemed to be an interesting
example of unsteady separation. It is initiated by an
adverse pressure gradient and involves a recirculation
region originating within the region of this local adverse
gradient. The observations presented in [14] revealed
a prominent recirculation zone on the airfoil’s suction
side which grows in a direction normal to the surface
when the airfoil pitches up. This is analogous to the
basic mechanism heralding unsteady separation in the
low-Reynolds-number regime described by Obabko and
Cassel [15]. Furthermore, the shear layer that develops
at the interface between this region of reversed flow and
the free stream flow seems to play a major role in the
stall development (cf. Ho [8]).

Based on the size of the region of flow reversal
and the level of interaction between the shear layer
vortices, the stall development stage can be subdivided
into two parts. A first part essentially covers the growth
of the recirculation region and the corresponding initial
development of the free shear layer. This includes the
emergence of individual shear layer vortices as a result
of a primary instability. These small-scale vortices inter-
act only weakly with each other while being convected

x

z zvi(t)

zw(xvi(t))

xvi(t)

Figure 2: Definition of the ingredients required for the com-
putation of ∆z.

downstream by the external flow. Inspired by the stan-
dard notions used to describe the evolution of a mixing
layer (cf. [2]), this part of the stall development phase
is termed the primary instability stage. Accordingly, the
second part which is characterised by a secondary insta-
bility eliciting the free shear layer to roll up and form a
large-scale dynamic stall vortex is termed the secondary
instability stage or alternatively the vortex formation stage.

Prior to focussing on the two stages and their gov-
erning parameters individually, the transition between
them is identified based on the temporal evolution of
the average height of the shear layer, which is equiv-
alent to the average height of the recirculation region.
The latter is given by the average normal distance of
the shear layer vortices with respect to the airfoil’s
upper surface. More general, the average height of all
clockwise rotating vortical structures detected in an
instantaneous experimental velocity field denoted by ∆z
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Figure 3: Evolution of the average vertical distance of the
vortex cores from the airfoil’s upper surface over one period
(a) and in detail (b) with the corresponding linear fits. The
horizontal and vertical, dotted lines indicate respectively the
noise level due to experimental limitations and the specified
onset of dynamic stall (α0 = 20°, α1 = 8°, k = 0.05).
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is calculated according to

∆z(t) =
1

N(t)

N(t)∑
i=1

∣∣zvi(t) − zw(xvi(t))
∣∣ , (2)

where N(t) is the total number of clockwise rotating
vortices detected in the instantaneous velocity field at
time t using the Eulerian vortex detection algorithm,
and where

∣∣zvi(t) − zw(xvi(t))
∣∣ is the normal distance of

the individual vortices to the airfoil’s upper surface as
illustrated in figure 2. The average vortex height is calcu-
lated for all instantaneous velocity fields even when the
vortices considered are not arranged in the shear layer
and ∆z can not be interpreted as the average shear layer
height. A typical temporal evolution of ∆z, normalised
by c, for one oscillation period, T , is depicted in figure 3

for the dynamic stall case with α0 = 20°, α1 = 8°, and
k = 0.05. Here, the values on the abscissa show the time
lag with respect to the instant when the angle of attack
exceeds the static stall angle, tss.

For small angles of attack, vorticity is a priori con-
fined to the thin boundary layer and its transport is
dominated by convection. Vorticity lumped into sepa-
rate vortices is convected downstream along the airfoil’s
contour preventing the boundary layer from growing

beyond a certain thickness. Hence, as long as the flow
is fully attached the average height ∆z is expected to be
of the order of the boundary layer thickness. However,
due to experimental limitations valid velocity informa-
tion was only available down to approximately 2 mm
above the airfoil’s surface. Consequentially, minimum
values of ∆z for low angles of attack are erroneous and
misleading. The horizontal, dotted line in figure 3(a)
marks the minimum level of ∆z corresponding to a fully
attached flow.

With increasing angle of attack, the strongly accel-
erated flow around the leading edge is accompanied by
a large pressure gradient which leads to an increased
production of vorticity. Immediately downstream of the
leading edge the flow decelerates, i. e. a local adverse
streamwise pressure gradient emerges, as a result of
which a recirculation zone develops there. The emer-
gence and subsequent growth of the region of flow re-
versal can be readily understood from a vorticity point
of view.

The vorticity distribution is initially confined to a
small vortex sheet near the airfoil’s surface which can be
represented by a discrete train of two-dimensional point
vortices. According to the vortex image pair analysis
of Reynolds and Carr [16], mirror vortices – included
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Figure 4: Difference of the flow topology and vortex distribution between the primary instability and the vortex formation stage
(α = 25.5° and 26.4° on the upstroke ↗, respectively) indicated by: (a)-(b) the velocity field and the centres of (•) clockwise and
(•) anticlockwise rotating vortices and (c)-(d) the corresponding Lagrangian coherent structures indicated by the ridges in the
pFTLE and nFTLE fields (α0 = 20°, α1 = 8°, k = 0.050).
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to model the airfoil’s surface – induce an upstream ve-
locity in their objects. In the region where a persistent
adverse pressure gradient is present and the potential
velocity no longer prevails the upward swimming veloc-
ity of the individual vortices, the vortex flow is able to
move upstream. Due to the velocity difference with the
outer flow a shear layer develops which is subsequently
subjected to the primary instability. As a result of the
latter the initial vorticity is redistributed in concentrated
small-scale vortices.

Initially the shear layer vortices, all unidirectional-
rotating, are more or less aligned and they interact only
weakly with each other (figure 4(a)). The growth of the
layer is approximately linear (cf. [2]) and the same is
true for the increase of the mean height ∆z. The linear fit
describing the evolution of the shear layer height within
the primary instability stage is indicated by a dashed line
in figure 3(b). This linear relationship is valid until, at a
later stage, the small shear layer vortices are subjected
to the secondary instability and start to merge heralding
shear layer roll up and the formation of the primary
stall vortex. Simultaneously, counter-rotating vortices
are induced near the airfoil profile as a result of strong

α = 26.35° ↗

α = 26.41° ↗

α = 26.46° ↗

Figure 5: The pFTLE and nFTLE fields corresponding to con-
secutive time steps around the transition from the primary
instability into the vortex formation stage (α0 = 20°, α1 = 8°,
k = 0.05).

interactions between the shear layer vortices and the
reversed flow near the surface (figure 4(b)). During
this stage the recirculation region grows swiftly and be-
comes of the order of the airfoil’s thickness. The location
and the size of the recirculation region within the two
different stall development stages are indicated by the
ridges in the pFTLE and nFTLE fields in figure 4(c)-(d).
Furthermore, the rate of increase of ∆z during the vortex
formation stage is a measure for the rate of growth of the
dynamic stall vortex.

The discontinuity in the temporal evolution of the
shear layer height in figure 3(b) thus indicates a growing
instability and marks the transition of the flow from the
primary instability into the vortex formation stage. From
an Eulerian point of view the transition point is de-
fined by the intersection of the two linear fitting curves
describing the rate of increase of ∆z in the individual
regimes. The time instant and angle of attack at which
the transition takes place is denoted by tds1 and αds1,
respectively.

Additionally, from a Lagrangian point of view, the
development of the secondary instability around t = tds1

is nicely observable in figure 5 representing a sequence
of instantaneous LCSs. The depicted LCSs, identified by
the ridges in the pFTLE and nFTLE fields, are extracted
based on instantaneous velocity fields for subsequent
time instants around t = tds1. The increasing bulgings
of the ridges in the pFTLE and nFTLE fields readily indi-
cate the growing instability of the shear layer leading to
shear layer roll up. Consequently, the Lagrangian coher-
ent structures analysis supports the conclusion that the
passage from the first into the second stall development
stage is triggered by a secondary instability of the shear
layer.

4.2 Primary Instability Stage

The question that remains is in what way the airfoil
dynamics affect the formation and growth of the insta-
bility and therewith the dynamic stall vortex. Since the
stall development stage has been divided into two parts
characterised by a distinctly different behaviour of the
shear layer it seems usefull, even necessary, to threat
both stages individually.

The first part of the stall process is termed the pri-
mary instability stage and has been identified as the part
of the dynamic stall life cycle that covers the initial devel-
opment of a recirculation region on the airfoil’s suction
side and the formation of small-scale positive vortices
at the interface as a result of a primary instability of the
shear layer. The flow is conveniently considered quasi-
static for angles of attack up to the static stall angle.
Hence, the start of the primary instability stage is set at
t = tss, i. e. the moment the angle of attack is increased
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Table 1: Overview of the calculated dynamic stall quantities for different oscillation parameter combinations.

k α0 [°] α1 [°] αds1 [°] ∆t1 [s] × 10−2 αds2 [°] ∆t2 [s] × 10−3

0.050 18 6 23.97(5) 5.38(55) 24.04(1) 4(3)
0.100 18 6 23.65(12) 3.86(20) 23.94(8) -

0.050 18 8 25.35(10) 4.37(19) 25.75(5) 8(3)
0.100 18 8 25.94(6) 3.07(20) 25.81(6) 10(2)

0.050 20 6 24.97(9) 4.49(16) 25.53(11) 12(1)
0.075 20 6 25.60(6) 3.84(11) 25.99(2) 11(2)
0.100 20 6 25.83(10) 3.37(24) 25.89(6) 11(2)

0.050 20 8 25.87(20) 3.92(22) 26.59(8) 8(1)
0.075 20 8 26.48(27) 3.03(23) 27.44(13) 9(3)
0.100 20 8 27.20(14) 2.83(13) 27.95(4) 9(2)

0.050 22 6 25.47(21) 4.36(27) 26.19(9) 9(3)
0.100 22 6 26.73(11) 3.04(9) 27.61(7) 9(1)

0.050 22 8 26.01(13) 3.63(12) 27.06(6) 9(2)
0.100 22 8 27.94(19) 2.75(11) 29.03(16) 7(1)

The number in between the brackets is the standard deviation of the data.

beyond static stall. Its upper bound is given by tds1.
The characteristic time delay attributed to the primary
instability stage is denoted by ∆t1 and is calculated for
all parameter combinations relevant to this study. The
assessed values are listed in table 1.

Considering the behaviour of ∆z in function of
angle of attack, i. e. comparing αds1 for the prevailing
parameter combinations, yields the conclusion that the
transition into the vortex formation stage is postponed
to larger angles of attack with increasing frequency.
However, comparing ∆t1 for the different degrees of
unsteadiness reveals that the phase transition is actually
promoted rather than delayed with increasing fosc for
constant mean incidence and oscillation amplitude. Re-
garding α0 and α1, their impact can not be investigated
separately since they are interrelated parameters for the
airfoil’s motion and its derivatives.

The rate of change of the angle of attack1, i. e. the
first time derivative of α(t), is a measure for the instanta-
neous unsteadiness and is influenced by the oscillation
frequency as well as by the mean incidence and the os-
cillation amplitude. The prevailing airfoil motion being
sinusoidal, the rate of change of the angle of attack is
inherently time-dependent, and moreover nonlinear.

Furthermore, the unsteady separation process com-
prises a series of events governed by much smaller time
scales compared to the oscillation period. Hence, in
order to outline the impact of the dynamic effects, an
instantaneous effective measure for the unsteadiness
should be considered rather than the reduced frequency
which is only an overall measure. Since the role of the

dynamic effects is generally considered minor up to the
point where the angle of attack is increased beyond the
static stall angle, the relevant instantaneous effective
unsteadiness is determined here by the rate of change of
α at t = tss, denoted by α̇ss. In doing so the interrelated
parameters i. e. mean incidence, amplitude, and oscil-
lation frequency are gathered into a single parameter
allowing for a more general investigation of the relation
between unsteadiness and stall delay.

Presenting ∆t1 in function of the normalised ef-
fective unsteadiness α̇ss c/U∞ in figure 6(a) reveals a
monotonically decrease of the stall delay with increasing
unsteadiness. Again a different picture emerges when
regarding the dependence of the angle of attack αds1

on the unsteadiness (figure 6(b)). Although the first
part of the stall delay in terms αds1 increases more or
less nonlinearly with α̇ss c/U∞ as predicted by Johnson
and Ham [9], the incidence angle is considered not an
adequate indicator for the unsteady processes and the
actual time delay is preferred. Hence, it is suggested
here that the unsteadiness speeds up the first part of the
stall process rather than delaying it.

In figure 6 there seems to be one data point that
is out of line with the others, namely the parameter
combination α0 = 18°, α1 = 6°, and k = 0.10 depicted
by the open gray circular symbol ( ). This particular
parameter combination yields a dynamic stall case that
is also referred to as a ’light stall’ case. A light stall
case can be recognised by the fact that the oscillation
direction is changed before the dynamic stall onset
angle is reached. Hence, massive flow separation is no

1 α̇(t) =
dα(t)

dt
= 2πfoscα1 cos(−

π

2
+ 2πfosct).
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Figure 6: Influence of the rate of change of the angle of attack
at t = tss on (a) the stall delay ∆t1 and (b) the angle of inci-
dence αds1

for different oscillation parameter combinations
indicated by different markers (cf. table 1). Error bars indicate
the standard deviations.

longer initiated on the upstroke but is forced to occur
on top of the cycle when less circulation is present. As
a consequence, the height of the viscous zone enclosing
separated flow is of the order of the airfoil thickness,
and not of the order of the airfoil chord as for a deep
stall case (cf. [12]).

4.3 Vortex Formation Stage

The second part of the stall development stage imme-
diately following the primary instability stage is termed
the secondary instability or the vortex formation stage and
is characterised by the roll up of the shear layer into a
large-scale dynamic stall vortex. The process leading
to the formation of the primary stall vortex is identi-
fied as an instability of the shear layer that confines the
reversing flow near the airfoil’s surface.

Because a large portion of the overall vorticity is
concentrated in the shear layer, the instability can also be
seen as an instability of the vorticity distribution. Slight

displacement of small vorticity packets and the gener-
ation of extra vorticity will alter the induced velocity
for existing vortices and vortex lines, and consequen-
tially change the vorticity pattern and the interactions
between the viscous and inviscid parts of the flowfield.
In particular, due to the altered process of production,
convection and diffusion, the primarily small-scale shear
layer vortices deviate from their initial trajectories, ex-
ert stronger mutual interactions and merge into larger
coherent structures.

Furthermore, stronger interactions between the
viscous-dominated shear layer and the reversed flow
underneath it yield the emergence of counter-rotating
vortices near the airfoil’s surface. The presence of these
negative vortices is indicated by the Eulerian picture
(e. g. figure 4(b)). These vortices will play an essential
role in the process leading to the dynamic stall onset. as
they will be induced towards leading edge and lead to
vortex induced separation

The dynamic stall onset angle of attack, defined
previously from the experimental data based on a char-
acteristic POD mode [14], is denoted by αds2 and the
time delay associated with the vortex formation stage is
indicated by ∆t2. The assessed values of the onset an-
gle of attack and the corresponding stall delay for the
prevailing parameter combinations are also included in
table 1.

The second contribution to the dynamic stall delay
is found to be approximately constant for the presented
parameter combinations (see also figure 7). Apparently,
this part of the stall development is no longer influenced
by dynamic effects, and the vortex formation process is
solely governed by viscous interactions. Notice that for
so-called ’light stall’ case given by the parameter combi-
nation α0 = 18°, α1 = 6°, and k = 0.10, there is no vortex
formation stage, consequentially no ∆t2.
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Figure 7: Dynamic stall delay attributed to the vortex formation
stage for different oscillation parameter combinations indi-
cated by different markers (cf. table 1). Error bars indicate the
standard deviations.
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5 conclusion and future work

Time-resolved velocity field information and unsteady
surface pressure distributions were gathered during
wind tunnel experiments and elaborated by an extensive
coherent structure analysis. The characteristic features
of the unsteady flow field were identified andanalysed
utilising an Eulerian and a Lagrangian procedure that
allow for the localisation of the axes of vortices and the
edges of Lagrangian coherent structures, respectively.
The complementary information obtained by both meth-
ods provided deeper insight into the spatiotemporal
evolution of vortical structures within a single dynamic
stall life cycle, and in particular within the stall develop-
ment stage.

The classical hallmark of the dynamic stall phe-
nomenon is the dynamic stall vortex. The physical
mechanisms leading to the formation of this primary
stall vortex were identified as the emergence and sub-
sequent roll up of a local shear layer. Accordingly, the
stall development stage was subdivided into two parts
distinguished by their different dynamics: a primary
instability stage followed by a secondary instability or
vortex formation stage. During the former stage a re-
circulation region emerges on the airfoil’s suction side
as the result of a persisting unsteady adverse pressure
gradient. At the interface between the reversed flow and
the free stream flow small-scale shear layer vortices were
identified by the Eulerian method. While observing only
weak interactions during the first instability stage, the
second stage was associated with the roll up of the shear
layer into a large-scale dynamic stall vortex. The tran-
sition between the two stall development regimes was
determined by a discontinuity in the development of
the shear layer height. Furthermore, it was revealed that
the dynamic stall delay attributed to the first instabil-
ity stage decreases with increasing unsteadiness. The
delay attributed to the vortex formation stage on the
other hand was observed to be virtually unaffected by
variations in the airfoil’s pitching motion.

Due to the inherent unsteady nature of the dy-
namic stall process, the time-resolved approach has to
be regarded the preferential approach. However, in
order to further improve dynamic stall modelling and
prediction, the parameter range should be extended, en-
compassing Reynolds number variations and alternative
airfoil geometries.
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