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ABSTRACT 
 

Glauert's second approximation to momentum theory allows him to formulate a variational 

statement for the loading of an optimum rotor in hover or climb, Ref. [1], pp. 251-258. He then 

works out a numerical solution to the optimum rotor in hover, Ref. [1], pp. 310-314, which shows 

his optimum to be slightly better than the Betz approximate optimum loading, Ref. [2]. Reference 

[3] demonstrates that further development of Glauert's variational principle leads to a cubic 

equation for the optimum loading in hover. The cubic equation is shown to have a compact, closed-

form solution for the optimum rotor in hover (as based on momentum theory). In Ref. [4], the Betz 

solution is utilized along with a third approximation to Glauert's equations in order to find wake 

contraction in hover due to a Betz distribution. In this paper, we show that Glauert's variational 

principal for optimum loading leads to a quartic equation in the case of climb. Although closed-form 

solutions exist for quadratics, in this case the solutions are awkward. As an alternative, a very 

accurate approximation to the quartic solution has been found in closed form for the optimum 

loading at all climb rates (including hover). The maximum error of this approximation (as compared 

to the exact solution of the quartic) is less than 0.5% over the entire range of allowed parameters.  

With this approximation, it is possible to compute rotor efficiency along with flow variables both at 

the rotor disk and in the far wake, including wake contraction. 

  

NOTATION 

 

𝐶𝑇 thrust coefficient, 𝑇 (𝜌𝜋𝑅2Ω2𝑅2)⁄  

𝐶𝑃 power coefficient, 𝑃 (𝜌𝜋𝑅2Ω3𝑅3)⁄  
𝑑( ) differential operator 

𝐷𝐸𝑁 denominator of expression for 𝜔̅, 
nondimensional 

𝑓(𝑥) contraction function, (𝑚2) 

𝐾 contraction ratio =  [𝑓/𝑥2]1 2⁄  

𝑃               power (N-m/sec) 

𝑞               normalized loading parameter, 
𝑞 =  𝜈0 ( + 𝜈0)⁄  

𝑟                normalized radial coordinate, 
            𝑟 =  𝑥/[𝑅( + 𝜈0)] 
𝑅 rotor radius, (𝑚) 
𝑇 thrust, (𝑁) 
𝑈 climb rate, (𝑚/𝑠𝑒𝑐) 
𝑢 induced flow at rotor, (𝑚/𝑠𝑒𝑐) 
𝑢̅ normalized induced flow, 𝑢/[Ω𝑅( + 𝜈0)] 
𝑥 radial coordinate, (𝑚) 

𝑋 optimum velocity variable, 𝑋 =  2Ω/ 

Γ circulation on blade, (𝑚2/𝑠𝑒𝑐) 
𝛿( ) variational operator 

 nondimensional climb rate, 𝑈/(Ω𝑅) 
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 angle in cubic equation, (𝑟𝑎𝑑)  

 Lagrange multipier, (𝑚/𝑠𝑒𝑐) 

𝜈0 Glauert loading variable, nondimensional 

 density of air, (𝑘𝑔/𝑚3) 
𝜙 angle of inflow and thrust vector, (𝑟𝑎𝑑) 
𝜔         wake rotation rate just below disk, 

(𝑟𝑎𝑑/𝑠𝑒𝑐) 

𝜔̅         nondimensional wake rotation rate just 
below disk, 𝜔/Ω 

( )1      quantity ( ) evaluated in far 
downstream wake 

 
 

MOTIVATION 
 

Glauert’s treatment of momentum theory has 
been a standard of rotor analysis for 80 years.  
The equations are elegant and offer deep 
insights into the energy and momentum 
relationships for a lifting rotor. Although Glauert 
developed some elegant, closed-form solutions 
for the Betz loading distribution, that distribution 
is only optimum in the limit of low-lift climb. 
Glauert offered a formulation of a more general 
optimum but was only able to solve it 
numerically for some simple hover solutions. 
Here, we wish to determine if further, closed-
form results can be obtained for the general 
optimum with the hope of gaining insight into 
rotor behavior. 

 
INTRODUCTION 

 
The first order of business is to determine 
exactly what the optimality condition is for the 
general case of a lifting rotor in hover or climb.  
Glauert's second approximation to his 
momentum theory implies that the induced flow 
at the rotor disk is parallel to the local thrust 
vector. 

 
   

 

2
(1)          tan

2

x U u

u x x







 

 
 

From Eq. (1), 𝑢 can be written in terms of 𝜔 or 
vice versa. The incremental thrust and power at 
a radial station on the blade from Glauert thus 
become: 
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One can adjoin the thrust to the power with a 
Lagrange multiplier and obtain a variational 

statement for the minimum induced power 𝑃𝐼 
given a specified thrust. 
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This variational statement for power results in a 
quartic equation for the optimum angular 

velocity  at any radial location, from which one 
can find the optimum 𝑢 and the optimum 

loading, 𝑑𝑇. The quartic equation is as follows: 
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where  is the nondimensonal climb rate and 𝜈0 
is the nondimensional Lagrange multiplier 

which then becomes the Glauert loading 
parameter. 

Once Eq. (5) is solved for 𝑋(𝑟), Eq. (1) can be 

used to find 𝜔, 𝑢, and the bound circulation of 
the optimum loading;  
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Therefore, solution of the quartic Eq. (5) gives 

the entire solution for the optimum rotor in 

climb. The optimum thrust and power come 

directly from Eqs. (2) and (3) and are given by 

the following expressions: 
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Equations (5)-(9) are sufficient to describe the 

optimum rotor in climb under Glauert’s second 

approximation to momentum theory. The next 

order of business is to determine useful 

solutions to these equations.  We start with the 

special case of hover and then generalize. 

 

SOLUTION 
 
For hover ( =  0, 𝑞 = 1), Eq. (4) reduces to a 

cubic equation in 𝑋 which can be solved in a 
compact, closed form for the unknown 𝑋 and, 

consequently for 𝜔̅.  As shown in Ref. [3], that 
cubic has a compact closed form solution. 
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When the rotor is in climb, there is a closed 
form to the quartic Eq. (5), but it is quite 
cumbersome. Investigation has found that an 
excellent approximation to Eq. (5) can be found 
(that is exact for 𝑞 = 1 and exact for 𝑞 =  0) by 
utilization of the form implied by Eqs. (10-11). 
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and   is the same as in Eqs. (10 -11), 0 <  <

𝜋. This function is designed to give the exact 

behavior at 𝑟 = 0, at 𝑞 = 0, and 𝑞 = 1 with no 

more than 0.5% error for any value of 𝑟 at any 

value of 𝑞. For the Betz, approximation, Eqs. (7-

9) remain the same but with: 

2

2
(14)                       

1

q

r
 


 

 

For small 𝑞, the Glauert solution approaches 

the Betz solution. 

 

WAKE CONTRACTION 
 

Glauert solved his equations after making an 
assumption that the rotation velocity in the far 
wake has little effect on the overall solution. 
This led to the result that the local induced 
velocity at the rotor disk is always in an 
opposite direction to the local lift. Reference [4] 
showed that one could make a far less stringent 
approximation that did not neglect rotational 
effect in the wake, and still obtain the useful 
result that local induced flow is parallel to local 
lift. The less stringent assumption then leads to 
a relationship for the contraction equation in the 
far wake. 
 
As noted in Ref. [4], there is a differential 

equation for contraction ratio for a rotor with any 

loading under the third approximation to Glauert 

Momentum Theory. 
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With the equations developed here, the 
contraction ratio can be found for the Betz and 
Glauert loadings for any loading parameter, 𝑞. 
From that, streamlines can be drawn depicting 
how the wake contracts into the far field for 
various loading conditions.  
 
The assumption for drawing the streamlines is 
that the pressure expands from the on-disk 
value to the far downstream value––the latter 
developed from Eq. (15)––by assuming the 
pressure functions in closed-form from potential 
flow theory in three-dimensions, Legendre 
functions of the second kind. With that pressure 
expansion, the Bernoulli equation then gives 
velocity along the streamlines; and then 
continuity gives the contraction behavior 
between the disk and far downstream. 
 

 

NUMERICAL RESULTS 
 

Results are plotted versus normalized radius, 𝑟, 

which allows them to be applicable to any 

loading condition. For a given climb rate 𝜂 and 

loading condition 𝜈0, the tip of the blade is at 

𝑟 =  1/(η +  𝜈0). The parameter 𝑞 is defined by 

Eq. (6) and is a normalized climb variable.  One 

can see from that equation that 𝑞 = 0 

corresponds to a lightly-loaded rotor in climb, 

and 𝑞 = 1 corresponds to hover. All results are 

plotted over the entire range of values of 𝑞. 

Figure 1 shows the the percentage error 

between the exact solution––determined by 

numerical solution of the quartic equation in Eq. 

(5)––and our approximation Eq. (13). One can 

see that the relative accuracy of our closed-

form approximation to the quartic equation for 

optimum loading is exellent. For hover, 𝑞 = 1, 

the error is zero at all radial locations. That is to 

be expected since the approximation is 

designed to give the exact solution to the cubic 

equation when 𝑞 = 1. The error is also zero for 

lightly-loaded rotors, 𝑞 = 0. Again, this is to be 

expected since we designed the approximation 

also to give the exact answer in that limit, which 

is the Betz solution. The maximum error at any 

point along the radius is only 0.5% and occurs 

at two different locations: 1.) normalized radius 

𝑟 = 1.5 for 𝑞 =  0.7 and 2.) at 𝑟 = 0.5 for 

𝑞 = 0.3. There is a residual erros as 𝑟 

approaches infinity. It is never any more than 

0.4% with maximum error at 𝑞 = 0.5. 

Figure 2 shows the optimum values of wake 

rotation 𝜔̅ versus normalized radial position for 

various loading conditions ranging from hover 

(𝑞 = 1) to lightly loaded (𝑞 = 0) and compares 

them to the Betz loading. From this, all other 

parameters can be found, including normalized 

circulation, which is equal to 𝜔̅𝑟2. To the 

accuracy that can be seen in the plot, our result 

can be considered to be the exact value of the 

true optimum. Note that, in hover, the Betz 

circulation approaches 2.0 at the root whereas 

Glauert approaches 1.0. From Eq. (7) it follows 

that the axial velocity approaches a constant at 

the root for Galuert while it goes to zero for 

Betz. 

Figure 3 presents the contraction ratios for both 

the true Glauert optimum and Betz distributions 

as determined from the solution of the 

differential equation in Eq. (15). As noted in 

Ref. [3], the Betz distribution has a strong 

singularity at 𝑟 = 0 for 𝑞 =  1 which creates a 

rapid change in 𝐾 near the root approaching 

𝐾 = 0 at the rotor center. All curves at all climb 

rates begin at 𝐾 = 0 for the Betz solution 

(except for 𝑞 =  1), with 𝐾 for values of 𝑞 close 

to 1.0 rapidly moving towards the 𝑞 = 1 curve. 

For Betz, the fact that 𝐾 =  0 at the root implies 

an infinite contraction, whereas for Glauert 𝐾 

approaches 0.3827 at 𝑞 = 1, which indicates no 

concentrated singularity––but only a fairly weak 

singularity. 



Figure 4 shows notional streamlines for the 

Glauert and Betz distributions in hover to give 

an idea of how the different loadings affect 

contraction. It can be seen that the streamlines 

are not much different for the two distributions.  

Figure 5 gives the downstream values of wake 

rotation for the Betz distribution, and Fig. 6 

gives them for the Glauert optimum distribution. 

Because of the strong singularity in contraction 

for Betz, 𝜔̅ in the far wake approaches infinity 

at the root; and 𝑢 approaches a constant.  

Glauert has a weaker behavior near the root. 

Thus, 𝜔̅ in the far wake for Glauert approaches 

a large value, 1/(.3827)2 =  6.827 but not 

infinity. For either case, the axial flow far 

downstream approaches 2.0 (twice the velocity 

at the disk) at large 𝑟. 

 

CONCLUSIONS 
 

1) Application of a variational principle to 
Glauert’s momentum theory gives a quartic 
equation for the optimum loading for a powered 
rotor in hover and climb. It is shown that a 
closed form approximate solution to this 
quadratic equation gives accurate results as 
compared to the exact solution. 

2) Comparison of the optimum values of the 
wake rotation obtained from the approximate 
solution and the Betz loading shows that for the 
rotor in hover, Betz circulation approaches the 
value of 2.0 at the root and the axial velocity 
reaches a constant value. On the contrary, for 
Glauert, circulation approaches the value of 1.0 
at the root and the axial velocity goes to zero.  

3) Betz shows strong singularity in contraction 
ratio at the root which results in the infinite 
value for 𝜔̅ in far wake. However, due to a 

weaker singularity in the root for Glauert, 𝜔̅ gets 
a large value but not infinity in the far wake. 
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Figures 
 

 
Figure 1. Percent Error of Approximation over Parameter Range 

 

 
Figure 2. Rotation of Optimum Loading Distribution 𝜔̅ at Various Loading Parameters as 

Compared with Betz Loading. (Nondimensional circulation = 𝜔̅𝑟2) 



 
Figure 3. Contraction Ratio of Glauert Optimum as Compared to Betz Loading at 

Various Loading Parameters. 

 
Figure 4. Notional Streamlines for Glauert Optimum Distribution in Hover and Climb. 



 
Figure 5. Downstream Variables for Betz distribution. 

 

 

Figure 6. Downstream Variables for Glauert optimum distribution. 


